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Abstract

F.E. Harris has been a significant partner in our work on orbital-free density functional

approximations for use in ab initio molecular dynamics. Here we mention briefly the

essential progress in single-point functionals since our original paper (2006). Then

we focus on the advantages and limitations of generalized gradient approximation

(GGA) noninteracting kinetic energy (KE) functionals. We reconsider the constraints pro-

vided by near-origin conditions in atomic-like systems and their relationship to regular-

ized versus physical external potentials. Then we seek the best empirical GGA for the

noninteracting KE for a modest-sized set of molecules with well-defined near-origin

behavior of their densities. The search is motivated by a desire for insight into GGA limi-

tations and for a target for constraint-based development.
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1. INTRODUCTION

1.1 Background

At the Harris Workshop (10–12 December 2014), the second author spoke

about recent progress by the University of Florida orbital-free density func-

tional theory (OFDFT) group of which Frank Harris is a member. Substan-

tially all that work is reported in Refs. 1–3 and references therein. Earlier

work and voluminous references for context are in two review articles from

our group.4,5

Rather than recapitulate the talk and publications, here we provide

a particular perspective on what has been learnt. The phrase “near origin”

rather than “cusp condition” is a clue to the role the external potential

plays in enforcing behavior upon generalized gradient approximations

(GGAs) for the noninteracting kinetic energy (KE). We present some

new results on near-origin conditions applied to GGAs. These extend

work we did with Frank Harris.6–8 Then we explore implications of

a generic regularization of the usual external potential (from a nuclear

array) by empirical determination of the most nearly optimal GGA for

a set of molecular data. That continues the study of binding in simple

molecules by non-self-consistent OFDFT with key ingredients of the

methodology introduced in our previous publications.6–8 Those ingredi-

ents, besides the near-origin analysis of the Pauli potential, include

(i) the use of a set of nuclear spatial configurations for the same molecule;

(ii) the use of Gaussian Kohn–Sham (KS) molecular densities as input;

(iii) so-called ΔE criterion which enforces binding; and (iv) the E criterion

which enforces correct absolute energies. See also the recent work

of Borgoo et al.9 in which the relationship between binding and the

effective homogeneity of approximate noninteracting KE functional is

considered.

Though our research agenda emphasizes functionals for free energy

DFT10 primarily for use in the warm dense matter regime, here we restrict

attention to ground-state OFDFT. There are three reasons. First, ground-

state OFDFT is a hard challenge (as history going all the way back to

Thomas11 and Fermi12 demonstrates). That challenge is worsened by going

to finite-T (one must devise an entropy functional and incorporate the

intrinsic T-dependence of other functionals). Third, the ground-state

approximations must be reliable and well-founded if there is to be a sensible

T ¼ 0 K limit for approximate free energy functionals.
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1.2 Basics and Notation

For context and to set notation, the Levy–Lieb version of the Hohenberg–

Kohn universal functional13–15 is

E½n� ¼T ½n�+Uee½n� (1)

with T[n], Uee[n], and n(r) the total KE, total Coulomb energy (Hartree,

exchange, and correlation), and the electron density at point r, respectively

(
R
drnðrÞ¼Ne, with Ne the number of electrons). Assuming that the sum is

bounded below, addition of an external potential energy Eext[n] gives the

usual DFT variational principle,

min
n
fE½n�+Eext½n�g¼E0½n0�: (2)

Zero subscripts indicate ground-state values.

The KS16 rearrangement of E invokes an auxiliary noninteracting Fer-

mion system with the same density as the physical system. This raises

so-called v-representability requirements which we assume to be satisfied.

The KS system has KE and exchange (X) energies Ts, Ex, which enable

the regrouping of (1) into

E½n� ¼ Ts½n�+EH½n�+Ex½n�+Ec½n� (3)

Ec½n� :¼Uee½n��EH½n��Ex½n�+T ½n��Ts½n� (4)

EH½n� :¼
1

2

Z

dr1dr2
nðr1Þnðr2Þ

jr1� r2j
(5)

Ex½n� :¼hΦs½n�jV̂ eejΦs½n�i�EH½n�: (6)

Ec is theDFTcorrelation energy. It often is useful towriteExc¼Ex +Ec. V̂ ee

is the electron–electron Coulomb interaction. The KS Slater determinant

Φs[n] is comprised of orbitals from the KS system Euler equations,

hKS½n�φi¼ εiφi, nðrÞ¼
X

i

fijφiðrÞj
2: (7)

Here the fi ¼ 0,1,2 are occupation numbers in the non-spin-polarized

case.17,18 The KS potential is

vKS¼ vH + vxc + vext

vH¼

Z

dr2
nðr2Þ

jr� r2j
, vxc¼

δExc

δn
,

(8)
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For now, we leave vext unspecified. Finally, the KS KE is

Ts½fφig�¼
1

2

X
fi

Z

drjrϕiðrÞj
2
:¼

Z

drtorb½nðrÞ� (9)

in Hartree atomic units. This positive-definite integrand form of Ts is pref-

erable for OFDFT because the integrand of the ordinary Laplacian form of

Ts can have both signs. The two forms differ by a surface integral which is

zero for physically significant systems.

1.3 Essential Challenge of OFDFT

Posed succinctly, the OFDFT opportunity is that the computational costs of

direct minimization of Eq. (3) scale with system size. In contrast, solution of

the KS equations, (7), has computational cost scaling as Ne
3 or worse.

The OFDFT challenge can be stated succinctly too. Ex[n] is defined in

terms of the KS orbitals and hence is known exactly only as an implicit func-

tional of n. Ts[n] is an implicit functional as well. Ec[n] is defined in terms of

those two. One might try reversion to E[n] for construction of approxima-

tions, but most rigorous knowledge about E (scaling, bounds, limits, etc.) is

in terms of the KS rearrangement. Roughly a half century of effort has been

devoted to finding good approximations to Ex and Exc. Abandoning the KS

decomposition would discard that resource and, worse, disconnect the result

from a huge literature of calculations with such functionals. And Ts has sev-

eral rigorously demonstrable properties which serve as stringent constraints

on approximations.4,6–8

In short, retention and use of the KS decomposition is practically inescap-

able. OFDFT thus aims at reliable approximations for KS DFT quantities

without explicit dependence on the KS orbitals. The allowed variables there-

fore are n and its spatial derivatives. For Exc, the consequence is a restriction to

the meta-generalized-gradient approximation (mGGA) rung of the widely

quoted Perdew–Schmidt Jacobs’ ladder of complexity.19 mGGAs depend

upon n, jrnj, r2n, and the KS KE density torb. Immediately, the OFDFT

challenge is in play: an explicit functional for torb is required.

In practice, the highest spatial derivative dependence that so far has been

useful for torb is a GGA, to wit

TGGA
s ½n� ¼ cTF

Z

dr n5=3ðrÞFtðsðrÞÞ

cTF¼
3

10
ð3πÞ2=3:

(10)
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Ft is called the enhancement factor. For Ft¼ 1, Ts
GGA¼ TTF, the Thomas–

Fermi functional. The dimensionless reduced density gradient is

s :¼
1

2ð3π2Þ1=3
jrnj

n4=3
� κ

jrnj

n4=3
: (11)

Remark: The s variable occurs in GGA X functionals also. They have the

same form as Eq. (10) but with n4/3 rather than n5/3, Fx rather than Ft, and a

different prefactor, cx ¼ �(3/4)(3/π)1/3.

Equation (10) is a one-point GGA functional. In the OFKE literature,

there is extensive work on two-point functionals, generically
R
drdr0nαðrÞKðr,r0Þnβðr0Þ. See Section 2.3 of Ref. 4 for brief discussion

and references. One readily can imagine constructing a GGA for two-point

functionals, but we are unaware of effort along that line. Instead, the empha-

sis has been on constructing Kðr,r0Þ via constraints, mostly to match

response properties of the weakly perturbed homogeneous electron gas.

Motivated to optimize computational performance, our group has

focused on finding and exhausting the limits of single-point GGAs for Ts.

The remaining discussion assesses what we have found, with a focus on

the surprising nonuniversality of approximate OFKE functionals, implica-

tions for their common use with external potentials of regularized Coulomb

form, and an empirical attempt to ascertain the limits of GGA performance

for a particular kind of regularized potential.

2. QUALITATIVE DISTINCTIONS AMONG GGAs FOR �orb

Our work began6 by testing multiple published Ts
GGA functionals.

A rough classification introduced then was standard GGA and modified-

conjoint GGA (mcGGA). The latter term stems from conjoint

functionals,20 i.e., those for which Ft∝Fx. Standard GGAs include the

second-order gradient approximation (SGA)

T SGA¼ TTF +
1

9
TW (12)

TW½n� :¼
1

8

Z

dr
jrnðrÞj2

nðrÞ
(13)

and the von Weizsäcker KE TW itself, along with most of the GGAs

of the modern era, e.g., that by Perdew,21 the PW91 KE functional
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based on the Perdew–Wang X functional,22 and those from DePristo and

Kress,23 Thakkar,24 and Tran andWesolowski,25 and the APBEK functional

based on the PBE X functional.26 Modified conjoint GGAs arise from

altering or refining the conjointness conjecture (which is not strictly correct;

see Ref. 8). These include TTF + TW and our PBE2, KST2,6,8 and VT84F3

functionals.

The two functional types have qualitatively different performance. Ordi-

nary GGAs predict the KE order of magnitude correctly but fail to give bind-

ing for simple molecules and solids. There are some exceptions for solids in

which a pseudo-density is used. mcGGAs do bind simple molecules as well

as many solids at least semi-quantitatively, but they overestimate the KE

strongly. As a consequence, the total energy also is strongly overestimated

(too high). We also have found that these functionals exhibit peculiar sensi-

tivity to the type of pseudo-potential used, behavior found by others as well.27

The main difference between ordinary GGAs and the mcGGAs is the

enforcement of positivity constraints on the mcGGAs. Enforcement is via

imposition of requirements upon the density in the case that the external

potential is Coulombic,

vextðrÞ¼�
X

α

Zα

jr�Rαj
(14)

with Zα the atomic number of the nucleus at site Rα. Such approximate

Ts
GGA functionals therefore are not guaranteed to be universal, even though

Ts is. Two questions then arise. Are both the overly large KE and sensitivity

to pseudo-potentials of mcGGAs connected with this nonuniversality? Is

there an example of a Ts
GGA that has both the good KE magnitudes of an

ordinary GGA and the good binding properties of an mcGGA? We address

these two issues in the remainder of this chapter.

3. POSITIVITY AND NEAR-ORIGIN CONDITIONS

The Pauli term decomposition

Ts½n� ¼TW½n�+Tθ½n�, (15)

provides a rigorous bound,28–32

Tθ½n� � 0, (16)

because TW is a lower bound to the KS KE.33–36TW also is the exact Ts for

one electron, a fact that will become useful shortly. (It also is exact for a two-

electron singlet.) The Pauli term potential also is rigorously non-negative:
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vθðrÞ :¼
δTθ½n�

δnðrÞ
� 0, 8r: (17)

These are universal properties of Ts. For a GGA, the Pauli term separa-

tion corresponds to a Tθ
GGA with energy density tθ and enhancement factor

FθðsÞ¼FtðsÞ�
5

3
s2: (18)

Though Tθ � 0, it is not necessarily the case that the associated Pauli

term energy density tθ obeys the same positivity tθ � 0 because energy

densities are defined only up to additive functions which integrate to zero.

Refs. 31,36,37 chose the canonical form for tθ (i.e., that which comes

from the KS equation), which is positive semi-definite. We adopted that

argument in Ref. 38. The consequence, to which we return in

Section 4, is

FθðsðrÞÞ� 0, 8r: (19)

To have enough additional constraints to determine a useful approximate

Fθ, we used3,6,8,38 requisites of physical many-electron systems, i.e., those

with an external potential given by Eq. (14). Nonuniversality enters.

The nuclear-cusp condition39 density

nðrÞ� e�2Zr ¼ð1�2ZrÞ+Oðr2Þ: (20)

gives vGGA
θ ðrÞ� a=r, where a is a constant which depends on the specific

enhancement factor.8 So far as we know, the first mention of this consequence

was by Levy and Ou-Yang (see the latter part of Section III of Ref. 31).

The one-electron character of the tail region of a many-electron atom37

forces the approximate functional to go over to TW in that region.18 For a

GGA therefore we may require,

lim
s�1

FθðsÞ¼ 0: (21)

Kato cusp behavior Eq. (20) is not exhibited by any density that results

from a regularized potential, e.g., a pseudo-potential. See, for example,

Eq. (6) in Ref. 40 and associated discussion. Removing that cusp to allow

use of compact basis sets (especially a plane-wave basis) is the motive for

pseudo-potentials. Densities from expansion in a finite Gaussian-type basis

set, even in all-electron calculations that use Eq. (14), also do not have Kato

cusp behavior. Similarly, the proper tail behavior, also exponential, is not
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found in any finite Gaussian expansion density. Here we focus on the former

issue, the near-origin behavior of atomic-like systems.

Consider one-center Ne electron densities of the flexible form

nf ðrÞ :¼Af expð�λr
γÞ, 1� γ� 2 (22)

Af ¼
Neγλ

3=γ

4π�ð3=γÞ
, (23)

The norm follows from Ref. 41, with the usual � function. With γ ¼ 1,

λ ¼ 2Ne, Ne ¼ 1, this is the H atom density in the central field approxima-

tion. For γ ¼ 2, it is pure Gaussian. For use in what follows, the von

Weizsäcker potential for densities of this form is

vW¼
δTW

δn
¼
λγ

8
rγ�2½2ðγ +1Þ�λγrγ� : (24)

With densities of the form (22), we can explore two simple but illumi-

nating issues. The first is to determine the external potential that corresponds

to the given density for the caseNe¼ 1. Recall the bijectivity of the external

potential and the density guaranteed by the first Hohenberg–Kohn theo-

rem.13 The central-field hydrogenic case is obvious but it is instructive to

do it in the context of OFKE functionals. The Euler equation is

δðE +EextÞ

δn
¼ vW + vθ + vH + vxc + vext¼ μ, (25)

with μ the Lagrangian multiplier for charge normalization. TW is exact for

the one-electron case, so vθ ¼ 0. Exact exchange cancels the Hartree self-

interaction, so vH ¼ �vx, and there is no correlation, vc ¼ 0. The von

Weizsäcker potential (24) for the hydrogenic densities (γ ¼ 1, λ ¼ 2Ne) is

vW¼
Ne

r
�
N2

e

2
: (26)

For H, μ¼� 1
2
, Ne ¼ 1, (25) gives the expected result:

0¼
1

r
�
1

2
+ vextðrÞ�ð�

1

2
Þ) vextðrÞ¼�

1

r
: (27)

Redoing the argument with γ ¼ 2, Ne ¼ 1 gives

vW¼
λ

2
ð3� λr2Þ) vext¼

1

2
λ2r2 + ðμ�

3λ

2
Þ, (28)

the expected quadratic dependence for vext.
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This elementary exercise illustrates a significant point for approximate

functionals. Repeat the argument for γ ¼ 2 but now with the physically

important external Coulomb potential imposed and with an approximate

Tθ functional (not necessarily a GGA; for the moment, the discussion is gen-

eral). Then the Euler equation becomes

μ¼�
1

r
�

1

2
λ2r2 +

3λ

2
+ v

approx
θ ðrÞ: (29)

The only way this can be satisfied is for there to be an incorrect, i.e., nonzero,

v
approx
θ for the one-electron case.

In the case of pseudo-potentials, the argument runs in reverse. Suppose a

pseudo-potential prescription to be used at the so-called one-electron level,

i.e., one electron outside the core, and suppose it to deliver the form (28).

Assume that one can contrive a satisfying approximate functional with the

property that for Ne¼ 1, the approximate functional respects rigorous con-

straints for the corresponding pseudo-density. Now shift to an all-electron

pseudo-potential and shrink the core toward the bare Coulomb potential. In

an arbitrarily small region around the origin, the pseudo-density will remain

harmonic but the pseudo-potential in almost all space will be essentially

Coulombic, leading to the kind of mismatch given in Eq. (29). Even at this

level (two pseudo-potentials with the same regularization procedure but sig-

nificantly different core radii and populations), there is a lack of universality

for the approximate Tθ.

For arbitrary γ dependence, 1 � γ � 2, the imputed external potential is

vext¼ μ� vW¼ μ+
λγ

8
rγ�2½λγrγ�2ðγ +1Þ�, (30)

(with suitably adjusted μ of course). Similar mismatch difficulties will occur

for all intermediate γ values, as will the singularities for γ 6¼2.

Now consider GGA functionals with arbitrary Ne. The GGA Pauli

potential is8

vGGA
θ ðs2Þ¼ c0n

2=3 5

3
Fθðs

2Þ�
2

3
s2 + 2p

� �
@Fθ
@ðs2Þ

+4
4

3
s4� q

� �
@2Fθ

@ðs2Þ2

( )

,

(31)

with higher-order reduced density derivatives
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p :¼ κ2
r2n

n5=3
, q :¼ κ4

rn � ðrrnÞ �rn

n13=3
: (32)

Evaluation with the flexible density (22) yields

s2ðrÞ¼ κ2λ2γ2r2ðγ�1Þn
�2=3
f ðrÞ, (33)

pðrÞ¼ κ2λγrγ�2½λγrγ�ðγ +1Þ�n
�2=3
f ðrÞ, (34)

and

qðrÞ¼ κ4λ3γ3r3γ�4½λγrγ�ðγ�1Þ�n
�4=3
f ðrÞ: (35)

Except for a negative sign, the coefficient of @Fθ/@s
2 in Eq. (31) is

2

3
s2 + 2p¼ 2κ2λγrγ�2 4

3
λγrγ�ðγ +1Þ

� �

n
�2=3
f ðrÞ: (36)

Notice the singularity at the origin for γ < 2. Up to a factor of 4, the coef-

ficient of @2Fθ/@(s
2)2 in Eq. (31) is

4

3
s4� q

� �

¼ κ4λ3γ3r3γ�4 λγ

3
rγ + ðγ�1Þ

� �

n
�4=3
f : (37)

This is nonsingular only for γ � 4/3.

For small s, one usually enforces gradient expansion behavior on Fθ,

Fθ¼ 1+ as2 (38)

and only the first derivative term in vθ, Eq. (31), is at issue. After a bit of

manipulation,

pðrÞ¼ s2 1�
γ +1

λγrγ

� �

)
2

3
s2 + 2p¼ 2s2

4

3
�
γ +1

λγrγ

� �

: (39)

The singularity structure in vθ then is evident. The general result is

vGGA
θ ½nf � ¼ c0n

2=3
f

5

3
+ aκ2γ2λ2r2ðγ�1Þn

�2=3
f

2ðγ +1Þ

λγrγ
�1

� �� �

: (40)

For convenience, the two limiting cases are

vGGA
θ ½nf ,γ¼ 1� ¼ c0n

2=3
f

5

3
+ aκ2λ2n

�2=3
f

4

λr
�1

� �� �

(41)
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and

vGGA
θ ½nf ,γ¼ 2� ¼ c0n

2=3
f

5

3
+ 4aκ2λn

�2=3
f 3� λr2

� �
� �

: (42)

The takeaway point is that if one sets out to build an approximation

constrained to behave properly for γ ¼ 1 (the physical case), the singu-

larity is inevitable and the near-origin positivity is determined by the

sign of the gradient expansion coefficient a. Our mcGGAs are built to

have a > 0. However, if the actual density is regularized and has Gaussian

form near the origin, then if that density is “cuspy” enough, i.e., has

large λ, even with a > 0 and positivity constraints enforced on build-

ing the approximation, there still can be small-r regions for which

v
approx
θ < 0.

4. EMPIRICAL EXPLORATION OF THE LIMITS OF GGA KE

4.1 Methodology

Our approach to the development of GGA OFKE functionals has been to

adopt some suitable analytical form for the KE enhancement factor Ft with a

few parameters determined from imposing constraints (e.g., correct scaling if

applicable, correct small-s and large-s behavior) and, if unavoidable, fitting

to a small set of training data. Interpolation between small- and large-s is

defined by the chosen analytical form for Ft. The analytical forms usually

are relatively simple with deliberately limited flexibility to avoid introduc-

tion of nonphysical kinks or other artifacts in that interpolation. In this sense,

the properties are analogous to those of standard finite basis sets (see, for

example, Refs. 3,6,7,21,23–25).

The unwelcome effects of limited flexibility can be avoided, at least

in principle, by use of a numerical enhancement factor given on a mesh

s0 ¼ 0,s1,�,sn ¼ smax. There is a practical barrier however. To determine

such a numerical Ft requires numerical integration in real space of the com-

plicated (n,jrnj) dependence of the KE functional integrand torb, Eq. (9),

evaluated on a numerical s-mesh. Experience demonstrates that the result

is unphysical, noisy, numerically unstable. One can see the difficulty simply

by considering the numerical integration of an s “density of states” on a mesh

of points si:

DðsiÞ :¼

Z

drδðsi� sðrÞÞ�
X

j

wjδsi, sðrjÞ, (43)
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with wj the quadrature weights. Numerical experiment shows that a modest

change in even a very fine r or s mesh (or both) leads to distinctly different

results.

An effective alternative is Padé approximants42 of high orders such as

were used recently for analytical representation of common Fermi–Dirac

integral combinations.43 They provide the simultaneous flexibility and

smoothness required by the numerical integration in r. Numerical explora-

tion led to the Padé approximant

FtðsÞ¼
1+

Pk
i¼1ais

i

1+
Pl

i¼1bis
i
, (44)

of order [9,10] in the variable s (k ¼ 9, l ¼ 10) as a workable compromise

between flexibility and number of free parameters.

Only a few parameters in the approximant can be determined from

imposition of constraints. The remainder must be obtained by fitting. For

this study, the only constraint imposed on Eq. (44) is recovery of the correct

second-order gradient expansion at small s,

FtðsÞ� 1+
5

27
s2, s<< 1: (45)

This is accomplished by setting a1 ¼ b1, a2 ¼ (5/27) + b2. To allow maximal

freedom for the fitted Ft, we have not imposed the large-s von Weizsäcker

limit given in Eq. (21). Studies of X GGA functionals44 show that the distri-

bution of s, Eq. (43), is negligible above about s¼ 3 for most systems of inter-

est, thus suggesting that such large-s behavior constraints are not critically

important, at least for fitting. Also note well that in what follows, we have

not imposed any of the positivity constraints, Eqs. (16), (17), and (19). The

motivation is to make the empirical fitting as unconstrained as possible.

The absolute KE versus binding energy dilemma posed at the end of

Section 2 has implications for the fitting criteria to be used. The usual KE

fitting criterion is equivalent to the total energy or E criterion,6 namely to min-

imize the squared energy difference between nonself-consistent OFDFT and

reference KS energies at system equilibrium geometries (from standard KS cal-

culations). The procedure is nonself-consistent for the OFDFT calculations

because KS densities are used as input. The obvious flaw in the E criterion

(which was investigated in Ref. 8) is that it forces OFDFT total energies at

KS equilibrium configurations to be as nearly correct as possible but ignores

the shape of the KS binding energy curve near equilibrium.
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In Refs. 6–8, Frank Harris and two of us introduced what was called the

ΔE criterion. In it, the objective function to be optimized is formed from

energy differences between a point away from equilibrium and the equilib-

rium point as predicted by the reference conventional KS calculation. The

objective function has two of those energy differences, one from OFDFT

and the other from the KS calculations. Obviously, the ΔE criterion

enforces binding upon the OFDFT approximation while leaving the total

energy uncontrolled. The result can be an excessively high total energy.

In this work, we address these two limitations by making a convex sum

of average versions of the two criteria. The averages are calculated over all

atoms and molecules (and their geometries) in a training set. To put the two

criteria on the same scale, we use the mean absolute relative error (MARE)

of energy differences rather than average absolute energy differences,

ωΔE¼
1

N

X

M, i 6¼e

ΔEKS
M, i�ΔE

OF�DFT
M, i

�
�
�

�
�
�

ΔEKS
M, i

�
�

�
� : (46)

Here, for the nuclear spatial configuration i of molecule M, ΔEM,i ¼
EM,i � EM,e, with EM,e the energy associated with the equilibrium nuclear

configuration as predicted from conventional KS computations, and N the

total number of terms in the sum (Eq. 46). Similarly, the mean absolute rela-

tive error of the total energy is

ωE¼
1

N

X

M, i

EKS
M, i�E

OF�DFT
M, i

�
�
�

�
�
�

EKS
M, i

�
�

�
� : (47)

The objective function is a convex combination of both

ωðαÞ¼ αωE + ð1�αÞωΔE, (48)

with α 2 [0,1]. Minimization of ω(0) is essentially theΔE criterion and con-

versely forω(1). One expects, or at least hopes, that some intermediate αwill

provide a KE functional with both reasonable binding and reasonable abso-

lute energy errors.

The training set we used includes nine molecules comprised of first- and

second-row atoms and of diverse bonding types along with three closed

shell atoms, M ¼ {LiH, CO, N2, LiF, BF, NaF, SiO, H4SiO, H4SiO4,

Be, Ne, Ar}. A set of six bond lengths was used for each molecule. Mole-

cular geometries were changed by varying the single bond length in the
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diatomics, the central bond length R(Si–O) in H4SiO, and by varying

R(Si–Oi) in H4SiO4 deformed in the Td mode. This set is small by compar-

ison with the training sets used in the Minnesota series of XC functionals45

because our purpose is different. We do not seek a broadly useful empirical

functional. The issue here is narrower, namely whether there exists an

OFDFT GGA functional which does well both on absolute energies and

binding even on a small sample of systems.

One other technical point is that the enhancement factor Ft which results

from fitting is checked for poles on the interval s 2 [0,1000]. If the denom-

inator of Eq. (44) has a root on that interval, the corresponding set of param-

eters is rejected.

All reference KS calculations were done in the local density approxima-

tion (LDA) for XC (see Refs. 16,46–52) using a triple-zeta Gaussian-type

basis with polarization functions (TZVP).53–55 Orbital-free KE integrals

were calculated by numerical quadrature, as in our previous work.6 Weight

functions, wI(r), localized near each center with the properties that wI(r) �
0 and

P
IwIðrÞ¼ 1 are used to represent the multicenter integrals exactly as

a sum of atom-centered contributions56

TGGA
s ½n� ¼

XNatoms

I¼1

cTF

Z

drwIðrÞn
5=3ðrÞFtðsðrÞÞ: (49)

Radial integration of the resulting single-center forms was via a Gauss–

Legendre procedure, while integration over the angular variables used

high-order quadrature formulae.57 A dense mesh consisting of 150 radial

and 434 angular grid points was used to calculate atom-centered integrals.

These computations used routines developed by Salvador and Mayer58

and included in their code Fuzzy.

Before proceeding to results, one should note the implications of these

numerical procedures. The finite Gaussian-type basis inexorably yields

Gaussian near-origin behavior of the density. Yet the calculations are all-

electron in the bare Coulomb external potential (14). This is precisely the

inconsistency between external potential and near-origin density behavior

discussed in Section 3.

4.2 Results

There are 17 independent parameters left in Eq. (44) after constraining to the

second-order gradient expansion. Those were optimized to minimize the

objective function ω(α). Figure 1 shows the ωE and ωΔE MAREs,
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Eqs. (47) and (46), respectively, as functions of α. The minimum ω(α) value

also is shown. It decreases monotonically from 41% to 0.12%. Up to about

α ¼ 0.97, ωE decreases slowly with a few jumps (from about 5% to 0.8%),

while ωΔE is almost flat (from 41% to 44%). Unsurprisingly, they diverge as

α� 1 (ωΔE ¼ 140�, ω ¼ 0.12�), an illustration of the absolute energy

versus binding energy dilemma.

Figure 2 shows the fitted Ft and Fθ for selected α values. Notice the vio-

lation of Fθ � 0, a consequence of the unconstrained fitting. Notice also the

structure in Ft for α<1.0.

Figure 2A clearly shows the separation of enhancement factors into two

groups corresponding to α� 0.99 and α¼ 1.0. The α¼ 1.0 curve is almost a

line (Fθ is shown as a function of s2) and is practically indistinguishable from

the SGA curve (shown for comparison) for s < 1.5. Fθ (and Ft) has some

structure (oscillations around the SGA curve) for s � 1.5 and α � 0.99,

though that may change upon changing the training set and/or the analytical

form for the enhancement factor. Also, during the optimization process we

noted the existence of many significantly different enhancement factors

which cannot be discriminated clearly by the objective function ω(α).

Any choice of 0.1� α� 0.98 corresponds to the required KE functional,

namely one which provides semi-quantitative binding,ωΔE� 44%, and rea-

sonable absolute energy error (ωE� 1%). Table 1 lists theωE andωΔE values

for the systems from the training set corresponding to the optimized ω(α ¼
0.95). The highestωΔE¼ 85% corresponds to LiH. Values for the optimized

ω(α ¼ 1.0) are also shown for comparison. All ωΔE values for α ¼ 1.0
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Figure 1 Minimum ω(α) and corresponding ωΔE and ωE values as functions of α.
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(except the LiH molecule) are between 110% and 200%, signifying no

binding.

The quality of energy curves for the CO and H4SiO molecules

corresponding to the α¼ 0.95 functional is shown in Fig. 3. The α¼ 1 curves

(functional parameters fitted to optimize ω(α¼ 1), i.e., pure E criterion) are

shown for comparison. They have no minima. For the CO molecule, the

minimum in the α ¼ 0.95 curve is too shallow compared to the reference

KS result. In contrast, for H4SiO the agreement between the α¼ 0.95 opti-

mized functional andKS results is excellent. Figure 4 shows a similar compar-

ison for two molecules not in the training set. For the simplest, H2, both
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Figure 2 Noninteracting kinetic energy (A) and Pauli term (B) enhancement factors,

Ft and Fθ, as functions of s and s
2, respectively.
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functionals (α¼ 0.95 and α¼ 1.0) provide qualitatively correct binding, but

the minimum is too shallow and there are large discrepancies at the dissoci-

ation limit relative to the KS result. Single-bond stretching in H2O is

described qualitatively roughly correctly only by the α ¼ 0.95 functional.

As expected, the α ¼ 1.0 functional fails to give binding.

Table 2 lists the set of coefficients in the KE enhancement factor

(Eq. 44) for the optimized ω(α ¼ 0.95).

5. SUMMARY DISCUSSION

A GGA OFKE form is the simplest one-point functional which

explicitly includes effects of electron density inhomogeneity. The GGA

form, with parameters determined by constraints, has been very successful

for approximate XC functionals, to the point that such functionals dominate

in practical calculations. A crucial distinction with respect to OFKE is the

order of magnitude of the XC energy, about 10% of the total energy.

Table 1 MARE Values ωE and ωΔE (in �) Calculated Individually for Each System, with

Parameters from Minimization of ω(α ¼ 0.95) and ω(α ¼ 1.0)

� 5 0.95 � 5 1.0

System ωE ω�E ωE ω�E

LiH 4.2 85 0.2 85

CO 0.2 28 0.3 150

N2 0.2 35 0.3 150

LiF 0.1 80 0.1 200

BF 0.1 15 0.1 160

NaF 0.1 25 0.03 180

SiO 0.02 32 0.04 120

H4SiO4 0.3 41 0.04 120

H4SiO 0.02 50 0.6 110

Be 4.0 – 0.2 –

Ne 0.1 – 0.02 –

Ar 0.7 – 0.1 –

Average 0.83 44 0.12 140
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The ground-state KE, however, has the same order of magnitude as the total

energy and the KS KE is a large fraction of the total KE. Hence, a relative

error of even a few percent in an approximate OFKE functional will have

much bigger impact on calculated properties than would the same relative

error in an approximate XC functional.

This distinction has significant implications for the constraint-based

development of GGA OFKE functionals. There is a related, but perhaps

less-obvious distinction. Because exchange in physical systems is purely

Coulombic and correlation (as defined in DFT; recall Eq. 4) is mostly
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Figure 3 Total energy as a function of bond distance for the CO (A) and H4SiO4

(B) molecules from the training set obtained from a KS LDA calculation and from the

post-KS orbital-free calculation with approximate GGA functionals.
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Coulombic (the KE contribution is small), it is eminently sensible to impose

Coulombic constraints on an approximate Exc. The resulting functional

should be applicable to a broad range of vext, if not truly universal. Experi-

ence shows that to be the case. Good GGA Exc functionals deliver variations

in MARE over classes of properties and types of bonding but they are

broadly applicable.

Generating useful constraints on a GGA OFKE functional that preserve

universality has not been as straightforward so far as for the XC functionals.

One way to see the underlying difficulty is that Ts is a noninteracting system
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Figure 4 Total energy as a function of bond distance for the H2 (A) and H2O

(B) molecules (neither in training set) obtained from a KS LDA calculation and from

the post-KS orbital-free calculation with approximate GGA functionals.
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quantity, whereas Exc is, as just remarked, predominantly a Coulombic

quantity. This means a lack of specificity for Ts compared to Exc.

Surmounting that lack is what we have done by abandoning universality

and imposing conditions that follow fromCoulombic vext. Precisely because

they are nonuniversal conditions, use of pseudo-potentials or Gaussian-type

basis sets immediately introduces inconsistencies. In Section 3, we have

shown how the consequences can be delineated clearly with simple one-

center densities.

Section 4 then considered whether any GGA can have acceptable errors

in both total energies and binding energies. The result is not as encouraging

Table 2 Coefficients in Eq. (44) from Optimizing ω(α ¼ 0.95)

Coefficient Value

a1 ¼ b1 12.100994770272

a2 ¼ 5/27 + b2 10.829496969896

a3 � 27.327919841144

a4 73.841590552393

a5 25.096089580269

a6 � 45.306369888376

a7 � 77.901835391837

a8 � 20.862438996553

a9 67.083330246208

b1 12.100994770272

b2 10.644311784711

b3 14.896876304511

b4 5.5830951758904

b5 � 24.558524755221

b6 � 31.914940553009

b7 4.3293607988211

b8 17.169012815532

b9 2.4210601059537

b10 3.2527234245842
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as we would like. For a small training set, the best empirical OFKE GGAwe

have been able to develop so far provides a relatively small MARE for the

total energy (ωE� 0.8�) but only semi-quantitative binding (ωΔE� 44�).

The use of mixedE�ΔE criteria is essential to get both correct total energies

and roughly reasonable binding simultaneously.

The correct second-order gradient expansion was the only constraint

imposedon theKEenhancement factor.The result is violationof a constraint,

Fθ � 0, (Eq. 19) which depends on a particular choice of tθ. We have not

checked whether vθ � 0 is violated for the empirical GGA, but are certain

that it will be violated because of the negative slope of F
empirical
θ for s2 � 1.

One might hope that incorporation of more constraints should make the

functional better or, at least, more nearly universal in the limited sense of

improving its transferability to different systems and/or conditions. The

counterargument is that, except for the high-order Padé form itself, the

empirical functional was not restricted in any other way, a fact which should

facilitate optimization (even at the cost of realism or transferability).

A weak caveat is that we have not yet tested the empirical functionals in

SCF calculations. This may be important because the large-s behavior of the

empirical functionals for Padé approximants of different orders might be

very different, while the ωE and ωΔE errors are very similar. That difference

in large-s behavior might be important for SCF calculations, but not for

post-KS calculations. However, the somewhat disappointing performance

on post-KS binding energy curves makes this, in our judgment, a somewhat

problematic conjecture.

During minimization of ω(α) with respect to the independent para-

meters of the Padé enhancement factor (at fixed α of course), we encoun-

tered three main difficulties. First is the precision of numerical integration

required (very dense radial and angular meshes) to handle roughness in

the KE enhancement factor. Second is that, for any given α, the optimization

process very frequently sticks in local minima. Optimizations therefore

were run for multiple values of α. Those results were analyzed to find

one or a few superior parameter sets (based on values of ωE and ωΔE).

Then those parameter sets were used as initial ones to start a repeat opti-

mization for all α. Eventually, this “by hand” procedure yielded optimal

sets of parameters for every α. Third, the existence of multiple enhancement

factors which deliver very similar values of the objective function ω(α)

despite being very different functions of s makes the final functional for

each α sensitive to the choice of the training set. Increasing the size of

the training set might help to overcome that difficulty. But we note again
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that our purpose here is not to attempt a general, widely applicable empi-

rical GGA for OFKE but simply to find the best for a modest selection

of molecules. Even with that narrow goal, the outcome seems to be that

there are significant limits on what can be expected of a GGA OFKE

functional.
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