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Within the framework of density functional theory, a study of

approximations to the enhancement factor of the non-

interacting kinetic energy functional Ts[q] has been presented.

For this purpose, the model of Liu and Parr (Liu and Parr, Phys

Rev A 1997, 55, 1792) based on a series expansion of Ts[q]

involving powers of the density was employed. Application to

34 atoms, at the Hartree–Fock level has shown that the

enhancement factors present peaks that are in excellent agree-

ment with those of the exact ones and give an accurate

description of the shell structure of these atoms. The applica-

tion of Z-dependent expansions to represent some of the

terms of these approximations for neutral atoms and for posi-

tive and negative ions, which allows Ts[q] to be cast in a very

simple form, is also explored. Indications are given as to how

these functionals may be applied to molecules and clusters. VC
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Introduction

One of the challenging problems in density functional theory

(DFT) is how to express the non-interacting kinetic energy of a

quantum mechanical multibody system as a functional of the

density.[1–10] Having such a functional is, of course, crucial for

the implementation of the orbital-free version of DFT.[11] In the

Kohn–Sham formalism[12] the non-interacting kinetic energy is

written as a functional of the N orbitals yielding N equations of

which the solution becomes more and more difficult as N

increases. For this reason, the use of a kinetic energy functional

which depends only on the density is an alternative to reduce

this problem. The use of orbital-free functional for the kinetic

energy certainly lowers the computational cost and permits DFT

to be applied to large many-particle systems and to solve a sin-

gle equation for the density, regardless of the value of N.

To find adequate density functionals for the kinetic energy is

difficult, due to the virial theorem, the kinetic energy is in the

same magnitude as the total energy. Hence, this functional must

have the same level of accuracy as the total energy (in contrast

with the exchange and correlation functionals which comprise a

small fraction of the total energy only). Since the work of

Thomas[13] and Fermi[14] along with many decades of effort, (for

reviews see Refs. 6,7,11,15) there has still been no satisfactory

approximation of this functional.[16–24] A suitable form for the

non-interactive kinetic energy functional can be derived from

general principles; see for example, the derivation given in the

context of the local-scaling transformation.[25–27]

This exact form corresponds to

Ts½q�5
1

8

ð
d~r
jrqð~rÞj2

qð~rÞ 1
1

2

ð
d~rq5=3ð~rÞAN½qð~rÞ;~r �; (1)

where the first term is the Weizs€acker term[28] and the second

contains the Thomas–Fermi function q5=3ð~rÞ times the

enhancement factor AN½qð~rÞ;~r � where qð~rÞ is the one-electron

density of the system. In this way, the challenge in modeling

Ts[q] is shifted to that of finding adequate approximations for

the enhancement factor AN½qð~rÞ;~r �, which is considered as a

functional of q.

Among the alternatives for the non-interactive kinetic

energy functionals[6,7] produced over years, this article focuses

on the one introduced by Liu and Parr,[1] which expands it as

a power series of the density qð~rÞ. It generates an explicit

expression for the enhancement factor as a functional of the

one-electron density. A variational calculation based on this

expansion has recently been given by Kristyan.[29,30]

In this article we analyze the representation of the enhance-

ment factor via the Liu–Parr series expansion and compare it

with the orbital formalism. This will be tested on atoms of the

first, second and third row of the periodic table. In addition,

we explore the possibility of simplifying the Liu–Parr functional

by introducing Z-dependent expressions for some integrals

containing qð~rÞ. Finally, bearing in mind that the mathematical
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framework is presented rather concisely in the original Liu and

Parr’s article,[1] we include a more extended demonstration of

their second theorem in the Appendix. We expect that this

may contribute to a better understanding of the Liu and Parr

approach and foster its applications.

The Enhancement Factor

Some properties of the enhancement factor

The Weizsacker term in eq. (1) is local[31] so the non-local part

of the kinetic energy functional must be embodied in the

non-Weizsacker term, that is, in the enhancement factor. As

was pointed out by Lude~na,[32] the non-Weizsacker term con-

tains the derivative of the correlation factor for the Fermi hole

(see eq. [38] of Ref. 32). Hence, the enhancement factor con-

tains terms responsible for localizing electrons with the same

spin in different regions of space giving rise to shell structure.

This phenomenon stems from the non-locality of the Fermi

hole which may be described in terms of charge depletions

followed by charge accumulations producing polarizations at

different distances.[33]

This non-locality of the kinetic energy functional is well rep-

resented by orbital expansions

Ts f/igN
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h i
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given in terms of gradients in eq. (2) or of Laplacians in eq.

(3). Equations (2) and (3) are connected by integration by parts

where the surface term goes to zero. Combining eqs. (1) and

the gradient representation of eq. (2) yields the following

exact orbital representation for the enhancement factor:
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�
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Obviously, when modeling the enhancement factor in terms of

a series of the one-electron density one would like to repro-

duce the same characteristics as in orbital representation.

Thus, in addition to yielding a desired accuracy for the non-

interacting kinetic energy, the approximate enhancement fac-

tor should satisfy the condition[34]:

AN qð~rÞ;~r½ � � 0 for all ~r (5)

and should also be capable of generating shell structure. In

this respect, the AN qð~rÞ; /if g;~r½ � as given by eq. (4) differs by a

constant only from the function vð~rÞ5Dð~rÞ=Dhð~rÞ introduced

in the definition of the electron localization function (ELF, Ref.

35). Moreover, bearing in mind that ELF and similar functions

have been successfully related to shell structure of atoms and

molecules,[36–44] it is clear that any proposed model for the

enhancement factor must also agree with this requirement.

A popular generalized gradient approximation (GGA) for the

kinetic energy takes the form[45]

Ts½q�5TW½q�1
ð

d~rq5=3ð~rÞF½sð~rÞ�; (6)

where TW½q� is the Weisz€acker term[28], and F½sð~rÞ� is the Pauli

GGA enhancement factor[15] containing

sð~rÞ5 jrqð~rÞj
2ð3p2Þ1=3q4=3ð~rÞ

: (7)

The variable sð~rÞ is the reduced density gradient describing

the rate of variation of the one-electron density. Large values

of sð~rÞ correspond to fast variations on the one-electron den-

sity and vice versa.[46] The above approximation of the Pauli

term containing GGA factor F½sð~rÞ� is the basis of the conjoint

gradient expansion of the kinetic energy introduced by Lee,

Lee, and Parr.[47]

A full review of the functionals of the kinetic energy

expressed in terms of the one-electron density and its deriva-

tives is given by Wesolowski.[6] For some more recent repre-

sentations of the enhancement factor of the non-interacting

kinetic energy as a functional of q and its derivatives rq, r2q,

etc., see Refs. 18,20–22,48–50. However, in the present work

we examine a different approximation to the enhancement

factor in eq. (1), namely, a representation of AN½qð~rÞ;~r � as a

local functional of the one-electron density.[1]

An approximate representation of the enhancement factor

We adopt the Liu and Parr[1] expansion of the non-interacting

kinetic energy functional given in terms of homogeneous

functionals of the one-electron density:

TLP97½q�5
Xn

j51

Cj

ð
d~rq½11ð2=3jÞ�ð~rÞ

� �j

; (8)

where in TLP97½q� the index LP97 stands for Liu and Parr and

the year of publication. Following the original work, we trun-

cate eq. (8) after j 5 3 as

TLP97½q�5 CT1

ð
d~rq5=3ð~rÞ

1CT2

ð
d~rq4=3ð~rÞ

� �2

1CT3

ð
d~rq11=9ð~rÞ

� �3

:

(9)

Liu and Parr[1] have determined the coefficients CTj
’s by least-

square fitting and setting q5qHF, the Hartree–Fock density:

CT1
53:26422; CT2

520:02631, and CT3
50:000498 (a typographical

error in the values of the coefficients in the original article, has
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been corrected). This expansion provides a very simple way to

express the kinetic energy as a local functional of the density.

In this context, an approximate expression for AN½qð~rÞ;~r � as

a functional of the one-electron density can be found from

eqs. (9) and (1):

AN;appr½q�5 2ðCT1
1CT2

q21=3ð~rÞ
ð

d~rq4=3ð~rÞ

1CT3
q24=9ð~rÞ

ð
d~rq11=9ð~rÞ

� �2

2
1

8

jrqð~rÞj2

q8=3ð~rÞ Þ:

(10)

Local corrections to the enhancement factor

Using eqs. (4) and (10), the graphs for Kohn–Sham based ver-

sus current approximate enhancement factors are plotted in

Figures 1a–1d for the Na, Al, Ni, and Kr atoms. Calculations for

these atoms do not include relativistic corrections. One can

see that the Kohn–Sham based enhancement factor is a posi-

tive function, in contrast to the approximate one which shows

negative regions violating eq. (5).[51]

Due to the fact that the kinetic energy is not uniquely

approximated in DFT and, as illustrated by eqs. (2) and (3),

there are expressions that yield different kinetic energy

locally in spite of the fact that they integrate to the same

value. It is possible to modify the non-positive approximate

enhancement factor by adding terms that do not alter the

integral value of the non-interacting kinetic energy, but make

contributions locally to the enhancement factor to become

positive. This is an acceptable procedure in view of the non-

unique nature of the definition of the local kinetic energy

expressions.[52–54]

In this way, we have added a term to the non-interacting

kinetic energy expression using the Laplacian of the density

times an arbitrary real valued constant k as

Ts½q�5 CT1

ð
d~rq5=3ð~rÞ1CT2

ð
d~rq4=3ð~rÞ

� �2

1CT3

ð
d~rq11=9ð~rÞ

� �3

1k
ð

d~r r2qð~rÞ:
(11)

This extends eq. (10) for a new approximate enhancement

factor:

Figure 1. Kohn–Sham based enhancement factor (dotted blue), approximate enhancement factor in eq. (12) (dashed brown) with k 5 0, with k5 7
19

(dotted

green), approximate enhancement factor with 9th-degree Z polynomial and k5 7
19 (dotted orange) in eq. (17), and radial distribution function of the den-

sity (full red) for the atoms: 1 (a) Na, 1 (b) Al, 1 (c) Ni, 1 (d) Kr.
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jrqð~rÞj2

q8=3ð~rÞ
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(12)

This additional term does not alter the integral value of the

kinetic energy because the integral of the Laplacian of the

one-electron density is zero.[55,56] The improvement from this

additional term in eq. (12) for the Na, Al, Ni, and Kr atoms are

shown in Figure 1.

We note that the new k-dependent enhancement factor in

eq. (12) closely reproduces the behavior of the Kohn–Sham

based ones in the regions where the highest peaks are located.

In all cases the agreement is quite good both for the first, and

second shells. For Ni, the approximate enhancement factor is

slightly below the Kohn–Sham based one in the region corre-

sponding to the third shell. For Kr, however, the agreement is

good for all shells although the tail is steeper for large~r .

As seen, the asymptotic behavior of the k-dependent

enhancement factor in the region where r ! 0 shows nega-

tive values in all cases studied. However, this behavior in AN

does not necessarily produce a problem for interatomic

forces, as these forces are calculated by using the orbital-

free analogue of the Hellmann–Feynman theorem (see eqs.

(21–A2) in Ref. 57), for example, in molecular dynamics.

According to these equations, the forces are defined by the

one-electron density and the external potential, and thus,

they do not depend on the local behavior of the kinetic

energy density. On the other hand, in the region where r

becomes large, that is, outside the atomic shells, the behav-

ior of the approximate enhancement factor follows the

trend of the exact ones, for example, in the cases of Na, Al,

and Kr, although in the latter, the approximate enhance-

ment factor grows more pronounced than the Kohn–Sham

based one. In the case of Ni, however, one can observe a

divergence in the behavior of the tail of the approximate

enhancement factor. We mention that divergences in the

tail region are not relevant and do not contribute to the

kinetic energy value due to the fact that these divergences

are suppressed by the exponentially decaying one-electron

density tail.

Further Approximation of the Enhancement
Factor with Z-Dependent Polynomials

The enhancement factor AN,appr in eq. (10), depends on two

integrals,
Ð

d~r q4=3ð~rÞ and
Ð

d~r q11=9ð~rÞ. The values of these

integrals, evaluated with q 5 qHF, are functions of the atomic

number Z. We have selected to display this Z-dependent

behavior in Figures 2 and 3. In these figures, the dots on the

blue lines represent the values of the 4/3 and 11/9 integrals

for the neutral atoms, respectively. These values are interpo-

lated using the polynomial expansions:
Ð

d~r q4=3ð~rÞ � P4=3ðZnÞ
and

Ð
d~r q11=9ð~rÞ � P11=9ðZnÞ where n is the degree of the Z

polynomial. The blue lines in Figures 2a and 3a represent the

approximations given by the third-degree polynomial Z3. Simi-

larly, the blue lines in Figures 2b and 3b correspond to the Z9

polynomial approximation. The least square fit of these inter-

polation polynomials has yielded

P4=3ðZ3Þ5 20:969180368210:7854208699Z

10:0776145852Z220:0001581219Z3;
(13)

P4=3ðZ9Þ5 21:096055105511:8518814624Z

20:5991519550Z210:1549675741Z3

20:0180687925Z410:0012312619Z5

20:0000517284Z610:0000013252Z7

20:0000000190Z810:0000000001Z9

(14)

P11=9ðZ3Þ5 20:754038336010:8813316184Z

10:0373453207Z220:0001408691Z3;
(15)

Figure 2. Interpolation curves for the values of the
Ð

d~r q4=3ð~rÞ: a) a 3rd degree polynomial P4=3ðZ3Þ (full blue) for 36 atoms and a 3rd degree polynomial

P1
4=3ðZ3Þ (dashed red) for 34 positive ions, and b) a 9th degree polynomial P4=3ðZ9Þ (full blue) for 36 atoms and a 9th degree polynomial P1

4=3ðZ9Þ (dashed

red) for 34 positive ions.
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P11=9ðZ9Þ5 20:807794949011:6355990588Z

20:4837629283Z210:1255298989Z3

20:0150967704Z410:0010441963Z5

20:0000439707Z610:0000011196Z7

20:0000000159Z810:0000000001Z9:

(16)

Thus, the enhancement factor takes the following form

(where n is the degree of the Z polynomial) for atoms

1

2
AZn ;appr½q; Z�5CT1

1CT2
q21=3ð~rÞP4=3ðZnÞ

1CT3
q24=9ð~rÞP11=9ðZnÞ2

1k
r2qð~rÞ
qð~rÞ5=3

2
1

8

jrqð~rÞj2

q8=3ð~rÞ

(17)

Also, this leads to the following approximation for the non-

interacting atomic kinetic energy functional

TLP971Zn ½q; Z�5CT1

ð
d~rq5=3ð~rÞ

1CT2

ð
d~rq4=3ð~rÞP4=3ðZnÞ

1CT3

ð
d~rq11=9ð~rÞP11=9ðZnÞ2

(18)

Application to neutral atoms

The absolute relative percentage errors of the kinetic energy

values for neutral atoms are presented in Figure 4. These

errors were calculated with respect to the THF values reported

by Clementi and Roetti,[58] and are defined by

D�ðTiÞ � jðTi2THFÞ=THFj3100. The lines in Figure 4 correspond

to the Liu–Parr functional TLP97 and to the Z–k-dependent

functionals TLP971Z3 and TLP971Z9 . The Z–k-dependent function-

als were evaluated both with the Liu–Parr original coefficients

as well as with optimized ones.

The graphs of these new Z–k-dependent enhancement fac-

tors in eq. (17) are also plotted in Figure 1 (dotted orange),

coinciding with those of the locally adjusted k-dependent fac-

tors (dotted green) from which they are visibly almost

undistinguishable.

Application to positive and negative ions

We have also examined if the approximate functionals dis-

cussed above are applicable to positive and negative ions. For

this purpose, we present in Figures 5 and 6 the absolute rela-

tive percentage errors for positive and negative atomic ions,

respectively. Figure 5, D�ðT a
LP97Þ corresponds to the Liu–Parr

functional TLP97, eq. (9), evaluated using the same optimized

Figure 3. Interpolation curves for the values of the
Ð

d~r q11=9ð~rÞ: a) a 3rd degree polynomial P11=9ðZ3Þ (full blue) for 36 atoms and a 3rd degree polynomial

P2
11=9ðZ3Þ (dashed red) for 27 negative ions, and b) a 9th degree polynomial P11=9ðZ9Þ (full blue) for 36 atoms and a 9th degree polynomial P2

11=9ðZ9Þ
(dashed red) for 27 negative ions.

Figure 4. Relative percentage error D�(Ti) for neutral atoms, for Ta
LP97, eq.

(9), with Liu–Parr coefficients; Tb
LP971Z3 , eq. (18), with reoptimized coeffi-

cients (CT1
5 3.1336517827, CT2

5 20.0043445677, and CT3
5 20.0000345496);

Tc
LP971Z9 , eq. (18), with reoptimized coefficients (CT1

5 3.1257333712,

CT2
5 20.0030202454, and CT3

5 20.0000669074); Td
LP971Z3 , eq. (18), with Liu–

Parr coefficients; Te
LP971Z9 , eq. (18), with Liu–Parr coefficients.
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coefficients as those of neutral atoms but the densities of

positive ions taken from the Clementi–Roetti tables. Similar

results are presented by D�ðT a
LP97Þ for negative ions in Figure

6. D�ðT b
LP97Þ in Figure 5 corresponds to the functional TLP97

evaluated with the densities for positive ions and reoptimized

coefficients. Similarly, D�ðT b
LP97Þ in Figure 6 gives the corre-

sponding values for negative ions.

In order to assess whether the Zn approximations for neutral

atoms can be transferred to positive and negative ions, we

present in Figures 5 and 6 the values of D�ðT c
LP971Z9Þ for posi-

tive and negative ions, respectively. The functional T c
LP971Z9

was evaluated via eq. (18) with the Z9 polynomial and the

Liu–Parr coefficients fitted for neutral atoms and the

Clementi–Roetti densities for positive and negative atomic

ions, respectively. In the graph for D�ðT d
LP971Z9Þ of Figures 5

and 6, the same results are presented for the case of the Z9

polynomial approximation for neutral atoms, but the coeffi-

cients have been reoptimized. In the graph for D�ðT e
LP971Z3Þ of

Figures 5 and 6, we present values of the non-interacting

kinetic energy calculated by eq. (18), but the Z3 polynomial

approximation was fitted for each particular case, and also,

the coefficients of the homogeneous functional expansion

were reoptimized.

The values of D�ðT b
LP97Þ in Figures 5 and 6, indicate that the

Liu–Parr homogeneous functional expansion works quite well

for positive and negative atomic ions. Making use in this anal-

ysis of the mean absolute deviation of the D�(Ti)s, namely, the

MAD values, we see that in the case of positive ions, the MAD

value is 0.133, while for negative ions, 0.107. In both of these

cases, the accuracy increases with atomic number. The trans-

ferability of the Zn polynomial approximation for neutral atoms

as well as the use of the Liu–Parr coefficients (optimized for

neutral atoms) may be assessed by examining the values of D�
ðT c

LP971Z9Þ in Figures 5 and 6. The results show a MAD value of

0.202 and 0.213 for positive and negative ions, respectively.

Again, the approximation improves with the increasing atomic

number. These results are, in fact, quite comparable to those

of the original Liu–Parr expression [eq. (9)]. Obviously, the best

fit is obtained when both the Zn function and the coefficients

have been optimized for the ions. The MAD values in this case

are 0.121 and 0.080, respectively, for positive and negative

ions.

Extensions to molecular systems and clusters

Based on our previous work,[2] a good approximation of the

kinetic energy enhancement factor for two neighboring atoms

in molecular environment is given by the sum of the atomic

enhancement factors of the participating atoms. Let us con-

sider an electronic system, a molecule or a cluster which con-

tains M atoms. We divide the whole space into M subvolumes

fXAgA51;...;M, each containing a given atom A. For, example, for

the system composed by the same atoms the space can be

divided as

~r 2 XA if minj~r2~RBj5j~r2~RAj; (19)

where the vectors ~RA and ~RB denote the nuclear positions,

and thus, R35[M
A51XA. The one-electron density of a system

formed by M atoms is qð~rÞ � qð~r ; f~RAgA51;...;MÞ, indicating the

nuclear coordinates in the argument. Let us define

qAð~rÞ � qð~r 2 XAÞ: (20)

For any particular one-electron density qð~rÞ of the molecular

system, qAð~rÞ is the corresponding one-electron density associ-

ated with an atomic volume XA. Bearing this in mind one may

write the second term of eq. (1) as

Figure 5. Relative percentage error D�(Ti) for positive ions, for Ta
LP97, eq. (9),

with Liu–Parr coefficients; Tb
LP97, eq. (9), with reoptimized coefficients

(CT1
5 3.1288539558, CT2

5 20.0034574267, and CT3
5 20.0000591469);

Tc
LP971Z9 , eq. (18), with both Z9 and Liu–Parr coefficients for neutral atoms;

Td
LP971Z3 , eq. (18), with Z9 for neutral atoms and reoptimized coefficients

(CT1
5 3.1267059586, CT2

5 20.0039716465, and CT3
5 20.0000518778);

Tc
LP971Z3 , eq. (18), with Z3 for positive ions and reoptimized coefficients

(CT1
5 3.1370019499, CT2

5 20.0048541396, and CT3
5 20.0000240227).

Figure 6. Relative percentage error D�ðTiÞ for negative ions, for Ta
LP97, eq.

(9), with Liu–Parr coefficients; Tb
LP97, eq. (9), with reoptimized coefficients

(CT1
5 3.1248445957, CT2

5 20.0027038794, and CT3
5 20.0000764926);

Tc
LP971Z9 , eq. (18), with both Z9 and Liu–Parr coefficients for neutral atoms;

Td
LP971Z9 , eq. (18), with Z9 for neutral atoms and reoptimized coefficients

(CT1
5 3.1218035155, CT2

5 20.0022915847, and CT3
5 20.0000868695);

Tc
LP971Z3 , eq. (18), with Z3 for positive ions and reoptimized coefficients

(CT1
5 3.1326163517, CT2

5 20.0040144747, and CT3
5 20.0000443462).
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1

2

ð
R3

d~rq5=3ð~rÞAN½qð~rÞ;~r �

5
1

2

XM

A51

ð
XA

d~rq5=3
A ð~rÞAN½qAð~rÞ;~r �

(21)

The plausibility of this separation stems from the fact that the

enhancement factor is defined for a given atom, or atomic

region, which has yielded satisfactory results for the non-

interacting kinetic energy also, when the charge of the neutral

species is either increased to a negative ion, or decreased to a

positive one.[59,60] However, there is some indirect evidence

that the Liu–Parr expansion and approximation given by eqs.

(1) and (12) should work for molecules without partitioning

the whole space into atomic subvolumes.[1,61] Certainly, a divi-

sion into subvolumes is required if one uses the polynomial

representation eq. (17) for AN. Application of these ideas to

molecules and clusters will be dealt with elsewhere.

Conclusions

In the present work we have explored the possibility of

expressing the enhancement factor AN½qð~rÞ;~r � of the non inter-

acting kinetic energy functional solely as a function of the

one-electron density qð~rÞ. This has been accomplished with

the help of the Liu and Parr power series of the density.

We have analyzed the behavior of this approximate expres-

sion for AN½qð~rÞ;~r � in the case of first, second and third row

atoms (except H and He of which the kinetic energy functional

is exactly given by the Weizs€acker term). The expression for AN

½qð~rÞ;~r � in eq. (10) violates the requirement of positivity in

some regions; however, when a local correction term kr2qð~rÞ
=qð~rÞ5=3 is added to this expression, the profiles become excel-

lent as those of the enhancement factors derived from orbital

representations. More specifically, for the second row atoms

Na, Al, and Ar, the locations and heights of the maxima gener-

ated by the k-dependent approximation AN½qð~rÞ;~r � in eq. (12)

fully coincide with those obtained from orbital representations

in eq. (4). In the case of the third row atoms Fe and Ni,

although the location is in perfect agreement, the maxima cor-

responding to the third shell fall below the exact ones. An

exception is the Kr atom, where both location and height

coincidence is quite good. The asymptotic behavior of these

k-dependent functions near the nucleus shows a negative

divergence in all cases studied. At large distances from the

nucleus of the Fe and Ni atoms we have observed a diver-

gence, but in all other cases the asymptote follows the trend

of the exact enhancement factor.

In addition, we have introduced a Z-dependent approxima-

tion in eqs. (13–15) to replace the integrals
Ð

d~r q4=3ð~rÞ andÐ
d~r q11=9ð~rÞ of the enhancement factor, eq. (10). The non-

interacting atomic kinetic energy density functionals generated

from these new Z-dependent enhancement factors [eq. (17)]

show a behavior very close to the Liu–Parr functional TLP97.

Inspecting the MAD values for functionals TLP97 (0.222),

TLP971Z3 (0.329), and TLP971Z9 (0.224) evaluated with the Liu–

Parr optimized coefficients, we conclude that the functional

TLP971Z9 performs as well as the Liu–Parr functional TLP97. How-

ever, with our re-optimized coefficients for the Z-dependent

functionals, we have obtained the MAD values 0.129 and 0.166

for TLP971Z3 and TLP971Z9 , respectively, thus showing a closer

relationship to the exact Hartree Fock values. The behavior of

the approximate enhancement factors in case of the Z-

dependent functionals is almost the same as the k-corrected

Liu–Parr functionals.

With the Z–k-representation of neutral atoms extended to

positive and negative ions, see Figures 5 and 6, our non-

interacting atomic kinetic energy density functionals perform

quite well, even when we use the same Zn functions as well as

the Liu–Parr coefficients (the latter were adjusted for neutral

atoms).

In summary, based on both the Liu–Parr power series den-

sity expansion and on the replacement of two integrals of this

expansion by Z-dependent functions, a very simple form for

the non-interacting kinetic energy enhancement factor has

been found. These functionals bypass the usual gradient

expansion representation, leading to non-interacting kinetic

energy values which closely approximate (see the correspond-

ing MAD values) the exact ones calculated from Hartree Fock

wave functions. Moreover, the addition of the atomic enhance-

ment factors opens a possible way to extend the present func-

tionals to molecules and clusters.
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APPENDIX

Liu and Parr Theorem 2 Revisited
For better understanding, we analyze some lines left out
in the original proof of Theorem 2 of Liu and Parr.[1]

Theorem 2. Given the functional

Qj½q�5Cj½Hj�j; (A1)

where Hj is a homogeneous and local functional, if it is homo-

geneous of degree m in coordinate scaling, it takes the form

Qj½q�5Cj

ð
d~rq½11ðm=3jÞ�ð~rÞ

� �j

: (A2)

Furthermore, if Qj[q] is homogeneous of degree k in density

scaling, j is determined by the relation

j5k2
m

3
: (A3)

Proof. It is known that any strictly local functional L[q] satisfies

the identity

L½q�52
1

3

ð
d~r~r � rqð~rÞ dL½q�

dqð~rÞ (A4)
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Taking the functional derivative of eq. (A1) with respect to q,

that is:

dQj½q�
dq

5CjjHj½q�j21 dHj½q�
dq

(A5)

and rewriting eq. (A1), we have

Qj½q�5 CjðHj½q�Þj

5 CjHj½q�ðHj½q�Þj21

5 Cj 2
1

3

ð
d~r~r � rqð~rÞ dHj½q�

dqð~rÞ

� �
ðHj½q�Þj21

5 2
1

3j

ð
d~r~r � rqð~rÞCjjðHj½q�Þj21 dHj½q�

dqð~rÞ

5 2
1

3j

ð
d~r~r � rqð~rÞ dQj½q�

dqð~rÞ :

(A6)

Because Qj is homogeneous of degree m in coordinate scaling

it follows that

2

ð
d~r qð~rÞ~r � r dQj½q�

dqð~rÞ 5mQj½q�: (A7)

Thus, if we integrate this equation by parts, we obtain

2

ð
d~r qð~rÞ~r � r dQj½q�

dqð~rÞ 5

ð
d~r ½~r � rqð~rÞ

13qð~rÞ� dQj½q�
dqð~rÞ

(A8)

and by replacing eq. (A6) into (A8), it is found

ð
d~r qð~rÞ dQj½q�

dqð~rÞ 5
m13j

3
Qj½q�: (A9)

This shows that Qj[q] is homogeneous of degree (m 1 3j)=3 in

coordinate scaling. On the other hand, Hj[q] is homogeneous,

that is,

Hj½q�5
ð

d~r fj½qð~rÞ�; (A10)

so that if we replace eq. (A10) into eqs. (A1) and (A5) and

these in turn into eq. (A9) we have

ð
d~r qð~rÞjCjðHj½q�Þj21 dHj½q�

dqð~rÞ 5
m13j

3
CjðHj½q�Þj

ð
d~r qð~rÞ dHj½q�

dqð~rÞ 5 11
m

3j

� �
ðHj½q�Þ

ð
d~r qð~rÞ dfjðqÞ

dqð~rÞ5 11
m

3j

� �ð
d~r fjðqÞ

ð
d~r qð~rÞ dfjðqÞ

dqð~rÞ5
ð

d~r 11
m

3j

� �
fjðqÞ:

(A11)

If the two integrals are equal it follows:

qð~rÞ dfjðqÞ
dqð~rÞ5 11

m

3j

� �
fjðqÞ: (A12)

Therefore, we have to solve a simple differential equation

ð
dfjðqÞ
fjðqÞ

5

ð
11

m

3j

� �
dqð~rÞ
qð~rÞ

ln fjðqÞ5 11
m

3j

� �
ln qð~rÞ1Cj

fjðqÞ5 Cjq½11m=3j�ð~rÞ;

(A13)

where Cj is a constant of integration. This leads to:

Hj½q�5Cj

ð
d~r q½11m=3j�ð~rÞ (A14)

and

Qj½q�5Cj

ð
d~r q½11m=3j�ð~rÞ

� �j

: (A15)

Finally, we see from eq. (A9) that k is (m 1 3j)=3, thus

j5k2
m

3
: (A16)
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