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We summarize and give perspective upon recent progress in developing non-empirical constraint-
based thermal (i.e. free energy) exchange-correlation (XC) density functionals essential for accurate
description of the quantum behavior of electrons in warm, dense plasmas. After delineating the
critical role of ground-state functionals for zero-temperature, time-dependent DFT, we outline the
underpinnings of local density approximation (LDA), generalized gradient approximation (GGA),
and meta-GGA XC free-energy functionals. Two basic thermalization principles for upgrading
ground-state XC functionals to successful thermal ones are emphasized. Then we turn to a long-
standing challenge, assessment of the accuracy of well-founded functionals. Unlike the ground state,
there are few exact results for large T and P . An exception is path integral Monte Carlo (PIMC)
data for dense H/D and He plasmas. For those, we did ab-initio molecular dynamics (AIMD)
simulations under selected thermodynamic conditions employing five thermal XC functionals: two
approximate thermal GGAs, fully-thermal GGA, an approximate meta-GGA, and fully-thermal
meta-GGA. Comparisons with the PIMC data show that functionals thermalized by augmenting
a non-thermal functional with a lower-level thermal contribution are inferior to functionals with
thermal XC and spatial inhomogeneity effects taken into account at the same level of refinement. We
believe this and similar evidence should be convincing to the high-energy density physics community
of the necessity of use of proper thermal XC functionals in simulation studies of finite-temperature
quantum effects in warm, dense plasmas.

I. INTRODUCTION

The state of the art for predictive quantum calculation
of static or quasi-static properties of materials under ex-
treme conditions (e.g. non-ideal plasmas, planetary inte-
riors, compression pathways to ICF, warm dense matter
(WDM)) is ab initio molecular dynamics (AIMD) driven
by Mermin-Kohn-Sham (MKS) finite-temperature (i.e.
free-energy) density functional theory (DFT) treatment
of the electrons [1, 2]. In parallel with ground-state DFT,
MKS-DFT maps the fully interacting many-electron sys-
tem onto an auxiliary non-interacting system in which all
many-body quantum effects (i.e. exchange and correla-
tion) are subsumed in an exchange-correlation (XC) den-
sity functional. Though its formal properties are known,
there is no explicit exact form. Thus, the accuracy of
MKS-DFT calculations hinges on the accuracy of a XC-
functional approximation.

For cases in which a quasi-static treatment is inappro-
priate (for example, system relaxation time of the same
scale as some characteristic oscillation, trelax ⪅ tvib), a
dynamical treatment is needed. An obvious choice is
time-dependent DFT (tD-DFT). A key challenge for such
calculations is a sufficiently accurate time-dependent,
thermal exchange-correlation (XC) kernel [3]. For that
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it is a common procedure, even at T = 0, to use the
adiabatic approximation Fxc[n;T, t] ≈ Fxc[n(t, T ), T (t)]
with the latter functional being the time-independent Fxc

evolved at the current values of n and T at time t. Here
we are not concerned with the limits or validity of the adi-
abatic approximation. Rather we focus on the sometimes
underappreciated implication, namely the importance of
the time-independent Fxc for dynamical problems. To re-
inforce the point, one also notes that even in the case of
a genuine dynamical finite-temperature kernel, the zero-
frequency limit must be Fxc.

Thus the accuracy of both tD-DFT and finite-T quasi-
static MKS-DFT predictions depends crucially on the
accuracy of Fxc approximations. That is the issue ad-
dressed here. A common approach in AIMD calculations
has been to use the ground-state approximation (GSA).
In it, the XC free-energy is evaluated using a ground-
state temperature-independent functional: Fxc[n;T ] ≈
Exc[n]. The approach lacks explicit XC thermal effects (it
may have an implicit T -dependence via the minimizing
density or, also, the kinetic energy density), and com-
pletely misses the XC entropy. The GSA therefore is
the crudest approximation. It can be unreliable espe-
cially in the warm-dense regime, with errors up to 20%
in predicted pressure and energy relative to experimental
values [4–10].

That comparison introduces another challenge to
Fxc development, namely the relative paucity of high-
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accuracy calculated reference data. For ground state
Exc, there is a considerable inventory of high-accuracy
many-fermion calculations on small and medium-sized
molecules The literature is too extensive to cite thor-
oughly but see Refs. 11, 12 and references therein for
recent examples. However, for large, periodic systems,
especially those at relatively high T and P , there are very
few exact results. One partial exception is a calculation
on the Hubbard dimer [13], but even its authors char-
acterize the study as providing only “. . . a first glimpse
at the behaviors of correlation energy components as a
function of temperature . . . “. Another exception to the
general paucity of calibration data is path integral Monte
Carlo results for dense H/D and He plasmas [14–17].
Those are targets in this work.

The development of XC free-energy functionals can be
classified by the level of theoretical refinement as rungs of
the finite-T analog of the ground-state Perdew-Schmidt
ladder [18] shown in Fig. 1. The first rung is the local
density approximation (LDA) which depends on electron
density (n) and temperature (T ). That rung is occupied
by the Karasiev-Sjostrom-Dufty-Trickey (KSDT) func-
tional developed in Ref. [19] (see Ref. [5] for the corrected
version, corrKSDT) and the Groth-Dornheim-Sjostrom-
Malone-Foulkes-Bonitz (GDSMFB) functional [20]. It
is a refinement of KSDT XC form and methodology to
match improved Monte Carlo data for the homogeneous
electron gas (HEG) at finite-T and low rs = (3/4πn)1/3

(the Wigner-Seitz radius) [21, 22].
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FIG. 1. The ladder of temperature-dependent XC functionals.
LDA: (corr)KSDT [5, 19] and GDSMFB [20]. GGA: KDT16
[5], addPBE [23] and ltPBE [24]. Meta-GGA: T-(r2)SCAN-L
[8] and fTSCAN [9]. Hybrid: KDT0 [25] and RS-KDT0 [26].

The fully thermal GGA (the second rung), with added
dependence on the electron density gradient, is the
Karasiev-Dufty-Trickey (KDT16) [5]. There also are
two approximate GGA-level functionals with additive
and multiplicative LDA-level thermal corrections respec-
tively, termed the additive Perdew-Burke-Ernzerhof (ad-

dPBE) [23] and locally thermal PBE (ltPBE) [24].
Development of the third, meta-GGA rung is rep-

resented by two approaches: (i) a simple approxi-
mate scheme which uses a universal additive GGA-level
thermal correction applied to either the ground-state
deorbitalized, strongly constrained, and appropriately
normed (SCAN-L) or to the deorbitalized version of
the regularized-restored r2SCAN-L functional, called T-
SCAN-L and T-r2SCAN-L [8], and (ii) the fully thermal
meta-GGA framework developed in Ref. [9] and utilized
to construct fTSCAN. Compared to GGA functionals,
deorbitalized meta-GGA XC functionals, both ground-
state and free-energy, have added dependence on the
electron density Laplacian as well as n and |∇n|. The
parent ground-state meta-GGA depends instead on the
non-interacting kinetic energy density (KED), τKS

s ({ψ}),
rather than ∇2n. Thus, the fully thermal fTSCAN de-
pends on the Mermin-Kohn-Sham (MKS) orbitals via the
finite-T non-interacting kinetic energy density (KED),
τMKS
s ({ψ}, T ), in addition to n and |∇n|.
Functionals on the first three rungs are semi-local or

one-point density functionals. The fourth rung corre-
sponds to hybrid XC functionals. Those depend explic-
itly on the KS or MKS orbitals via inclusion of some
fraction of non-local Fock exchange. For T > 0, two
such exist, the global hybrid KDT0 [25], and the range-
separated RS-KDT0 [26] both developed by the Theo-
retical High-Energy-Density Physics Group at Univer-
sity of Rochester. These finite-temperature hybrid XC-
functionals have delivered better performance (compared
to lower-rung functionals) in predicting band-gap closing
behavior in warm-dense matter.
The next section gives essential details about formu-

lation of free-energy XC functionals at each rung. Sec-
tion III compares the performance of such thermal XC
functionals in predicting properties of materials in warm-
dense and near-ambient regimes. A summary is given in
Sec. IV.

II. CONSTRUCTION OF
EXCHANGE-CORRELATION FREE-ENERGY

FUNCTIONALS

We turn to a concise description of thermalization
procedures for upgrading well-founded ground-state XC
functionals into free-energy XC functionals at each rung
of the Perdew-Schmidt complexity ladder. Much of this
involves thermalization of functional variables. Before
going into details we emphasize two comprehensive prin-
ciples of the thermalization that apply directly to free-
energy functional development at all rungs.
• Preserve the zero-T limit: as T → 0, the thermalized

XC functional must reduce to a specified, well-founded
ground-state functional. Correspondingly, finite-T LDA
must reduce very closely to a reliable zero-T HEG
parametrization. The obvious objective is to preserve all
zero-T exact constraints and norms used in the ground-
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state XC construction.
• Enforce important exact finite-T constraints, for ex-

ample, correct uniform density scaling [27], consistency
with the finite-T gradient expansion for weakly inhomo-
geneous density at all T for X and C at least through
second order (in the case of GGA and meta-GGA) (see
references in Ref. [5]), and the correct high-T limit.

A. Local density approximation

The KSDT parametrization of restricted path integral
Monte Carlo (RPIMC) data for the finite T HEG [21] was
the first accurate analytical representation for the HEG
XC free energy. It is the XC free-energy LSDA counter-
part of the celebrated Perdew-Zunger [28] ground-state
LDA parametrization of the Ceperley-Alder [29] HEG
data. The available finite-T RPIMC HEG data was the
interacting system kinetic energy per particle, τ , and po-
tential energy per particle, uee From those, the XC free
energy per particle, fxc = εxc−Tσxc had to be extracted
and fitted. Various Maxwell relations provide four dis-
tinct routes for doing that. Evaluation of all four led
KSDT to proceed as follows.

First, εxc, the XC internal energy (per particle) is the
difference of the interacting and non-interacting system
internal energies, εxc = τ + uee − τs, where τs is the non-
interacting HEG kinetic energy per particle at T > 0
[30, 31]. Second, there is the thermodynamic definition
of the entropy per particle

σxc(rs, t) = − t

T

∂fxc(rs, t)

∂t

∣∣∣
rs
. (1)

Invoking it gives a differential equation for fxc from εxc

fxc(rs, t)− t
∂fxc(rs, t)

∂t

∣∣∣
rs

= εxc(rs, t) , (2)

where here t = T/TF [TF = (1/2)(9π/4)2/3r−2
s ] is the

reduced temperature.
Matching the solution of this differential equation to

the RPIMC data requires design of a suitable analytical
form of fxc. For the spin-unpolarized case, KSDT ex-
tended a Padé approximant [32] form given by Ichimaru

et al.[33] in the r
1/2
s variable with t-dependent coefficients

fLDA
xc (rs, t) = − 1

rs

a(t) + b(t)r
1/2
s + c(t)rs

1 + d(t)r
1/2
s + e(t)rs

. (3)

The coefficient functions are too complicated to be worth
displaying. The correct high-density (small-rs) and small
Γ (Coulomb coupling parameter) limits for fxc were in-
corporated by constraints on a(t), while the correct high-
T limit is built in via constraint on one of the coefficients
in b(t). Then Eq. (2) was solved by minimizing the dif-
ference between εxc evaluated from Eq. (3) and the ref-
erence Monte Carlo data via variation of the parameters
in the coefficient functions b(t)− e(t) (see Ref. [19]).
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FIG. 2. Color map in the (rs, T ) plane of relative impor-
tance of explicit T -dependence in the HEG XC free-energy
functional measured as the upper bound R (see text for defi-
nition) (reproduced from Ref. [4]).

The corrected KSDT version (corrKSDT) [5] utilized
improved quantum Monte Carlo data [34]. Because those
data were for uee, a different thermodynamic route had
to be used. The refit also corrected an almost inconse-
quential T = 0 data fitting error and a cosmetic negative
entropy at very large rs. It turned out that a seeming
flaw in KSDT at low t and rs = 1.0 actually was a flaw
in the original data. Further details on the fully spin
polarized case and a T -dependent interpolation for inter-
mediate polarizations can be found in Ref. [19].
The GDSMFB parametrization [20] (contemporaneous

with corrKSDT) used their QMC data, the same Fxc

representation Eq. (3), the same thermodynamic route
as corrKSDT, and the KSDT T -dependent interpolation
for intermediate polarizations. The equivalence of these
two representations and their limitations are discussed in
Ref. [35].
Fig. 2 shows the relative magnitude of XC thermal

effects in the HEG as a function of rs and T in terms
of R := log10(|fLDA

xc (rs, T ) − εLDA
xc (rs)|/[|fLDA

s (rs, T )| +
|εLDA

xc (rs)|]). The denominator is an upper-bound to the
HEG total free-energy per particle since it is the sum of
absolute values of the non-interacting free-energy, fLDA

s

and the ground-state LDA XC energy per particle, εLDA
xc .

ThusR deliberately underestimates the magnitude of XC
thermal effects. Those clearly are negligible at low-T (ex-
cept perhaps at very large rs, i.e., very low density), as
expected. That also is true for very high-T because the
total free-energy in that regime is dominated by the non-
interacting contribution, hence essentially is independent
of the XC approximation. The nearly diagonal orange-
yellow band indicates a range of thermodynamic condi-
tions in which finite-T XC effects may be important.

These HEG results can serve as a rough indicator of
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regions of thermal XC importance in real inhomogeneous
systems. In terms of the reduced temperature t, the
orange-yellow band converts into a near-horizontal one
indicating that the thermal effects may be important for
t above a few tenths and up to t between 1 and 10, de-
pending on the electron density (further details are in
Ref. 6).

B. GGA: fully thermalized

Development of the GGA XC free-energy is based
on analysis of the finite-T second-order gradient expan-
sions for X and C, the ensuing definition of dimension-
less reduced density gradient variables with explicit T -
dependence for X and C, and construction of a functional
with the same structure as in a suitably chosen ground-
state GGAs (which will be the T → 0 limit of the free-
energy version), namely an exchange enhancement factor
and correlation free-energy per particle.

That structure implicates the corrKSDT thermal LDA
XC parametrization Eq. (3), partitioned into X and C
terms, as a key ingredient for successful construction of
a thermal GGA. The LDA X free-energy per particle has
the factorized form [36]

fLDA
x (n, t) = εLDA

x (n)Ãx(t) , (4)

εLDA
x (n) = −3

4

( 3

π

)1/3

n4/3 , (5)

Ãx(t) =
t2

2

∫ (βµ)

−∞
I2−1/2(η)dη . (6)

Here β = (kBT )
−1, Iα is the Fermi-Dirac (FD) inte-

gral [37], and µ is the chemical potential defined by the

density as n =
√
2I1/2(βµ)/(π

2β3/2). The LDA corre-
lation free-energy per particle then is defined in terms
of the corrKSDT LDA parametrization as fLDA

c (n, t) =
fLDA
xc (n, t)− fLDA

x (n, t).
The central ingredient for GGA development is the

second-order term in the finite-T gradient expansion [23,
38–42]

f (2)xc (n,∇n, T ) = 1
2g

(2)
xc (n, T )

|∇n(r)|2

n(r)
. (7)

It can be separated into X and C contributions, f
(2)
xc =

f
(2)
x + f

(2)
c , with the X term being

f (2)x (n,∇n, T ) = fLDA
x (n,T)

8

81

[ B̃x(t)

Ãx(t)
s2(n,∇n)

]
, (8)

where s := |∇n|/2(3π2)1/3n4/3 (the dimensionless re-
duced density gradient used in ground-state GGA func-
tionals), and

B̃x(η) =
34/3

24/3
I
4/3
1/2 (η)

[(I ′−1/2(η)

I−1/2(η)

)2

− 3
I ′′−1/2(η)

I−1/2(η)

]
. (9)

Primes denote derivatives with respect to the argument.
The bracketed term in Eq. (8) defines the explicitly T -
dependent dimensionless reduced density gradient for the
X free energy

s2x(n,∇n, T ) ≡ s2(n,∇n) B̃x(t)

Ãx(t)
. (10)

The second-order correlation term, f
(2)
c , is pro-

portional to n1/3s2B̃c(rs, t) ∝ Q2B̃c(rs, t), where
Q(n,∇n) = |∇n|/2ksn is the relevant ground-state vari-
able and ks = 2(3n/π)1/6. This allows one to define the
T -dependent reduced density gradient for correlation as

Qc(n,∇n, T ) = Q(n,∇n)
√
B̃c(rs, t) . (11)

The gradient correction coefficient g
(2)
xc (n, T ) was evalu-

ated numerically in Ref. 23 by use of a relation to the
static local field correction [43, 44] and finite-T quan-

tum Monte-Carlo data[21]. The numerical data for g
(2)
xc

in combination with Eqs. (7) and (8) enables numerical

evaluation of the function B̃c(rs, t). Refs. 5, 45 gave accu-
rate analytic fits (including proper asymptotic behaviors)

for the functions Ãx(t) and B̃x(t) defined as combinations
of FD integrals through Eqs. (6) and (9) respectively,

and the function B̃c(n, t) defined by numerical data on a
(rs, t) grid.
With that and use of the T -dependent reduced density

gradients, s2x and Qc, Eqs. (10), (11) respectively, the
fully thermal GGA X enhancement factor is

FGGA
x [n, T ] =

∫
nfLDA

x (n, t)Fx(s2x)dr , (12)

and the C free-energy per particle is

FGGA
c [n, T ] =

∫
nfGGA

c (n, t,Qc)dr . (13)

In these, F (s2x) and f
GGA
c (n, t, qc) for the spin unpolar-

ized case are defined as

Fx(s2x) = 1 +
νxs2x

1 + aG|s2x|
, (14)

with νx = 0.21951, aG = νx/(Fx,max−1), Fx,max = 1.804,
and

fGGA
c (n, t,Qc) = fLDA

c (n, t) +H
(
fLDA
c ,Qc

)
, (15)

and H is the PBE correlation function defined in Ref.
46 for the spin unpolarized case. Equations (12)-(15)
define the fully thermal KDT16 GGA, FKDT16

xc [n, T ] ≡
FGGA
x [n, T ] + FGGA

c [n, T ].
To our knowledge KDT16 is the only published fully

thermal GGA. By construction it obeys important con-
straints. First, in the zero-T limit it reduces to be-
ing very close to the ground-state PBE functional,
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limT→0 FKDT16
xc [n, T ] ≈ EPBE

xc [n], hence it inherits all the
main properties of PBE including local satisfaction of the
zero-T Lieb-Oxford bound [47]. Second, in the slowly-
varying limit, KDT16 recovers the second-order finite-T
gradient expansion. That seems to be the most impor-
tant requisite for an accurate GGA XC free-energy func-
tional. Third, the KDT16 X free-energy scales correctly,
FGGA

x [nλ, T ] = λFGGA
x [n, T/λ2], with nλ(r) = λ3n(λr),

see Refs. 27, 48. Fourth, KDT16 reduces properly to the
corrKSDT LDA in the high-T limit.

C. GGA: LDA-thermal corrected

Two simple approximations based on a ground-state
GGA with an LDA-level thermal correction have ap-
peared. The first (called “addPBE”) [23] takes the “sub-
tract and add” form with respect to the ground-state
PBE functional to yield the XC free-energy per particle
as

faddPBE
xc (n,∇n, t) = εPBE

xc (n,∇n)−εLDA
xc (n)+fLDA

xc (n, t) .
(16)

In this, εLDA
xc is the ground-state LDA XC energy per

particle [49], fLDA
xc is the LDA XC free-energy per particle

Eq. (3), and the PBE XC energy per particle is defined
via the X enhancement factor, FPBE

x , and C function H
as

εPBE
xc (n,∇n) = εLDA

x (n)FPBE
x (s2)+εLDA

c (n)+H(εLDA
c ,Q) .

(17)
In somewhat the same spirit, Kozlowski et. al. [24]

proposed a “divide and multiply” scheme in which the
ground-state PBE XC energy per particle is scaled by the
thermal LDA XC. That gives what those authors called
the locally thermal PBE (ltPBE) approximation

f ltPBE
xc (n, s, t) = εPBE

xc (n,∇n)f
LDA
xc (n, t)

εLDA
xc (n)

≡ εLDA
xc (n)F ltPBE

xc (n,∇n, t) . (18)

In it, the LDA XC temperature dependence effectively is
absorbed by the XC dimensionless enhancement factor

F ltPBE
xc (n,∇n, t) := εPBE

xc (n,∇n)
εLDA
xc (n)

fLDA
xc (n, t)

εLDA
xc (n)

. (19)

So far as we are aware this scheme has not been tested
on physically realistic systems; see our further discussion
below.

Both the additive (addPBE) and multiplicative
(ltPBE) schemes account for thermal XC corrections (rel-
ative to the ground state) only at the LDA level of re-
finement. Spatial inhomogeneity effects are described by
the ground-state PBE gradient-dependent terms without
any explicit T -dependence (the only T -dependent spatial
gradient contributions are through the T -dependence of
the density). Consequently neither scheme matches the
second-order finite-T gradient expansion in the weakly

varying density limit. That limit is important especially
in theWDM regime. This seems to be the main disadvan-
tage of such simplified schemes versus the fully thermal
KDT16 GGA, See Ref. [50] for further details and see
Sect. III for new results.

D. Meta-GGA: basics of ground-state
approximation

The next theoretical refinement rung is meta-GGA
XC functionals. They have additional functional vari-
able information in the form of either dependence on the
(Mermin)-Kohn-Sham kinetic energy density or upon the
density Laplacian. Currently the most successful ground-
state meta-GGA is the strongly constrained and appro-
priately normed (SCAN) functional. It is built to obey 17
exact constraints known to be relevant to meta-GGA XC
functionals [51]. On most systems (though there are ex-
ceptions [52]), SCAN is much more accurate than GGA
functionals for properties such as atomization energies,
molecular bond lengths, barrier heights for chemical re-
actions, weak interaction energies (hydrogen and van der
Waals bonds), and lattice constants of solids. SCAN has
numerical instabilities however (e.g. numerical grid sensi-
tivity, slow self-consistent field (SCF) convergence, some
divergence issues) that have limited its utility for large-
scale ground-state simulations. The recently proposed
regularized-restored version of SCAN, r2SCAN, improves
the numerical performance and restores (largely) the
transferable accuracy of SCAN [53, 54].
Like most conventional meta-GGAs, SCAN and

r2SCAN are explicitly orbital-dependent via the non-
interacting kinetic energy density. As such they are use-
less for any orbital-free DFT (ofDFT) approach [50, 55].
As mentioned at the outset, replacement of that or-
bital dependence with dependence upon the reduced den-
sity Laplacian q := ∇2n/4(3π2)2/3n5/3 constitutes “de-
orbitalization”. The objective is to recover a pure Kohn-
Sham (local) XC potential and, as well, to make a meta-
GGA useful in ofDFT. For the ground-state SCAN and
r2SCAN functionals this has been explored in Refs. [56–
58]. The de-orbitalized versions are denoted SCAN-L and
r2SCAN-L respectively.

E. Meta-GGA: GGA thermal corrected

The first version of thermalization of a ground-state
meta-GGA XC functional was an additive correction
scheme very much akin to addPBE discussed above; re-
call Eq. (16). Thus, Ref. 8 discussed strategies for ther-
malization of ground-state meta-GGA XC functionals,
and implemented a simple but usefully accurate scheme
via a universal additive thermal GGA-level correction.
For virtually any meta-GGA ground-state XC functional,
one defines a universal additive thermal GGA correction

∆FGGA
xc [n, T ] = FKDT16

xc [n, T ]− EPBE
xc [n] . (20)
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This correction is combined with the selected meta-GGA
ground-state XC to give the simple T -dependent meta-
GGA, to wit

Fmeta−GGA
xc [n,T] = Emeta−GGA

xc [n] + ∆FGGA
xc [n,T] .

(21)
The scheme was applied to the deorbitalized versions
of SCAN and r2SCAN, SCAN-L and r2SCAN-L respec-
tively, to yield thermal orbital-free T-SCAN-L and T-
r2SCAN-L meta-GGAs. Importantly, both of those func-
tionals reduce very closely to the ground-state counter-
part at low-T , and to the KDT16 GGA at high-T . Details
are in Refs. 8, 50.

It is important to emphasize that this additive cor-
rection approach should not be used with the original
SCAN and r2SCAN functionals at least as they are im-
plemented, for example, in the Vasp package. Formally,
both SCAN and r2SCAN are ground-state functionals.
However, the “iso-orbital indicator” which they use is

α(n,∇n, {ψ}) := (ts − tvW)/tTF (22)

with

ts =
1

2

Ne∑
i=1

|∇ψi|2 (23)

being the KS kinetic energy density of Ne electrons in
the ground state, and tvW and tTF the von Weizsäcker
and Thomas-Fermi kinetic energy densities respectively.
(Beware inescapable notational overload: plain t is re-
duced temperature.) Obviously this KE density also can
be written with explicit Fermi-Dirac occupation numbers

τMKS
s ({ψ}, T ) = 1

2

∞∑
i=1

fi(T )|∇ψi|2 , (24)

with the ground-state recovered by setting the fi(T ) to
T = 0 integer values. At T > 0, however, this latter im-
plementation takes partial account of thermal XC effects
(beyond those implicit in n and s). Use in conjunction
with the additive ∆FGGA

xc thermal correction thus would
lead, in general, to uncontrolled (and unevaluatable) dou-
ble counting.

F. Meta-GGA: fully thermalized

To generate thermal counterparts of the orbital-
dependent ground-state SCAN XC functional re-
quires thermal extension of the iso-orbital indicator,
α(n,∇n, {ψ}), Eq. (22). The other dependencies are the
GGA-level reduced density gradient s defined below Eq.
(8), that appears in X and C terms. The ground-state
s-dependencies are replaced by the T -dependent dimen-
sionless gradients, s2x Eq. (10), and Qc Eq. (11), in the
X and C terms respectively.

An important step for appropriate thermalization of α
is the recognition that its numerator is the zero-T Pauli

KED, tθ := ts − tvW encountered in ofDFT. It is known
that tθ ≥ 0. That non-negativity immediately constrains
α ≥ 0. The modified Pauli KED defined at finite-T ,
τθ(n,∇n, {ψ}) = τMKS

s −tvW(n,∇n), also is strictly non-
negative [59, 60]. Thus the T -dependent iso-orbital in-
dicator that preserves the non-negativity property and
reduces to the ground-state α is defined as

αT (n,∇n, {ψ}) :=
τMKS
s ({ψ}, T )− tvW(n,∇n)

τTF(n, T )
. (25)

The remaining tasks are to thermalize the ingredient
functional (called h1 in SCAN) which causes αT switch-
ing in X and the corresponding objects in C. In X that is
done in terms of s2x defined at Eq. (10) and αT as well
as by modifying h1 into h1ftSCAN in fully thermal SCAN
(ftSCAN)). All of this is done in compliance with relevant
gradient expansion terms more or less analogous with the
development of the KDT16 GGA. The intricate details of
the fully thermal fT(r2) SCAN meta-GGA that results
are in Ref. 9.

G. Thermal hybrid XC: global and range-separated

It is well known that semi-local XC density functionals
yield HOMO-LUMO eigenvalue differences that underes-
timate the fundamental electronic band gap (I−A). This
discrepancy is a consequence of omission of derivative dis-
continuity [61]. That is a fundamental issue in KS-DFT
because of the local multiplicative XC potential (though
there are work-arounds [62]). An improvement is offered
by the development of density functionals with a non-
local potential operator, such as an orbital-dependent
meta-GGA, provided that the variational treatment is
in generalized KS fashion [63]. The same is true of hy-
brid XC functionals, such as the PBE0 global hybrid
[64, 65] and the HSE range-separated one [66]. They
are constructed by combining an explicit density func-
tional XC approximation (DFA) and a fraction of Fock
(F) exchange (the non-local functional form arising in the
Hartree-Fock approximation). The additional distinction
is between use of the explicit Fock contribution for the
full Coulomb interaction or a short-range part in the case
of global and range-separated hybrids respectively.
Development of finite-T (thermal) versions of the

PBE0 and HSE hybrids was presented in Refs. 25, 26.
The thermal counterpart of the PBE0 global hybrid XC
functional, KDT0 was constructed by mixing of the ther-
mal Fock exchange, FF

x [n, T ], with the fully thermal
GGA KDT16 exchange, FKDT16

x [n, T ]. Correlation is
treated entirely by the thermal KDT16 DFA. The result
is

FKDT0
xc [n, T ] = FKDT16

xc [n, T ]+a(FF
x [n, T ]−FKDT16

x [n, T ]) .
(26)

In this expression, a is the mixing parameter. It is set
to a = 0.25, similar to the ground-state PBE0 global
hybrid. Thus, as T → 0, thermal KDT0 reduces very
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closely to the ground-state PBE0. As emphasized in our
discussion of guiding principles for thermalization, such
limiting behavior is required for any thermal XC DFA to
be useful without inconsistencies across the entire range
of real system T .

Although global hybrid functionals provide more accu-
rate fundamental band gap values than LDA and GGA
DFAs or meta-GGAs done in gKS, they overestimate
small system gaps. That flaw, which also occurs in metal-
lic systems, is due to screening effects which are miss-
ing from Fock exchange. Additionally, global hybrids
are computationally expensive because of the long-range,
non-local character of Fock exchange.

Range-separated HSE hybrid XC functionals tackle
this issue by separating the exchange functional into long-
range (LR) and short-range (SR) contributions. The
mixing (hybridization) between the non-local and semi-
local DFA forms is done only for the SR exchange com-
ponents. The full DFA is used for the LR-exchange and
correlation. The range-separated HSE generally provides
better agreement with experiments than do the global
hybrids [67, 68].

In the ground-state HSE functional, the range sepa-
ration of the PBE X involves a rather complicated uti-
lization of the PBE exchange hole density to compute
the screened PBE exchange enhancement factor. The
thermal version of HSE uses a simpler range-separation
procedure for the DFA exchange. The screened Coulomb
interaction is embedded in the fully thermal KDT16 X
functional via the thermal LDA exchange term, and the
full KDT16 exchange enhancement factor (compare to
Eq. (12)), as follows

FSR,ωKDT16
x [n, T ] =

∫
nfSR,ωLDA

x (n, t)FKDT16
x (s2x)dr .

(27)
In this ω is the usual Coulomb interaction screening pa-
rameter used for the construction of range-separated X
terms,

1

|r− r′|
=

erfc(ω|r− r′|)
|r− r′|

+
erf(ω|r− r′|)

|r− r′|
. (28)

The LR contribution of the KDT16 exchange is calcu-
lated as a difference FLR,ωKDT16

x [n, T ] = FKDT16
x [n, T ]−

FSR,ωKDT16
x [n, T ]. Similarly with the ground-state HSE

functional, the thermal range-separated RS-KDT0 func-
tional mixes the SR thermal Fock exchange and SR ther-
mal DFA exchange

FRS-KDT0
xc [n, T ] = FKDT16

xc [n, T ] (29)

+ a(FSR,ωF
x [n, T ]−FSR,ωKDT16

x [n, T ]) .

Further details on the construction of the thermal Fock
and thermal LDA range-separated exchange free-energy
can be found in Refs. 26, 69.

III. ASSESSING THE PERFORMANCE OF
THERMAL XC FUNCTIONALS AT EXTREME

AND NEAR-AMBIENT CONDITIONS

For assessment of the accuracy of thermal XC function-
als in the challenging warm-dense regime, we performed
a few sets of AIMD simulations for warm-dense H/D and
He plasmas at thermodynamic conditions for which ac-
curate reference path-integral Monte Carlo (PIMC) data
are available and thermal XC effects are not negligi-
ble. Detailed description of computational details can be
found in Refs. [9] and [70] for H/D and He respectively.

For the hydrogen/deuterium plasma, Table I gives
comparative data for the total pressure along the rs = 3.0
isochore and along the T = 62, 500 K isotherm. Re-
sults are from the KDT16 fully-thermal GGA, the LDA
thermal-corrected approximate GGAs (ltPBE and ad-
dPBE), and both full thermal meta-GGA (fTSCAN)
and the approximate one (T-r2SCAN-L). Additionally,
we performed corrKSDT thermal LDA simulations at a
few selected conditions to provide additional perspective
on the accuracy of the ltPBE and addPBE approximate
thermal GGAs (see below).

The magnitude of explicit thermal XC effects can be
characterized usefully by the relative pressure deviation
of the results from the widely used ground-state PBE
XC functional with respect to the PIMC reference values
[16], specifically 100× (PPBE − PPIMC)/PPIMC. Table I
shows that these explicit thermal effects range between
1.3% and 6.7% with a mean absolute value of 3.6%, re-
ported in Table I as the mean absolute relative devia-
tion (MARD) at the bottom of the PBE column. All of
the thermal functionals with the GGA and meta-GGA
level of thermalization have drastically reduced devia-
tions. The reduction from KDT16 is a factor of nine
(0.4%), from fTSCAN it is four (0.9%), and from T-
r2SCAN-L, six (0.6%).

Even the two LDA thermal-corrected GGAs, ltPBE
and addPBE, improve on GSA PBE, but with larger
errors than from the other three free-energy function-
als, 1.7% and 1.8% respectively. That difference leads to
comparison between the behavior of those two function-
als and the corrKSDT thermal LDA. At least at selected
conditions and for this specific system, Table I shows that
the pure thermal LDA actually provides better accuracy
than the thermal LDA-corrected GGAs. The corrKSDT
LDA MARD value reduces to 1.5%, as compared to 1.7%
and 1.8% for the ltPBE and addPBE functionals respec-
tively.

This very interesting finding has gone unnoticed be-
fore. It demonstrates that ground-state reduced den-
sity X and C gradients (i.e. gradients without explicit
temperature dependence) can be inconsistent with LDA
thermal corrections, hence can decrease accuracy rela-
tive to a pure thermal LDA treatment. It is unclear
what thermodynamic conditions and/or system ingredi-
ents lead to this inconsistency. Hence it also is unclear
how to avoid the inconsistency in actual calculations.
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The contrast with the full thermal GGA performance
demonstrates that consistent inclusion of reduced den-
sity gradients with explicit T -dependence, is required for
significant improvement in accuracy compared to ther-
mal LDA. (As an aside, we emphasize that at very high
T the thermal XC effects will be of negligible magnitude,
and essentially independent on the XC functional choice.
Recall discussion of Fig. 2).

Table II shows results for He plasmas along two
isotherms for the same set of XC functionals but with
SCAN-L added (another example of the ground-state ap-
proximation). The PBE MARD (relative to PIMC ref-
erence values [17]) is almost identical to the H/D case,
3.7%. The MARD of the ground-state SCAN-L meta-
GGA MARD decreases modestly to 3.1%. In contrast,
use of KDT16, fTSCAN, and T-SCAN-L thermal XC
functionals reduces MARD values to below 1%. As in
the case of the H/D plasmas just discussed, the LDA
thermal-corrected ltPBE and addPBE GGA functionals
yield substantially larger errors, 2.4% and 2.5% respec-
tively. Comparison of ltPBE or addPBE results with
pure thermal LDA values confirms the interesting (and
unappreciated before now) feature that LDA thermal-
corrected GGAs are less accurate than the corrKSDT
LDA. The ltPBE and addPBE MARD values of 2.4%
and 2.5% respectively, are reduced to 1.8% for the cor-
rKSDT LDA. Recall discussion just above.

Fully thermal GGA and thermal meta-GGAs, as Ta-
bles I and II show, provide very similar accuracy with
respect to the PIMC reference data. This is expected
at the elevated temperatures considered here, as the ef-
fects of density gradients and Laplacians diminish as T
increases (because densities become smoother).

However, it also is expected that meta-GGA function-
als should be more accurate than the KDT16 GGA at
lower temperatures. Figure 3 provides one demonstra-
tion of the point. That figure compares the pressure-
volume cold curves (300 K) of MgO in the B1 phase,
calculated with a variety of XC functionals, with exper-
imental values [71]. LDA XC underestimates the pres-
sure. The PBE and KDT16 GGA curves are atop each
other as they should be since KDT16 essentially reduces
to PBE at low-T . Both give pressure overestimates. All
the meta-GGA functionals represented in that Figure re-
produce the experimental data well, though ground-state
SCAN slightly underestimates the pressure. The PBEsol
GGA was developed specifically for use with solids, with
the expected result that the PBEsol curve also is very
accurate. Figure 3 also illustrates the first of our funda-
mental principles, namely that a thermal XC functional
must reduce to a well-founded ground-state counterpart
in the T → 0 limit. Thus KDT16 reduces to PBE, T-
SCAN-L reduces to SCAN-L, and fTSCAN reduces quite
closely to ground-state SCAN.

Now we present illuminating results obtained with hy-
brid XC functionals. Hybrids, both global and range-
separated, are still too computationally costly to per-
form routine, large-system AIMD simulations. A conse- T
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quence is that it is common for such functionals to be
employed for band gap predictions of static structures
at low-T or band gap and transport property calcula-
tions of solid/liquid structures at elevated temperatures.
Typically the static calculations are for a set of so-called
snapshot ion configurations along an AIMD trajectory
driven by a lower-rung XC functional calculation .

Thus, to illustrate the performance of thermal hy-
brid XC functionals under extreme thermodynamic con-
ditions, we computed band gaps for Si and CH4 at el-
evated electronic temperatures. Computational details
are provided in Ref. [26]. The ionic positions were fixed
for both materials. For Si the lattice constants are from
HSE calculations in Ref. [72], while those for CH4 are
from Ref. [25]. Only the electronic temperature was var-
ied. That singles out the explicit thermal contributions
of the XC functional. Physically, this computational sce-
nario is relevant to pump–probe experiments [73, 74]. In
them, an intense ultrashort laser pulse drives the elec-
trons to high temperatures on sub-picosecond time scales,
while the ions remain effectively cold. This leads to a
non-equilibrium regime accompanied by a reduction in
the band gap as the electronic temperature increases.

Figure 4(a) shows the band-gap results for Si, a repre-
sentative semiconductor. At low T , RS-KDT0 converges
to the HSE06 value. Both agree well with the experimen-
tal band gap (indicated by the golden star). In contrast,
the GGA-level XC functionals PBE and KDT16 both
underestimate the gap by approximately 50%. More-
over, PBE and KDT16 incorrectly predict an increasing
gap with increasing electronic temperature. On the other
hand, KDT0, RS-KDT0, and HSE06 all show band-gaps
decreasing with increasing T , in agreement with finite-
temperature GW (FT-GW) results [75]. RS-KDT0 pro-
vides the closest agreement. We note that the HSE06
results employ a thermal SR-HF exchange but use a zero-
temperature GGA component. That includes only par-
tial thermal effects. Similar trends are observed in other
small-band-gap materials, further confirmation of the im-
portance of including explicit thermal XC effects [26].

As an example of a wide-band-gap system, Fig. 4(b)
shows the results for calculations on CH4. Overall, ther-
mal hybrid XC functionals predict consistently larger
band gaps than thermal GGA-level functionals. PBE
exhibits approximately linear increase with temperature,
while KDT16 is convex with a minimum at T ≈ 15 kK.
That corresponds to comparatively strong thermal cor-
rections to GGA XC that weaken again at higher temper-
ature. The HSE06 band gap remains nearly constant for
T < 40 kK, showing that the thermal SR-HF exchange
largely counteracts the temperature dependence of the
GGA part. At low temperatures (T < 15 kK), the band-
gap trends of RS-KDT0 and KDT0 are dominated by the
thermal GGA contributions, similar to KDT16, followed
by a saturation at higher temperatures. Rather little
seems to be known about the direct gap in crystalline
CH4 but an early correlation-corrected Hartree-Fock cal-
culation [76] gave 13.3 eV. A newer LDA calculation [77]
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FIG. 3. Comparison of cold curves for MgO in the B1
phase as computed with a variety of XC functionals versus ex-
perimental data [71] (black points). Meta-GGA functionals,
ground-state and thermalized versions, SCAN-L, T-SCAN-
L, SCAN and fTSCAN (solid curves), along with the GGA
PBEsol functional greatly outperform the remaining GGA
(PBE and KDT16 (dashed curves) and LDA (dotted curve)
functionals.

gives about 7.7 eV, but LDA is known to underestimate
gaps by 40-50%. The results shown in Fig. 4(b) are con-
sistent with this. Both PBE and KDT16 give about 7.7
eV for the T = 0 gap, while the KDT0 gap extrapolates
to roughly 10 eV at T = 0.

IV. CONCLUSIONS

The most important elements of constraint-based de-
velopment of thermal XC functionals on four rungs of
increasing complexity, LDA, GGA, meta-GGA (includ-
ing fully thermal versions) and hybrids, have been sum-
marized. As a basic design principle, all thermal XC
functionals reduce closely to well-founded ground-state
counterparts. Thus, the thermal functionals inherit, for
better or worse, the essential properties of those counter-
parts latter ones. Thus the thermal versions can be used
safely across the entire range of temperatures associated
with non-ideal plasmas, warm dense matter, etc.

For the benefit of possible users, we have assessed the
accuracy of currently available thermal functionals by
performing AIMD simulations of dense H/D and He plas-
mas and comparing results to PIMC reference data. Fully
thermal GGA and meta-GGA provide near-identical ac-
curacy. That is expected for sufficiently elevated tem-
peratures. Importantly, those functionals outperform
LDA thermal-corrected GGAs (ltPBE and addPBE). An
important new result is that thermal corrKSDT LDA
can outperform the LDA thermal-corrected GGAs. This
demonstrates the uncontrolled risk in using ground-state-
corrected functionals. One does not know under what
circumstances they succeed or fail. It also illustrates the

(a)

(b)

FIG. 4. Band-gap calculations for static structures as a func-
tion of electronic temperature. (a) Results for Si, shown as an
example of a small-band-gap material; the gold star indicates
the experimental band gap at low temperature. (b) Results
for CH4, representing a wide-band-gap material. Two panels
are reproduced from Ref. [26].

importance of reduced density gradients that have ex-
plicit, correct temperature dependence for the develop-
ment of accurate thermal functionals. Such gradients are
absent in ltPBE and addPBE, Thermal hybrids exhibit
the correct qualitative behavior of band gaps for static
structures with an increase in temperature. However, the
range separated RS-KDT0 hybrid provides more reliable
predictions as compared to the global KDT0 one.
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[53] A. P. Bartók and J. R. Yates, Regularized scan func-
tional, The Journal of Chemical Physics 150, 161101
(2019).

[54] J. W. Furness, A. D. Kaplan, J. Ning, J. P. Perdew,
and J. Sun, Accurate and numerically efficient r2scan
meta-generalized gradient approximation, The Journal
of Physical Chemistry Letters 11, 8208 (2020), pMID:
32876454.

[55] W. Mi, K. Luo, S. Trickey, and M. Pavanello, Orbital-free
density functional theory: An attractive electronic struc-
ture method for large-scale first-principles simulations,
Chemical Reviews 123, 12039 (2023).
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