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Interior of Saturn Æ
(taken from: Fortney J. J., Science 305, 1414 (2004):
(1) At an age of ~1.5 billion years
(2) The current Saturn according to previous H-

He phase diagram
(3) The current Saturn according to new 

evolutionary models

Motivation, Physical problem

 Schematic temperature-density diagram 
for Hydrogen (from R. Lee, LLNL).

Warm Dense Matter



Motivation, challenges to Developers

Why does the WDM regime require development of new methods & functionals? 

Standard computational methods often cease to work at extreme
compressions (high P) and temperatures (high T) –

• Limited transferability of pseudopotentials and PAWs
developed for near-ambient thermodynamic conditions.

• Drastic increase of computational cost as T increases: 
cost ~ (Nband)3 

• Strong quantum effects => Usually not possible to go down in T
to WDM regime from the hot plasma regime; classical 
approaches fail at lower T

• Exchange-correlation effects at finite T are not taken into 
account by use of ground-state (zero-T) XC functionals



Motivation, challenges to Developers

Need for thermal DFT functionals –

•Thermal DFT is a part of standard treatment (of WDM)

•Choice of the XC free energy Fxc [n] may affect reliability of results 

• Common practice is to use a T=0 XC functional:

• First rung XC free-energy functional (VVK, Sjostrom, Dufty, & Trickey, Phys. 
Rev. Lett. 112, 076403 (2014)) takes into account XC thermal effects in the local 
density approximation (LDA) 

•Next rung GGA XC free-energy is required to take into account XC thermal 
and non-homogeneity effects which include T-dependent density gradients

xc xc[ , ] [ ( )]n T n T≈F E



 0.1  1  10  100
rs (bohr)

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

T
 (

kK
)

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5XC thermal effects are significant in 
WDM regime:

fxc = XC free energy per particle
εxc= XC energy per particle at T=0
fs = non-interacting free energy

Rough WDM region in ellipse.  
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XC thermal effects for the homogeneous electron gas (HEG)

Common practice is to use a T=0 XC functional:

May not be accurate in WDM regime
xc xc[ , ] [ ( )]n T n T≈F E



• Identify T-dependent gradient variables for X and C free-energies
• Identify relevant finite-T constraints
• Use our finite-T LDA XC as an ingredient
• Propose appropriate analytical forms, incorporate constraints
• Implementation, tests, applications

VVK, Dufty, Trickey, Phys. Rev. Lett. (submitted, 2017)
see also arXiv: 1612.06266v1

Framework for GGA XC free-energy functional development



T-dependent density gradient for X 
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Start with finite-T gradient expansion for X:

Finite-T GGA X functional: LDA
x x x 2x
GGA , ]  ) F ( )[ ( ,  F n T n f n T s d= ∫ r

Enhancement factor is defined from several 
ground-state and finite-T constraints:
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Constraints:
• Reproduce finite-T small-s grad. expansion
• Satisfy Lieb-Oxford bound at T=0
• Reduce to correct T=0 limit
• Reduce to correct high-T limit



T-dependent density gradient for C
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T-dependent density gradient for C (Contd.)
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From finite-T gradient expansion for C we identify new T-dependent gradient variable: 

where the function H(fc
LDA,qc) is defined by the ground-state 

PBE functional to guarantee a widely used zero-T limit.

Finite-T GGA C functional:

GGA GGA
c c[ , ]  ( , , )F n T n f n n T d= ∇∫ r

Constraints:
• Reproduce finite-T small-s grad. expansion
• Reduce to correct T=0 limit
• Reduce to correct high-T limit

where q is a ground-state reduced
density gradient for correlation.
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X and C T-dependences

T-dependence of the GGA variable for C

x ( ) - shows -dependence 
           of the GGA reduced gradient for X
B t T

x ( ) - shows -dependence of the LDA-XA t T

xB
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Electronic pressure differences vs. T for the new finite-T GGA (“KSDT16”), 
KSDT LDA, and ground-state PBE XC functionals, all referenced to PZ 
ground-state LDA values. Static lattice fcc Aluminum at 3.0 g/cm3.

Thermal GGA XC results on fcc-Al model system

 PBE – XC non-homogeneity (T=0) effects

KDT16 – XC thermal GGA and 
non-homogeneity (explicit-T) effects

 KSDT - XC thermal LDA effects
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Deuterium electronic pressure vs. T for the finite-T GGA (“KDT16”) and ground-
state PBE XC functionals, as well as PIMC reference results. 

AIMD super-cell simulations, Γ-point only, for 128 atoms (8500 steps, T ≤ 40 kK) or 
for 64 atoms (4500 steps, T ≥ 62 kK

PIMC results: S.X. Hu, B. Militzer, V.N. Goncharov, and S. Skupsky, Phys. Rev. B 84 224109 
(2011).

Thermal GGA XC results on Deuterium EOS



Summary

• Framework for GGA XC free-energy functional development is presented

⇒ virtually any ground-state XC can be extended systematically into an XC free 
energy 

• First GGA XC free-energy (“KDT16”) functional constructed

• Test cases show that KDT16 provides improved accuracy in the description  of  
XC thermal effects

VVK, Dufty, Trickey, Phys. Rev. Lett. (submitted, 2017)
see also arXiv: 1612.06266v1


