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Motivation, Physical problem
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evolutionary models
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Motivation, challenges to Developers

Why does the WDM regime require development of new methods & functionals?

Standard computational methods often cease to work at extreme

compressions (high P) and temperatures (high T) —

. Limited transferability of pseudopotentials and PAWs
developed for near-ambient thermodynamic conditions.

. Drastic increase of computational cost as T increases:

cost ~ (N,,.4)°

. Strong quantum effects => Usually not possible to go down in T
to WDM regime from the hot plasma regime; classical
approaches fail at lower T

. Exchange-correlation effects at finite T are not taken into
account by use of ground-state (zero-T) XC functionals
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Motivation, challenges to Developers
Need for thermal DFT functionals —
*Thermal DFT is a part of standard treatment (of WDM)
*Choice of the XC free energy %~ [n] may affect reliability of results

« Common practice is to use a T=0 XC functional: .~ _[n,T] = & _[n(T)]

* First rung XC free-energy functional (VVK, Sjostrom, Dufty, & Trickey, Phys.
Rev. Lett. 112, 076403 (2014)) takes into account XC thermal effects in the local
density approximation (LDA)

*Next rung GGA XC free-energy is required to take into account XC thermal
and non-homogeneity effects which include T-dependent density gradients
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XC thermal effects for the homogeneous electron gas (HEG)

XC thermal effects are significant in 100000

WDM regime:
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Common practice is to use a T=0 XC functional:

Sl T] = & [n(T)]

May not be accurate in WDM regime
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Framework for GGA XC free-energy functional development

Climbing Jacob’s Ladder in the Warm Dense Environment: Generalized Gradient
Approximation Exchange-Correlation Free-Energy Functional

Valentin V. Karasiev,!* James W. Dufty.?2 and S.B. Trickey!

! Quantum Theory Project, Department of Physics and Department of Chemistry,
P.O. Box 118435, University of Florida, Gainesville FL 32611-84/35
“Department of Physics, P.O. Box 118435, University of Florida, Gainesville FL 32611-8435
(Dated: 19 Dec. 2016)

The potential for density functional theory (DFT) calculations to address, reliably, the extreme
conditions of warm dense matter (WDM) is predicated upon having an accurate representation for
the exchange-correlation (XC) free energy functional. To that end, we give a systematic, constraint-
based construction of a non-empirical finite-temperature (T) generalized gradient approximation
(GGA), based on the XC free energy gradient expansion. The new functional provides the correct

* Identify T-dependent gradient variables for X and C free-energies
* Identify relevant finite-T constraints

e Use our finite-T LDA XC as an ingredient

* Propose appropriate analytical forms, incorporate constraints

e Implementation, tests, applications

VVK, Dufty, Trickey, Phys. Rev. Lett. (submitted, 2017)
see adso arXiv: 1612.06266v1
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T-dependent density gradient for X

Start with finite-T gradient expansion for X:
EPNT) =g (MA®) ; t=T/T.
_ t2 (Bu)
A== | Vialmdn

—oo

fA(nVnT)=f*(nT) [1+8§1 $(n, Vn)éx(t)}

S, (nVnT)=s'(n, V), (1)

Finite-T GGA X functional: FXGGA[n,T] = j n fXLDA (n,T) E(s,)dr

Enhancement factor is defined from several F (SZX) 1+ VxSZX
ground-state and finite-T constraints:

Constraints:

* Reproduce finite-T small-s grad. expansion
» Satisfy Lieb-Oxford bound at T=0

* Reduce to correct T=0 limit

* Reduce to correct high-T limit
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T-dependent density gradient for C

Finite-T gradient expansion for XC:
f9(nVnT)== gxc) (n,T)|Vnf
= Ciz)gXLDA (nN)s*(n,Vn)B, (t) +C?n"*s’(n, V) B, (n,t)

C!9 =8/81; C® =0.162125,

~ 3 Y3 4/3 l_]jz (ﬂ;u) I :]JZ (/B/u)
B (1) =| = -3
(0 (2) 2 (P ){ . (B0) luz(ﬁﬂ)}

B_(n,t) is defined from equation for {2 (above)
with use of numerical RPIM C-based data for g{2 (n)
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T-dependent density gradient for C (Contd.)

From finite-T gradient expansion for C we identify new T-dependent gradient variable:
3 > 26 .
n"*s’(n,Vn)B,(n,t) o< g’ B.(n,t) jlvhere q is 2:1 grou;ld-state feduced
= ensity gradient for correlation.
a.(n,Vn,T)=q(n,Vn),/B.(n,t)

GGA corrdation energy per paticle
fE (N, VnT) =" (nT)+H(f ™", q)

where the function H(f .1PA,q,) is defined by the ground-state
PBE functional to guarantee a widely used zero-T limit.

Finite-T GGA C functional: Constraints:
* Reproduce finite-T small-s grad. expansion

GGA * Reduce to correct T=0 limit
FC [n’ T] — j n fCGGA (n, Vn,T)dr * Reduce to correct high-T limit
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X and C T-dependences
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Thermal GGA XC results on fcc-Al model system
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Electronic pressure differences vs. T for the new finite-T GGA (“KSDT16”),
KSDT LDA, and ground-state PBE XC functionals, all referenced to PZ
ground-state LDA values. Static lattice fcc Aluminum at 3.0 g/cm3.
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Thermal GGA XC results on Deuterium EOS
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Deuterium electronic pressure vs. T for the finite-T GGA (“KDT16”) and ground-
state PBE XC functionals, as well as PIMC reference results.

AIMD super-cell simulations, I'-point only, for 128 atoms (8500 steps, T < 40 kK) or

for 64 atoms (4500 steps, T > 62 kK

PIMC results: S.X. Hu, B. Militzer, V.N. Goncharov, and S. Skupsky, Phys. Rev. B 84 224109

2011).
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Summary

* Framework for GGA XC free-energy functional development is presented

= virtually any ground-state XC can be extended systematically into an XC free
energy

* First GGA XC free-energy (“KDT16”) functional constructed

* Test cases show that KDT16 provides improved accuracy in the description of
XC thermal effects

VVK, Dufty, Trickey, Phys. Rev. Lett. (submitted, 2017)
seealso arXiv: 1612.06266v1
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