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Abstract

The thermodynamics for a system with given temperature, density, and volume is

described by the Canonical ensemble. The thermodynamics for a corresponding system

with the same temperature, volume, and average density is described by the Grand

Canonical ensemble. In general, a chosen thermodynamic potential (e.g., free energy)

is different in the two cases. Their relationship is considered here as a function of the

system size. Exact expressions relating the fundamental potential for each (free energy

and pressure, respectively) are identified for arbitrary system size. A formal asymptotic

analysis for large system size gives the expected equivalence, but without any charac-

terization of the intermediate size dependence. More detailed evaluation is provided for

the simple case of a homogeneous, non-interacting Fermi gas. In this case, the origin of

size dependence arises from only two length scales, the average interparticle distance

and quantum length scale (thermal deBroglie or Fermi length). The free energies per

particle calculated from each ensemble are compared for particle numbers 2 � N �

64 for a range of temperatures above and below the Fermi temperature. The relevance

of these results for applications of density functional theory is discussed briefly.
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1. INTRODUCTION AND MOTIVATION

Equilibrium statistical mechanics provides the fundamental basis for

the thermodynamics of a given system in terms of its Hamiltonian and

the characteristics of its environment (e.g., open or closed).1 The Canonical

ensemble applies when the system is in contact with a thermal reservoir,

exchanging energy at constant volume and particle number. It is parameter-

ized by the temperature (T � 1/kBβ), number density (n � N/V ), and vol-

ume (V ). The fundamental thermodynamic potential associated with this

ensemble is the Helmholtz free energy per particle fC(β,n,V ). The Grand

Canonical ensemble applies under the same thermodynamic conditions

but with the additional exchange of particle number with its environment.

It is parameterized by β,μ, and V, where μ is the chemical potential. Its

thermodynamic potential is the pressure pG β,μ,Vð Þ. However, the free

energy per particle in the Grand Canonical ensemble fG(β,nG,V ) can be

determined from pG β,μ,Vð Þ by a change of variables μ� nG� @pG=@μ
via a Legendre transform (see below). Here, nG is the average density in

the Grand Canonical ensemble. Similarly, the pressure can be defined for

the Canonical ensemble by the change of variables n� μC��@fC=@n
and a corresponding Legendre transform.

For large systems, it is expected on physical grounds that the system

becomes extensive, in which case the free energy per particle and pressure

become independent of the volume

fCðβ,n,V Þ� fC β,nð Þ, pG β,μ,Vð Þ� pG β,μð Þ: (1)

Furthermore, if the two ensembles have the same β,V, and μ is chosen such

that n ¼ nG(β,μ) then the thermodynamics from the two ensembles should

be equivalent in this limit, e.g.,

fC β,nð Þ¼ fG β,nGð Þ: (2)

It is this equivalence that allows one to choose an equilibrium ensemble

for convenience of computation or simulation, rather than to fit the actual

experimental conditions of interest. For example, most formulations of den-

sity functional theory are based in the Grand Canonical ensemble while

actual implementations in simulation are for conditions of the Canonical

ensemble, specifically for fixed density and volume. This raises the challenge

of quantifying the conditions for the validity of (1) and (2), and finding rela-

tionships between properties in different ensembles. The objective here is to
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formulate this problem more precisely and to provide some answers for the

simplest case of a non-interacting Fermi gas.

The large system limit is defined by V �1 at constant n or nG for the

Canonical and Grand Canonical ensembles, respectively. Equivalently, this

can be stated as N�1 at constant n, or NG�1 at constant nG. In detail,

the shape of the system must be constrained as well, e.g., all dimensions

should be of comparable size L such that L/r0 is large, where r0 is the average

interparticle spacing defined by 4πnr30=3¼ 1. The desired limit requires

that L be large compared to all other characteristic length scales as well.

One of these is the force range of interaction, a. For Coulomb systems, this

is replaced by the screening length. Another length scale is the thermal de

Broglie wavelength λ which becomes large at low temperatures, or the

corresponding Fermi length λ
�
at temperatures near zero. There can also

be a scale set by the spatial variations of an external potential. Finally, the

correlation length is typically of the order of the force range, but becomes

large near a critical point so that system-size dependence can be important

even for macroscopic systems. In cases for which L is not the dominant

length scale, the system is “small” and, while the thermodynamic formalism

is universal, the details must account for the specific environment of the

system being described.2 Here, only the Canonical and Grand Canonical

conditions are considered, although many other ensembles for other envi-

ronments are of experimental interest.1,2 There is a large literature on the

asymptotic evaluation of the difference between properties calculated in

different ensembles, e.g., fluctuations in extensive variables.3 Much less is

known away from such asymptotic conditions. However, low temperature

thermodynamic properties of interacting fermions in 1D system have also

been discussed in the literature (see Ref. 4).

The next section defines the ensembles and their associated thermody-

namic potentials. In particular, for comparisons exact relationships between

them are identified for arbitrary system size. Generally, the thermodynamic

properties for the two cases are not equal. However, in Section 3, an asymp-

totic analysis for one of these relationships shows their equivalence for large

V (or large N) at constant number density. The analysis is formal and does

not expose the full dependence onV nor the cross over to the extensive limit

in (1). A more detailed quantitative evaluation is provided in Section 4 for

the special case of a homogeneous non-interacting gas. In that case, the only

relevant length scales are r0 and λ (or λ
�
). Finally, inhomogeneous non-

interacting systems with an external potential are discussed in Section 5
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and related to the results of Section 4 using a local density approximation (see

below). The relevance for ensemble dependence and system-size corrections

to the familiar Thomas–Fermi approximation in density functional theory5

is discussed.

2. CANONICAL AND GRAND CANONICAL ENSEMBLES
AND THEIR THERMODYNAMICS

The equilibrium Canonical ensemble for a system of N particles in a

volume V, coordinates qi, with pairwise interactions and an external single

particle potential is defined by the probability density operator

ρC¼ e�β HN�NfCð Þ, βfC¼�
1

N
lnTrN e�βHN : (3)

Here, HN is the Hamiltonian operator for N particles

HN¼KN +ΦN +
XN

i¼1

v qið Þ, (4)

whereK andΦ are the total kinetic and potential energies, respectively. The

specific forms of the pair potential ϕ qi, qj

� �
and external potential v qið Þ are

not required at this point. The equilibrium thermodynamics for this system

is defined from the free energy per particle fC(β,n,V ) which is a function of

the temperature T ¼ 1/kBβ, the density n ¼ N/V, and the volume V. The

trace in the definition of fC is taken over theN particle Hilbert space with the

appropriate symmetrization (Bosons or Fermions). For large systems (i.e.,

V �1 at fixed finite n), it is expected that fC(β,n,V ) becomes indepen-

dent of V.

The corresponding GrandCanonical ensemble is defined by the operator

ρG¼ e�β HN�μN + pGVð Þ, βpGV ¼ ln
X1

N¼0

TrN e�β HN�μNð Þ: (5)

The thermodynamics now is defined from the pressure pG(β,μ,V ), where

the density dependence of the Canonical ensemble is replaced by a depen-

dence on the chemical potential μ. For large systems (i.e., V �1 at fixed

finite μ), it is expected that the pressure becomes independent of V.

Although the pressure is the fundamentally defined thermodynamic

potential in the Grand Canonical ensemble, the corresponding free energy,
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fG(β,nG,V ), is defined in terms of that pressure by a change of variables from

μ to nG using the Legendre transformation

fGnG¼�pG + μnG: (6)

Here, the average number density nG(β,μ,V ), is

nGðβ,μ,V Þ�
@pGðβ,μ,V Þ

@μ
: (7)

Similarly, although the free energy is the fundamental potential in the

Canonical ensemble, the pressure pC β,μC,Vð Þ is defined in terms of that free

energy by a change of variables from n to μC using the Legendre

transformation

pC¼�fCn+ μCn, (8)

where the chemical potential in the Canonical ensemble is

μCðβ,n,V Þ��
@fCðβ,n,V Þ

@n
: (9)

From the forgoing definitions it is seen that the thermodynamics defined

by the two ensembles are related exactly by the relation

eβpGðβ,μ,V ÞV ¼
X1

N¼0

eβμNe�βfCðβ,n,V ÞN : (10)

The volume is the same for each term in this summation, so the density n

changes accordingly. The inversion of this relationship is obtained in

Appendix A:

e�βfCðβ,n,V ÞN ¼
1

2π

Z 2π

0

dθeiθNeβpGðβ,μ¼�iθ=β,V ÞV (11)

Note that the Grand Canonical pressure must be analytically extended to

complex values of the chemical potential.

As noted above, the determination of Canonical ensemble properties from

given Grand Canonical ensemble results is relevant for practical applications of

density functional theory. The inversion of (10) has been discussed recently6

where it is proposed to construct fC(β,n,V ) from a set of linear equations

obtained from evaluation of pG(β,μ,V ) atM discrete values of μ. In principle,

this requires M�1 but approximate values for fC(β,n,V ) are obtained for

finite M. More systematic expansions are described in Refs. 7,8. This latter
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work has been generalized by Lutsko9. Equation (11) appears to be new.

A similar complex expression is given in Ref. 3, section 3.2, but under the

assumption that the discrete summation over N in (10) can be replaced by

an integration. In that case, it becomes a Laplace transform for which the

complex Bromwich integral provides its inversion. The explicit construction

of (11) for the actual discrete case is given in Appendix A.

3. THERMODYNAMIC EQUIVALENCE FOR LARGE
SYSTEMS

In this section, the limit of large systems is considered. For it, the

Canonical and Grand Canonical thermodynamics are expected to be equiv-

alent. For the Canonical ensemble, large systems means the limit N�1 at

constant finite density n ¼ N/V and temperature. For the Grand Canonical

ensemble, this limit is V �1 at constant chemical potential μ and temper-

ature. To show this equivalence, consider again (11) written as

βfCðβ,n,V ÞN ¼� ln
1

2π

Z 2π

0

dθeVAðz¼θÞ, (12)

where now A(z) is a real function of the complex variable z,

AðzÞ¼ izn+ βpGðβ, � iz=β,V Þ: (13)

It has a stationary saddle point at the value z � zs defined by dA/dz ¼ 0.

Using (7) this is

Re nGðβ, � izs=β,V Þ¼ n, Im nGðβ, � izs=β,V Þ¼ 0: (14)

Since nG(β,z,V ) is a real function of z the solution is zs ¼ iβμs with real μs
determined from

nGðβ,μs,V Þ¼ n: (15)

Now let C denote a closed contour in the z plane including the interval

0,2π½ � along the positive real axis and passing through iβμs on the complex

axis. Assume that A(z) is analytic on and within C, so that the integral of

expðVAðzÞÞ over the entire contour must vanish. Consequently, the inte-

gral of (12) can be replaced by an integration over that part of C comple-

mentary to the interval 0,2π½ �. Denoting that part by C0

βfCðβ,n,V ÞN ¼� ln
β

2π

Z

C0

dzeVAðzÞ, (16)
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where by definition C0 passes through the stationary point μs tangent to the

complex axis. Since A(z) is multiplied by V, the contribution near iβμs gives

the dominant contribution for large system size. The usual saddle-point

analysis then leads to the asymptotic result

βfCðβ,n,V ÞN��AðμsÞV � ln
β

2π

Z 1

�1

dxe�
1
2
V A00j j x�μsð Þ2

¼�μsβN + βpGðβ,μs,V ÞV +Oð lnNÞ

(17)

The first two terms are proportional to the free energy of the Grand

ensemble evaluated at the value of the chemical potential that ensures

NG(β, μs,V ) ¼ N. The free energies are therefore the same up to small

corrections of the order lnNð Þ=N

fCðβ,n,V Þ¼ fGðβ,nG,V Þ+Oð
1

N
lnNÞ (18)

This is the expected equivalence for large systems. Note, however, that the

analysis does not show that the free energy per particle is independent of V.

That question is explored in more detail in the next two sections.

4. NON-INTERACTING, HOMOGENEOUS SYSTEMS
AT FINITE SYSTEM SIZE

In this section, the thermodynamics for the Grand Canonical and

Canonical ensembles are calculated exactly at arbitrary system size for the

simplest case of non-interacting particles without external potential. The

Hamiltonian for N particles is

H0
N ¼

XN

i¼1

p̂2i
2m

: (19)

For the Canonical ensemble, the particle number and volume are fixed so

the boundary conditions chosen here are a cubic box of sides L with hard

walls. Then the momentum components have eigenvalues

pα¼
π�

L
kα, α¼ x,y,z (20)

where kα is a positive integer. The Grand Canonical ensemble represents

an open system without fixed particle number. However, its derivation

represents this as the sum of probabilities for closed systems at the same
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volume but different particle number. Hence the same boundary condi-

tions can be used for calculation of components of each N within the

ensemble.

4.1 Grand Canonical Ensemble

The pressure in the Grand Canonical Ensemble is given by (5). Since HN

is the sum of single-particle operators the summation and trace can be

performed directly in occupation number representation with the result

for spin 1/2 Fermions10

βpG¼
2

V

X

k

ln 1 + eβμe�
k
‘ð Þ

2� �
: (21)

The three-fold summation is over k ¼ kx, ky, kz. Use has been made of

β
p2

2m
¼

β

2m

π�

L

� �2

k2¼
k

‘

� �2

, ‘2¼
4

π

L

λ

� �2

, (22)

where λ¼ 2πβ�2=m
� �1=2

is the thermal de Broglie wavelength. Similarly,

the average number density nG is

nG¼
2

V

X

k

e�βμe k=‘ð Þ2 + 1
� ��1

: (23)

It is tempting at this point to represent the summations over k as

integrals, i.e.,

X

kx

F k=‘ð Þ¼ ‘
X

x

ΔxF xð Þ�
?

‘

Z

dxF xð Þ (24)

Indeed this replacement leads to the familiar textbook results in terms of

Fermi integrals. However, Δx ¼ Δkx/‘ ¼ 1/‘ is small only for L/λ � 1.

This is not the case for low temperatures or small system sizes. Hence for

the purposes here the discrete summation must be evaluated directly.

At this point, all properties will be given a corresponding dimensionless

form. The dimensionless temperature t is

t¼
1

βEF
, EF¼

1

2m
�
2 3π2nG
� �2=3

: (25)

where EF is the Fermi energy. It follows that
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nGλ
3¼

8

3
ffiffiffi
π

p t�3=2, (26)

so that (23) becomes

t�3=2¼
6

π‘3

X

k

e�βμe k=‘ð Þ2 + 1
� ��1

, (27)

and

‘¼
3

π
NGt

3=2

� �1=3

: (28)

An appropriate dimensionless pressure is

p�G t,NGð Þ¼
βpG

nG
¼

2

NG

X

k

ln 1 + eβμe�
k
‘ð Þ

2� �
: (29)

Here, it is understood that βμ¼ βμ t,NGð Þ as determined from (27). Finally,

the dimensionless free energy per particle is obtained from the Legendre

transformation as described in (6).

f �G t,NGð Þ��p�G t,NGð Þ+ βμ t,NGð Þ: (30)

The dimensionless system-size parameter is now NG. The analysis pro-

ceeds as follows: (1) choose a value forNG and calculate βμ t,NGð Þ as a func-
tion of t from (27). Repeat for different values ofNG. The results are shown

in Fig. 1A. Also shown is the limiting value for NG�1 obtained from the

continuum limit (i.e., 24); (2) calculate p�G t,NGð Þ from (29) as a function of t

for the same set of values for NG. The results are shown in Fig. 1B; and (3)

calculate the dimensionless free energy f �G t,NGð Þ as a function of t for the

same set of NG from (30). The results are shown in Fig. 2.

These figures show that the system-size dependence is small for NG �
16 at t ¼ 10, but is more significant as the temperature is lowered. This is

expected since that dependence is controlled by ‘¼ 3
π
NGt

3=2
� �1=3

and van-

ishes only for large ‘. Below t ¼ 1, larger values of NG are required to

approach system-size independence.

4.2 Canonical Ensemble

Equation (11) shows that the Canonical ensemble free energy per particle

can be obtained from the Grand Canonical pressure, extended to complex

values for the chemical potential. It is written as
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βfCðβ,n,V Þ¼�
1

N
ln

1

2π

Z 2π

0

dθe iθ+ g θ, t,Nð Þð ÞN , (31)

with

g θ, t,Nð Þ�
βpGðβ,μ¼�iθ=β,V Þ

n
¼

2

N

X

k

ln 1 + e�iθe�
k
‘ð Þ

2� �
: (32)
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Figure 1 (A) Plot of βμ t,NGð Þ as a function of the dimensionless temperature t for sev-

eral values of NG ¼ N. Also shown is the large system-size limit. (B) Plot of the dimen-

sionless pressure p�G t,NGð Þ as a function of the dimensionless temperature t for several

values of NG ¼ N.
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The definitions of t and ‘ are the same as in (25) and (28) except with nG
and NG replaced by n and N. The calculation of g θ, t,Nð Þ is similar to

that of p�G t,NGð Þ in (29), except that it has both real and imaginary parts.

Their numerical calculation is straightforward but the final θ integration

of (31) is now problematical. Due to the complex integral, it has an

oscillatory integrand whose variation increases as N, and whose modula-

tion varies between values of the order expð�NÞ. Figure 3 illustrates

the problem for N ¼ 64, t ¼ 0.63. This is a precursor for the cross-

over to the asymptotic analysis of Section 3. The first difficulty of a rapidly

oscillating integrand can be overcome by increasing the density of

mesh points. That works in principle for both very large N and t. The

second problem of huge cancellations when the integral is evaluated

numerically as a sum over mesh points does not have a simple solution

because of the finite precision of floating point numbers. As can be seen

from the Fig. 3, the highest magnitude of the integrand is � 109 while

the final value of the real part of the integral is � 10�10. Quadruple

precision is required for adequate accuracy within the restricted domain

0.1 < t < 10 and N � 64.

Figure 4A–D shows the dimensionless Canonical ensemble free energy

per particle in comparison with the corresponding Grand Canonical ensem-

ble results of the last section. Generally, forN> 16 there is good agreement

between the results of the two ensembles, although significant system-size

0.03 0.1 1 10

t

−5

0

5

10

15

20

25

30

f G�

N=2

N=4

N=16

N=32

N=64

infinite N limit

Figure 2 Plot of the dimensionless free energy per particle, f �G t,NGð Þ¼ βfG β,nG,Vð Þ, as a
function of the dimensionless temperature t for several values of NG ¼ N.
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dependence relative to the large system-size limit remains. At smaller values

of N, the discrepancies between the two ensembles decreases at lower t. On

the contrary, the difference for both ensemble from the large system limit

increases with smaller N and t.

For t ¼ 0, the free energy for both Canonical and Grand Canonical

ensembles are the same for given N as it is the sum of discrete energies

up to the Fermi energy for N particles. This, however, is still different from

the infinite system limit which is an integral over the density of states.

5. RELATIONSHIP TO DENSITY FUNCTIONAL THEORY

Density functional theory (DFT) describes the thermodynamics of an

equilibrium, inhomogeneous system whose Hamiltonian has the form (4).5

The external potential implies that the local density is non-uniform. DFT

has a variational principle that states that the thermodynamic properties

are obtained from a functional of this density at its extremum. The definition

of the functional can be given as follows. First, the Grand Canonical ensem-

ble pressure and density are computed as functionals of the external potential

as in (5)

βpGV ¼ ln
X1

N¼0

TrN e�β HN�μNð Þ, nGðrÞ��
@pGðβ,μ,V Þ

@v rð Þ
: (33)

0 p/2 p 3p/2 2p

q

−1×109

−1×109

1×109
1×109

0

Re(exp[(iθ+g(θ,t,N))N ])

Im(exp[(iθ+g(θ,t,N))N ])

0 p/4
q

0

Figure 3 Illustration of the strong variation with θ for the integrand of (31), for N ¼ 64,

t ¼ 0.63.
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Next, the external potential is eliminated by inverting the second equation

to give βpGV as a functional of the density and finally, the density functional

of DFT is then given by5

FDFT��pGV +

Z

dr μ� v rð Þð ÞnG rð Þ, (34)
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Figure 4—Cont'd
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Figure 4—Cont'd Panel (A) compares the dimensionless free energy per particle for

Canonical and Grand Canonical ensemble ðf �G t,NGð Þ, fC� t,Nð Þ as a function of the dimen-
sionless temperature t for N ¼ 2. Also shown is the large system-size limit. Panels

(B)�(D) show the same comparison for N ¼ 8, N ¼ 16, and N ¼ 64, respectively.
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It is understood that the density and external potential in the second

term are now independent functions. They become related by the

extremum condition that provides the equilibrium density in terms of

the external potential. Finally, with that relationship established, evalua-

tion of FDFT at its extremum gives the Legendre transform (6) (extended

to the inhomogeneous case) and hence the equilibrium Grand Canonical

free energy.

It is clear from this brief description of DFT that its theoretical

formulation is tied to the Grand Canonical ensemble. However, in

practice construction of approximate functionals often presumes the

large system-size limit (e.g., Thomas–Fermi and local density approxi-

mations). Calculations almost always fix the total number of particles,

N, as in the Canonical ensemble. Consequently, system-size corrections

and ensemble dependencies are overlooked or ignored. The analysis of

the previous sections is therefore quite relevant for current problems

of DFT.

To illustrate this, consider the non-interacting part of the DFT func-

tional constructed as above

βp
ð0Þ
G V ¼

Z

dr r ln 1 + eβμe�βð
p̂2

2m
+ vðq̂ÞÞ

� ��
�
�
�

�
�
�
�r

� �

(35)

n
ð0Þ
GCðrÞ¼ r e�βμeβð

p̂2

2m
+ vðq̂ÞÞ +1

� ��1
�
�
�
�
�

�
�
�
�
�
r

* +

(36)

βF
ð0Þ
DFT ¼�

Z

dr r ln 1 + eβμe�βð
p̂2

2m
+ vð0Þðq̂nGCÞÞ

� ��
�
�
�

�
�
�
�r

� �

+

Z

drβ μ� v rð Þð Þn
ð0Þ
GCðrÞ:

(37)

On the right side of (36) vð0Þðq̂ j n
ð0Þ
GCÞ denotes the inversion of (35) to

obtain v rð Þ as a functional of nGC
(0) (r). Further construction of βFDFT

(0) is

nontrivial for general external potential and entails diagonalization of

the single particle Hamiltonian p̂2=2m+ vðq̂Þ and self-consistent inversion

of the expression for nGC
(0) (r) (the Kohn–Sham approach).11,12 A simpler

method is the local density approximation that replaces the operator

dependence of the external potential by its value at the point of interest,

ðvðq̂ÞÞ� vðrÞÞ. Then for instance the density equation can be evaluated

in momentum representation using the same boundary conditions as

above
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n
ð0Þ
GCðrÞ�

2

V

X

k

e�β μ�vðrÞð Þe k=‘ð Þ2 + 1
� ��1

jψkðrÞj
2

(38)

In the large system-size limit, the summation can be represented as an inte-

gration and becomes the familiar finite temperature Thomas–Fermi

approximation

n
ð0Þ
TFðrÞ� h�3

Z

dp e�β μ�vðrÞð Þeβ
p2

2m +1

� ��1

: (39)

Equations (38) and (39) are the same results as for the homogenous system

analysis of the last section, with only the replacement μ� μ� vðrÞ. Hence

the system-size corrections found there for small N,t apply here as well, and

those corrections for the free energy per particle identified in Figs. 2 and

4A–D are required for the DFT functional as well. Notwithstanding

those corrections, it is expected that differences between the results for

the two ensembles are small for N ¼ NG > 16. Further discussion of

system-size and ensemble dependence of the DFT functional will be given

elsewhere.
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A. APPENDIX

A.1 Determination of fC(β, n, V) from pG(β, μ, V)

The definition of fC(β,n,V ) in (3) can be written in the equivalent form

βfC¼�
1

N
lnTrN e�βHN ¼�

1

N
ln
X1

M¼0

TrMδN,Me
�βHM , (A.1)

with a representation for the Kronecker delta δN,M to get

βfCðβ,n,V Þ¼�
1

N
ln

1

2π

Z 2π

0

dθeiθN
X1

M¼0

TrMe
�iθMe�βHM

¼�
1

N
ln

1

2π

Z 2π

0

dθeiθNeβpGðβ,μ¼�iθ=β,V ÞV :

(A.2)
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The last line follows from the definition of pG in (5). This gives the relation-

ship (11) quoted in the text

e�βfCðβ,n,V ÞN ¼
1

2π

Z 2π

0

dθeiθNeβpGðβ,μ¼�iθ=β,V ÞV : (A.3)

The consistency of this result with its inverse (10) can be demonstrated

by substituting the latter into the right side of (11)

e�βfCðβ,n,V ÞN ¼
1

2π

Z 2π

0

dθeiθN
X1

M¼0

e�iθMe�βfCðβ,n¼M=V ,V ÞM

¼
X1

M¼0

1

2π

Z 2π

0

dθeiθ N�Mð Þe�βfCðβ,n¼M=V ,V ÞM

¼ e�βfCðβ,n,V ÞN :

(A.4)
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