American Physical Society March Meeting New Orleans, LA 2017

Equivalence of functionals for the electron gas and jellium at finite temperature

James W. Dufty
Department of Physics, University of Florida
Gainesville, FL 32607, USA

© 07 March 2017

Work supported under US DOE Grant DE-SC0002139

University of Florida Orbital Free DFT Group

Sam Trickey
Jim Dufty
Frank Harris
Valentin Karasiev
Lazaro Calderin
Daniel Mejia Rodriguez
Kai Luo
Keith Runge *
Debajit Chakraborty *

Software and publications available from www.qtp.ufl.edu/ofdft

* no longer at UF but active collaboration

Motivation

- Development of electron functionals for orbital free density functional theory (DFT).
- Application of DFT to electron component of ion electron systems for ab initio molecular dynamics simulations.
- Connection to QMC for jellium

Objective

• Precise relationship of electron gas functionals to those of model system jellium (general non-uniform states).

Take away

Can limit attention to "simpler" jellium system for DFT

Inhomogeneous electron gas at equilibrium

$$\widehat{H}_{e} + \widehat{U}_{ex} = \sum_{\alpha=1}^{N} \frac{\widehat{p}_{\alpha}^{2}}{2m} + \frac{1}{2}e^{2} \int d\mathbf{r} d\mathbf{r}' \frac{\widehat{n}(\mathbf{r})\widehat{n}(\mathbf{r}') - \widehat{n}(\mathbf{r})\delta\left(\mathbf{r} - \mathbf{r}'\right)}{|\mathbf{r} - \mathbf{r}'|} + \int d\mathbf{r} v_{ex}\left(\mathbf{r}\right)\widehat{n}(\mathbf{r})$$

number density operator
$$\widehat{n}(\mathbf{r}) = \sum_{\alpha=1}^{N} \delta(\mathbf{r} - \widehat{\mathbf{q}}_{\alpha})$$

Thermodynamics at given $\beta, V, \mu(\mathbf{r}) \equiv \mu - v_{ex}(\mathbf{r})$ (local chemical potential)

$$\beta\Omega_{e}[\beta, V \mid \mu] = -\beta p_{e}[\beta, V \mid \mu] V \equiv -\ln \sum_{N=0}^{\infty} Tr^{(N)} e^{-\beta \left(\hat{H}_{e} - \int d\mathbf{r} \mu(\mathbf{r}) \hat{n}(\mathbf{r})\right)}$$

Inhomogeneous jellium at equilibrium

$$\widehat{H}_{j} + \widehat{U}_{ex} = \sum_{\alpha=1}^{N} \frac{\widehat{p}_{\alpha}^{2}}{2m} + \frac{1}{2}e^{2} \int d\mathbf{r} d\mathbf{r}' \frac{(\widehat{n}(\mathbf{r}) - n_{b})(\widehat{n}(\mathbf{r}') - n_{b}) - \widehat{n}(\mathbf{r})\delta(\mathbf{r} - \mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} + \int d\mathbf{r} v_{ex}(\mathbf{r}) \,\widehat{n}(\mathbf{r})$$

Same thermodynamic state β , V, $\mu(\mathbf{r})$

$$\left(\beta\Omega_{j}\left[\beta,V,n_{b}\mid\mu\right]=-\beta p_{j}\left[\beta,V,n_{b}\mid\mu\right]V=-\ln\sum_{N=0}^{\infty}Tr^{(N)}e^{-\beta\left(\widehat{H}_{j}-\int d\mathbf{r}\mu(\mathbf{r})\widehat{n}(\mathbf{r})\right)}\right)$$

Different functionals $\Omega_e[\beta, V \mid \cdot]$ and $\Omega_j[\beta, V \mid \cdot]$ characterized by \widehat{H}_e and \widehat{H}_j , respectively

Jellium is electron gas with "special" external potential

$$\widehat{H}_{j} = \widehat{H}_{e} + \int d\mathbf{r} v_{b} (\mathbf{r}, n_{b}) \, \widehat{n}(\mathbf{r}) \qquad v_{b} (\mathbf{r}, n_{b}) = -e^{2} \int d\mathbf{r}' \frac{n_{b}}{|\mathbf{r} - \mathbf{r}'|} + \epsilon_{b}$$

$$\beta \Omega_{j} [\beta, V \mid \mu] = \beta \Omega_{e} [\beta, V \mid \mu - v_{b}]$$

and in general, same relation for other average properties

$$X_{e} [\beta, V \mid \mu] = \sum_{N=0}^{\infty} Tr^{(N)} \widehat{\rho}_{e} \widehat{X}, \qquad \widehat{\rho}_{e} = e^{\beta \Omega_{e} [\beta, V \mid \mu]} e^{-\beta \left(\widehat{H}_{e} - \int d\mathbf{r} \mu(\mathbf{r}) \widehat{n}(\mathbf{r})\right)}$$

$$X_{j} [\beta, V \mid \mu] = \sum_{N=0}^{\infty} Tr^{(N)} \widehat{\rho}_{j} \widehat{X}, \qquad \widehat{\rho}_{j} = e^{\beta \Omega_{j} [\beta, V \mid \mu]} e^{-\beta \left(\widehat{H}_{j} - \int d\mathbf{r} \mu(\mathbf{r}) \widehat{n}(\mathbf{r})\right)}$$

$$X_{j} [\beta, V \mid \mu] = X_{e} [\beta, V \mid \mu - v_{b}]$$

Example: density (a derived property in this ensemble)

$$n_{e}\left(\mathbf{r},\beta,V\mid\mu\right) = -\frac{\delta\beta\Omega_{e}\left[\beta,V\mid\mu\right]}{\delta\beta\mu(\mathbf{r})}\mid_{\beta,V} \qquad n_{j}\left(\mathbf{r},\beta,V,n_{b}\mid\mu\right) = -\frac{\delta\beta\Omega_{j}\left[\beta,V\mid\mu\right]}{\delta\beta\mu(\mathbf{r})}\mid_{\beta,V,n_{b}}$$
$$n_{j}\left(\mathbf{r},\beta,V,n_{b}\mid\mu\right) = n_{e}\left(\mathbf{r},\beta,V\mid\mu-v_{b}\right)$$

Inhomogeneous electron gas

♦ electron ● external potential

uniform external potential

Inhomogeneous jellium

Relationship of functionals of $\mu(\mathbf{r})$ is transparent. What about density functionals?

Change variables $\beta, V, \mu(\mathbf{r}) \rightarrow \beta, V, n(\mathbf{r})$ via Legendre transform

$$F_{e}[\beta, V \mid n_{e}] = \Omega_{e} [\beta, V \mid \mu] + \int d\mathbf{r} \mu(\mathbf{r}) n_{e} (\mathbf{r}, \beta, V \mid \mu)$$

$$F_{j}[\beta, V, n_{b} \mid n_{j}] \neq \Omega_{j} [\beta, V, n_{b} \mid \mu] \Rightarrow \int d\mathbf{r} \mu(\mathbf{r}) n_{j} (\mathbf{r}, \beta, V, n_{b} \mid \mu)$$

$$F_{j}[\beta, V, n_{b} \mid n_{j}] = \Omega_{e} [\beta, V \mid \mu - v_{b}] + \int d\mathbf{r} (\mu(\mathbf{r}) - v_{b}(\mathbf{r}, n_{b})) n_{e} (\mathbf{r}, \beta, V \mid \mu - v_{b})$$

$$+ \int d\mathbf{r} v_{b} (\mathbf{r}, n_{b}) n_{e} (\mathbf{r}, \beta, V \mid \mu - v_{b})$$

$$= F_{e} [\beta, V \mid n_{e} (\mid \mu - v_{b})] + \int d\mathbf{r} v_{b} (\mathbf{r}, n_{b}) n_{e} (\mathbf{r}, \beta, V \mid \mu - v_{b})$$

$$= F_{e} [\beta, V \mid n_{j}] + \int d\mathbf{r} v_{b} (\mathbf{r}, n_{b}) n_{j} (\mathbf{r} \mid \mu)$$

$$F_{j}[\beta, V, n_{b} \mid n] = F_{e}[\beta, V \mid n] + \int d\mathbf{r} v_{b} (\mathbf{r}, n_{b}) n (\mathbf{r})$$

Equivalence of exchange-correlation density functionals

$$F = F_0 + F_H + F_{xc}$$

Hartree contributions

$$F_{eH}[\beta, V \mid n] = \frac{1}{2}e^{2} \int d\mathbf{r} d\mathbf{r}' \frac{n(\mathbf{r})n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|}$$

$$F_{jH}[\beta, V, n_{b} \mid n] = \frac{1}{2}e^{2} \int d\mathbf{r} d\mathbf{r}' \frac{(n(\mathbf{r}) - n_{b})(n(\mathbf{r}') - n_{b})}{|\mathbf{r} - \mathbf{r}'|}$$

$$\downarrow \qquad \qquad \downarrow$$

$$F_{eH}[\beta, V \mid n] + \int d\mathbf{r} v_{b}(\mathbf{r})n(\mathbf{r}) = F_{jH}[\beta, V, n_{b} \mid n]$$

Equivalence of exchange- correlation functionals follows from previous slide

$$F_{j}[\beta, V, n_{b} \mid n] = F_{e}[\beta, V \mid n] + \int d\mathbf{r} v_{b}(\mathbf{r}, n_{b}) n(\mathbf{r})$$

$$F_{jxc}[\beta, V, n_b \mid n] = F_{exc}[\beta, V \mid n]$$

Equivalence of total free energy density functionals

$$F_{j}^{T}(\beta, V, n_{b} \mid n) = F_{j}(\beta, V, n_{b} \mid n) + \int d\mathbf{r} v_{ex}(\mathbf{r}) n(\mathbf{r})$$
$$F_{e}^{T}(\beta, V \mid n) = F_{e}(\beta, V \mid n) + \int d\mathbf{r} \left(v_{ex}(\mathbf{r}) + v_{b}(\mathbf{r}, n_{b})\right) n(\mathbf{r})$$

$$F_j^T(\beta, V, n_b \mid n) = F_e^T(\beta, V \mid n)$$

Thermodynamic limit (extensive systems)

$$\lim_{V \to \infty} \frac{1}{V} F_j(\beta, V, n_b \mid n) \mid_{n, n_b = \overline{N}/V} \equiv f_j(\beta \mid n) \quad \text{exists}$$

(Lieb and Narnhoffer, J. Stat. Phys. 12, 291 (1975))

$$\lim_{V \to \infty} \frac{1}{V} F_e(\beta, V \mid n) \mid_{n,} \quad \text{does not exist (in general)}$$

electron Hartree contribution for uniform density does not scale linearly with the volume

$$F_{eH}[\beta, V \mid n] \rightarrow C(n_e e)^2 V^{5/3}$$

Electron – ion systems

$$\beta\Omega(\beta, V, \mu_e, \mu_i) \equiv -\ln \sum_{N_e=0, N_i=0}^{\infty} Tr^{(N_e)} Tr^{(N_i)} e^{-\beta(\widehat{H} - \mu_e N_e - \mu_i N_i)}$$
$$\widehat{H} = \widehat{H}_e + \widehat{H}_i + U_{ie}$$

perform (formally) electron average

$$\begin{split} \beta\Omega(\beta,V,\mu_e,\mu_i) &= -\ln\sum_{N_i=0}^{\infty} Tr^{(N_i)}e^{-\beta\left(\widehat{H}_i+\Omega_e(\beta,V|\mu_e)-\mu_iN_i\right)} \\ \beta\Omega_e(\beta,V\mid\mu_e) &= -\ln\sum_{N_e=0}^{\infty} Tr^{(N_e)}e^{-\beta\left(\widehat{H}_e-\int d\mathbf{r}\mu_e(\mathbf{r})\widehat{n}_e(\mathbf{r})\right)} \qquad \mu_e(\mathbf{r}) \equiv \mu_e - \int d\mathbf{r}' \frac{-Ze^2\widehat{n}_i(\mathbf{r}')}{|\mathbf{r}-\mathbf{r}'|} \end{split}$$

(inhomogeneous electron gas)

Jellium representation

$$\begin{split} \widehat{H}_{e} + \widehat{H}_{i} + \widehat{U}_{ei} &= \widehat{H}_{eJ} + \widehat{H}_{iJ} + \widehat{U}_{eiJ} \\ \beta\Omega(\beta, V, \mu_{e}, \mu_{i}) &= -\ln \sum_{N_{i}=0}^{\infty} Tr^{(N_{i})} e^{-\beta \left(\widehat{H}_{iJ} + \Omega_{eJ}(\beta, V \mid \mu_{e}) - \mu_{i} N_{i}\right)} \\ \beta\Omega_{eJ}(\beta, V \mid \mu_{e}) &= -\ln \sum_{N_{e}=0}^{\infty} Tr^{(N_{e})} e^{-\beta \left(\widehat{H}_{eJ} - \int d\mathbf{r} \mu_{eJ}(\mathbf{r}) \widehat{n}_{e}(\mathbf{r})\right)} \qquad \mu_{e}(\mathbf{r}) = \mu_{e} - e^{2} \int d\mathbf{r}' \frac{(-Z\widehat{n}_{i}(\mathbf{r}') + n_{b})}{|\mathbf{r} - \mathbf{r}'|} \end{split}$$

(inhomogeneous jellium)

Summary

- Electron exchange-correlation density functional is the same as that for jellium.
 - Advantages of jellium for theoretical studies charge neutral; thermodynamic limit exists; QMC simulations (presently for uniform state).
- Thermodynamics for ion-electron systems can be reformulated as coupled set of jelliums

