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Abstract

Coulomb charges confined by a harmonic potential display a rich structure at strong
coupling, both classical and quantum. A simple density functional theory is reviewed
showing the essential role of correlations in forming shell structure and order within
the shells. An overview of previous comparisons with molecular dynamics and
Monte Carlo simulations is summarized and extended. It is shown that correlations
for the fluid phase (shell structure only) are well approximated by those for the uniform
one-component plasma even at very strong coupling. A corresponding representation
of the correlations for the ordered phase is still an open question. The confirmed success
for the classical density functional theory is important for the subsequent representation
of the quantum case. Here, a mapping of the quantum description onto an equivalent
classical description with effective potentials allows direct application of the classical
methods, both theory and simulation. This is particularly relevant at low but finite tem-
peratures where quantum simulation methods are compromised. The special case of
Coulomb charges in a harmonic trap is the simplest example of more complex systems
of experimental interest where confinement and strong coupling play an essential role
(e.g., quantum dots, ions in complex traps, electrons on a helium surface, dusty Yukawa
plasmas, ultracold neutral plasmas).
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1. Introduction

The problem considered here is the structure and correlation among

N equal Coulomb charges confined by an external harmonic potential. It is a

generalization of the Thomson problem1 for charges confined to the surface

of a sphere, posed 117 years ago, to three dimensions and finite temp-

eratures. The ground state for the harmonic confinement is well studied,

exposing a rich shell structure (distribution of particles localized about

well-defined radii with localization on each radius similar to those of the sin-

gle sphere Thomson problem). Within classical mechanics, these ground-

state results have been quantified in detail via shell models, molecular

dynamics (MD) simulation, and Monte Carlo (MC) simulation.2–7 They

are also realized experimentally for dusty plasmas. The corresponding results

for confined charges at finite temperatures are the extension described here.

We provide here a summary of our theoretical work in collaboration with

the Bonitz group at the Institute fur Theoretische Physik und Astrophysik,

Christian-Albrechts Universitat, Kiel.8–11 In addition, we describe the

method for extension to quantum theory and list some remaining outstand-

ing problems.

The primary effect of temperature on the classical ground-state shell

models is to broaden the sharp shell structure and smooth their angular distri-

bution due to thermal motion. The governing parameters are the Coulomb

coupling constant Γ (ratio of Coulomb to thermal energies of a pair) and the

average number of charges �N. The number of shells is fixed by �N, while their

relative resolution (sharpness) is determined by Γ. The zero temperature

ground-state results from shell models are recovered in the limit of large Γ.
A simple approximate density functional theory described below is able to

capture these results quantitatively, in comparison with those from MC

simulations. It is based on approximating correlations among the charges in

the trap by those in the uniform one-component plasma (OCP). The close

relationship of correlations in these two quite different systems has been con-

firmed by MD simulation.10,11

At still larger Γ, corresponding to lower temperatures, the rotational

invariance of the fluid phase is broken and the particles within each shell

become localized about sites close to those of the Thomson problem for a

single shell. Those localized domains are approximated here by Gaussian
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distributions centered at these sites, and the correlations among them are

calculated showing good agreement with results from MC simulation.

The effects studied here result from strong coupling conditions for which

there are relatively few theoretical methods available. In the classical case, the

density functional model described below is confirmed byMD andMC sim-

ulations. The latter simulations are not available for the quantum case, and

the quantum density functional model has problems at finite temperatures.

However, it has been shown that the quantum system can be mapped onto a

corresponding classical system with quantum effects embedded in effective

Coulomb and trap potentials.12 Applications to the OCP (jellium) show

good agreement with quantum Monte Carlo results.13,14 This approach

has been applied subsequently to the case of quantum charges in a harmonic

trap15,16 as described below. In this way, a broad scope of confined Coulomb

systems of interest can be addressed. Fig. 1 gives a simple overview of the

parameter space.

It is a pleasure to dedicate this contribution to our friend and colleague of

many years, Professor John (Jack) Sabin. Jack has been an inspiration for all

Fig. 1 Overview of the relevant parameter space. Here, rs is the Wigner–Seitz radius in
terms of the Bohr radius of the confined particles (rs ¼ r0/ab), and t is the temperature
relative to the ideal gas Fermi temperature per particles (t¼ kBT/εF).

16 Here, ab ¼ ħ2=me2

and εF ¼ ħ2ð3π2 �nÞ2=3=2m, where �n is the average density from (6). The Fermi energy is
used for scaling as it is relevant to the low-temperature quantum domain and thus t is a
measure of the onset of quantum effects. Note that the classical phase for dusty plasmas
shown in this figure represents the fluid phase.
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that is expected of those with an academic career, exemplifying the best in

teaching, research, and administration. His cheerful nature and good will

have brightened the lives of all who knew him well.

2. Density functional theory

Consider N particles of charge q at equilibrium in a harmonic trap at

inverse temperature β. The free energy is denoted F(β|n), indicating that it is
a function of β and a functional of the nonuniform density n(r). The equi-

librium density profile is determined from

δFðβ|nÞ
δnðrÞ ¼ μ� V rð Þ, V rð Þ ¼ 1

2
mω2r2: (1)

The potential V rð Þ is the confining harmonic trap. The free energy func-

tional can be separated into that for a system without interactions,

F0(β|n), and a remainder Fex(β|n) containing all effects of Coulomb inter-

actions among the particles

Fðβ|nÞ ¼ F0ðβ|nÞ + Fexðβ|nÞ: (2)

A formal representation for the excess free energy in terms of pair correla-

tions can also be written exactly

Fexðβ|nÞ ¼ �
Z 1

0

dy 1� yð Þ
Z
drdr0n rð Þn r0ð Þβ�1cð2Þ r, r0|ynð Þ, (3)

where cð2Þ r, r0|nð Þ is the direct pair correlation function

β�1cð2Þ r, r0|nð Þ≡� δ2Fexðβ|nÞ
δnðrÞδnð r0Þ : (4)

In this way, Eq. (1) is an equation for the local density in terms of the pair

correlations of the direct correlation function9

δF0ðβ|nÞ
δnðrÞ ¼ μ� V rð Þ +

Z 1

0

dy

Z
dr0n r0ð Þβ�1cð2Þ r; r0; ynð Þ: (5)

The average density �n is defined by

�n ¼ �N
V

, �N ¼
Z

drn rð Þ: (6)
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The system is self-confined with spherical symmetry. The maximum radius

R is the point at which Coulomb repulsion force on a particle is balanced by

the harmonic trap confinement

�N
q2

R2
¼ mω2R, V ¼ 4

3
πR3: (7)

The mean distance between particles r0 is introduced by

4

3
�nπr30 ¼ 1: (8)

Scaling the coordinates with respect to r0 in the above equations gives the

dimensionless form

δF*
0ðn�Þ

δn�ðr�Þ ¼ βμ� 1

2
Γr�2 +

Z 1

0

dy

Z
dr0�n� r0�ð Þcð2Þ r�; r0�; yn�ð Þ, (9)

where

F*
0ðn�Þ ¼ βF0 β|nð Þ; n� r�ð Þ ¼ n rð Þr30, Γ ¼ βmω2r20 ¼ β

q2

r0
: (10)

The parameter Γ is the Coulomb coupling constant (Coulomb energy of a

pair at the average distance relative to the thermal energy β�1). The constant

βμ can be eliminated in terms of �N .

Up to this point, the results apply for both quantum and classical

mechanics. The classical case is considered more explicitly next.

3. Classical mechanics

Within classical statistical mechanics, F0(β|n) can be written exactly as

a functional of the density

Fð0Þðβ|nÞ ¼ � 1

β

Z
drnðrÞ 1� ln nðrÞλ3� �� �

: (11)

Here, λ ¼ h2β=2πm
� �1=2

. Then Eq. (9) becomes9

ln n�ðr�Þð Þ ¼ ln
λ
r0

� �3

eβμ

 !
� 1

2
Γr�2

+

Z 1

0

dy

Z
dr0�n� r0�ð Þcð2Þ r�; r0�; yn�ð Þ: (12)
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The constant first term on the right side can be eliminated in terms of �N .

Consequently, the dimensional density profile and associated free energy

density profile depend only on the two parameters �N and Γ.
The solutions to (12) are expected to confirm the following qualitative

behavior observed from ground-state energy functions,8 and MC and MD

simulations.7 For given �N , the profiles have a strong dependence on the

coupling strength Γ. At very small values, the density profile is rotationally

symmetric and monotonically decreasing to zero from a maximum at r*¼ 0.

At increasing values, the radial dependence develops local maxima, referred

to as shells. This is illustrated in Fig. 2. The number of shells increases with �N
and their width sharpens with increasing Γ. The shell populations are greater
for increasing radius and grow linearly with �N .

Eventually, at sufficiently large Γ rotational symmetry is broken. The

uniform distribution of particles within each shell distorts to local domains

for the associated population. Their locations are close to those of the

Thomson problem—the ground-state configuration for a given number

of charges confined to a sphere. In the following, the extent to which

approximations to the density functional theory (12) captures these features

is described.

3.1 Fluid phase
The approximate determination of the pair correlations described by the

direct correlation functional in (12) is motivated as follows. First, it is shown

Fig. 2 Formation of shell structure in a harmonic trap as the coupling constant Γ
increases. Monte Carlo simulation of 100 particles in a trap.
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elsewhere that the functional Fex(β|n) is exactly equal to the corresponding

system with a uniform neutralizing background (inhomogeneous jellium),

i.e., charges in a uniform neutralizing background with the same harmonic

potential17

Fexðβ|nÞ ¼ Fjexðβ|nÞ: (13)

The advantage of this is that the OCP has a finite uniform limit in the

absence of the harmonic confinement, which is the uniform OCP. It has

been observed elsewhere11 that the distribution of pairs within the trap with-

out reference to their center of mass position is almost identical to those of the

OCP (see Fig. 3). Therefore, as an approximation for the fluid phase,

OCP correlations have been used,

cð2Þ r;r0; λnð Þ��
λn¼n

¼ cð2Þ r;r0; nð Þ¼ c
ð2Þ
OCP r� r0j j; nð Þ: (14)

Evaluation of the direct correlation function for the OCP in (14) still poses a

formidable many-body problem at strong coupling. However, it is a well-

studied problem and an excellent approximation, the adjusted hypernetted chain

approximation (AHNC), is known.20,21 The solutions to (12) with these two

approximations for cð2Þ r, r0; nð Þ give all of the above expected properties for

the density profile quantitatively in comparison toMD andMC results, across

the entire domain of Γ and �N . An example is illustrated in Fig. 4.

Fig. 3 Comparison of the pair distribution of particles in a one-component plasma
(OCP) and harmonic trap. MD calculations for the OCPwere performed using Sarkas.18,19
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3.2 Ordered phase
In the fluid phase, the particles are uniformly distributed throughout each

shell. As the coupling increases eventually the particles enter an ordered state

where rotational symmetry is broken within the shell. Fig. 5 shows the

angular correlations within the outer shell from a MD simulation, for three

values of the coupling constant corresponding to fluid and ordered phases.

The system consisted ofN¼ 38 charges, with 32 in the outer shell. The pair

correlation function g θð Þ is the probability to find a particle displaced on the
shell by an angle θ from an arbitrary reference particle. As in a uniform fluid,

the peaks represent nearest neighbor, next nearest neighbor, etc. At the

lower values of Γ, there is not much qualitative difference in the angular

correlations, but the correlation peaks are narrowing and some structure

is starting to develop in the form of shoulders in the middle peaks. For

significantly larger values of Γ however, a definite structure appears within

each peak of the correlation graph. In particular, the two broad peaks at

Γ ¼ 100 that appeared at 70 and 110 degrees have condensed into triplets

at Γ ¼ 1000. In addition, the two peaks at 40 and 140 degrees are showing

the beginning formation of a doublet structure with the presence of shoul-

ders at Γ ¼ 1000. This set of doublet and triplet features persists at much

higher Γ, without the appearance of any more peaks.

Fig. 4 Comparison of density profiles for AHNC andMC, for N¼ 100 and Γ¼ 20, and for
N ¼ 300 and Γ ¼ 40.
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These features can be modeled using a thin-shell model where the par-

ticle configuration results from the Thomson problem.1 The context of the

original Thomson paper lies in a mistaken view of atomic structure at the

time it was written, addressing the question of the ground-state energy of

charges fixed to a sphere. It is thus related to the questions here of effec-

tively having multiple spheres representing the shell structure and the

distribution of charges within those spheres. At very low temperature

(large Γ), simulations and other studies show that the density changes from

a uniform distribution to have features very close to those of the Thomson

problem. As shown below, the number of localized sites and their loca-

tions are quite similar. Differences can be associated with the widths of

the shells and interactions between different shells. The specific ordering

depends on the number of charges because of the spherical geometry. In

Fig. 6, the Thomson configuration for a randomly chosen particle from a

system containing N ¼ 32 charges is shown along with constant-angle

planes showing the angular displacement of the other particles. To com-

pare more directly, the angular correlations of all 32 charges in the

Thomson problem were calculated. A plot of the angular displacement

of all pairs is shown in Fig. 7. The charges occur in two different angular

Fig. 5 Angular correlations within a single shell from MD simulation. The harmonic trap
contained 38 particles, with 32 in the outer shell. MD simulations were performed with
LAMMPS.22,23
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Fig. 6 A system of 32 charges in the Thomson problem. Horizontal circles connect those
charges that are at constant angle θ from the chosen particle at the top of the figure.

Fig. 7 Number of each angle present between each pair of particles in the Thomson
system for N ¼ 32 charges.
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correlation structures. These are shown in Fig. 8. The combination of

these two populations accounts for the specific angular correlation struc-

ture for the case of N ¼ 32 charges.

To account for thermal effects, the charges weremodeled using a Gaussian

function along the sphere of the form

f ðθÞ ¼
ffiffiffi
α
π

r
exp �αðθ � θ0Þ2

� �
(15)

where θ0 is the angle corresponding to the Thomson site and α is a parameter

that increases with decreasing temperature. Fig. 9 shows how this model

reproduces the correct splitting, from the four broad peaks at small Γ which

condense to the characteristic doublets and triplets at higher Γ. Fig. 10 shows
the effect of the fitting parameter α showing how it models the effect of ther-

mal motion. This supports the idea of considering the Thomson sites on a

sphere to be analogous to a fundamental lattice for the ordered state, to the

extent that the shell can be approximated as thin.

Fig. 8 Angular distribution for the two types of angular configuration forN¼ 32 charges
in the Thomson problem. The first type of angular configuration has particles at eight
specific angles between θ ¼ 0 degrees and θ ¼ 180 degrees. There are 20 particles in
this configuration. The remaining 12 particles are in a configuration with 6 specific
angles to the other particles. Plots show the total number of bonds that each population
contributes for the entire system; their sum gives the results in Fig. 7.

49Structure and correlations for harmonically confined charges



In principle, the value of α in the ordered phase, for given Γ, �N, should

be obtained from minimizing the above free energy functional using the

assumed Gaussian density profile. In the fluid phase, the value of α would

be large, representing a uniform profile. At very large Γ, approaching the

Fig. 9 Solid lines: evolution of the thermally broadened angular correlations from the
Thomson problem as the parameter α increases. Peak height increases with larger α.
Crosses: comparative results from MD at Γ ¼ 250.

Fig. 10 Angular correlations from the thermally broadened Thomson system for two
values of the fitting parameter α. Here, there are N¼ 32 charges in the system. The struc-
ture follows the same behavior as MD simulations for 32 particles in a shell.
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ground state, the value of αwould approach zero. However, the assumption

of the Thomson sites should first come from solutions of (12). This could be

quite difficult since ground-state studies from simulations suggest there are

many metastable configurations as well.

4. Quantum mechanics

The above classical description of confined charges at strong coupling

has exploited the methods of density functional theory, liquid state theory,

MD, and MC. At low temperatures, at or below the Fermi temperature,

quantum effects become important and many of these classical methods

do not apply directly. An accurate quantum theory at finite temperatures,

strong coupling, and confinement is still a challenging problem. Numerical

methods such as quantum Monte Carlo are applicable at zero temperature

but become less controlled as the temperature increases, particularly for fer-

mions. A quite different approach is to develop an exact mapping of the quan-

tum equilibrium structure to an effective classical problem. This has been done

recently, allowing application of the above classical methods to quantum sys-

tems.12 Structure and correlation calculated in this way for the OCP have

shown good accuracy in comparison with recent quantum MC

simulations.13,14

More recently, the effective classical representation of a system of

quantum charges in a harmonic trap has been explored.15,16 The primary

differences from the classical description above are modifications of the

Coulomb potential and the trap potential to accommodate quantum effects

of diffraction and exchange symmetry. The exchange symmetry implies an

additional pair interaction among charges even in the absence of Coulomb

interactions. It is repulsive or attractive depending on the quantum statistics

(Fermions or Bosons). The other important quantum effects is removal of

the short distance Coulomb singularity. A new parameter appears, in addi-

tion to Γ and �N , the temperature relative to the Fermi temperature (t ¼
kBT/eF where eF is the ideal gas Fermi energy per particle). For t ≫ 1,

the above description of shell structure and correlations is recovered for

strong coupling. At smaller t, the effects of exchange degeneracy are incor-

porated by imposing the exact noninteracting density profile for the ideal

gas. This is nontrivial since the classical representation of the quantum ideal

gas has effective interactions. The additional effects of exchange and diffrac-

tion are included via the direct correlation function with modified Coulomb

interactions. Fig. 11 shows a self-similar change in the classical two-shell

structure being compressed due to quantum effects on the harmonic
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potential. There is much more to be done with this classical description of a

quantum system in the low t domain. At much smaller N, connection to

other studies of quantum dots and ultracold gases should be useful. Other

properties such as spin polarization, coherent control of trap properties,

charge dependence, and others acceptable to direct observation can be

addressed. A different direction for application of the results here is obtained

by the replacement of the harmonic trap with a Coulomb potential to cal-

culate the electron distribution about an ion. This is a solved problem of

quantum chemistry, but its extension to a random configuration of ions is

of intense current interest for warm, dense-matter applications, e.g., the

electron density in the presence of an ion configuration. Such densities

are required to compute the forces in quantum MD simulations for the ions

in warm, dense matter at finite temperatures where traditional density func-

tional methods fail (e.g., the traditional Kohn–Sham self-consistent equa-

tions for temperatures near the Fermi temperature). Here, those self-

consistent equations are replaced with the classical integral equations of

AHNC. This advantage has been stressed by Dharma-wardana.24

5. Discussion

The extreme conditions of long-range Coulomb charges, confined at

strong coupling and finite temperatures, lead to complex structures: radial

shell structure and broken symmetry angular ordering within the shells.

Fig. 11 Quantum effects for a trapped system of 100 particles. Here, Γ¼ 20 for all while
the temperature parameter varies from t ¼ 0.5 to t ¼ 20.
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At the classical conditions, a density functional representation with strong

coupling correlations from the OCP is able to capture quantitatively the

transition from simple uniform filling at weak coupling to the formation

of “atomic” shell structure. At infinite coupling, the ground state (ordered

state) is closely related to the Thomson problem (sharp shell radii, no inter-

actions between shells), extended here to finite temperature (e.g., like

Debye–Waller broadening). The classical fluid phase with uniform angular

distribution is now well studied by MC, MD, and theory—the features dis-

cussed in Ref. 9 are given quantitatively as a function of Γ, �N, e.g., number

of shells, occupancy, amplitude, and location. The classical ordered phase

also is well studied in the ground state, but less so at finite temperatures.

The onset of localization within shells seems not to be sharp but rather grad-

ual, as is the formation of shells, as a function of Γ (see however Refs. 25, 26

for some quantitative studies). The Thomson sites associated with the occu-

pation number for a given shell provide a good reference for this localiza-

tion, as confirmed by ground-state minimum energy models. The latter

models, and simulation, indicated that there are metastable configurations

with similar energy so the minimization requires care. It is possible that a

more controlled limit is obtained from the limit of finite temperature studies

as described here.

The quantum case is well studied at the ground state in the context of

quantum dots, nanodevices, and related systems. The case of higher temper-

atures and transition to classical behavior is more limited, both from theory

and simulation. The classical map method described here is particularly well

suited for this domain, but has not been explored very much. Some of

the advantages for states of warm, dense matter have been outlined in

Ref. 24. Another interesting question is the line for Wigner crystallization

(see Fig. 1), whose location is known only at T ¼ 0 and in the high-

temperature classical limit.
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