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Abstract

The study of spin crossover phenomena in metal complexes is of significant im-
portance in chemistry and materials science, with implications for both theoretical
advancements and practical applications. Traditionally, the analysis of electronic struc-
ture outputs in this domain often involves labor-intensive ad hoc scripting that lacks
standardization and transferability. To overcome these challenges, we have developed
pySCO, a library designed to automate and simplify thermodynamic analyses for this
family of metal complexes, offering seamless integration with popular electronic struc-
ture codes. We feature a detailed case study on an Fe(II) metal complex to highlight the
robust capabilities offered by the library and provide insights into the spin transition

regimes for this material.
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Introduction

57 or adsorbates®'? of coordination complexes

Several molecular aggregates,! solutions,
with 3d* to 3d” metal cores may undergo spin crossover transitions if the average crystal
field parameter, 10 Dg, competes in magnitude with the electron pairing energy for the d-
electrons. 3716 This makes possible the existence of two ground states that depend upon
the strength of the crystal field. As a result, small external perturbations switch the metal
complex to a low- or high-spin state.'” 2 These families of coordination adducts have been
studied experimentally for nearly a century. The first report dates back to the works of

1 and of Cambi and Szego?? in 1931, and premiering descriptions of Fe(II) spin

Polanyi, ?
transitions by Baker and Bobonich in 1964,%* and by Konig and Madeja in 1966.%* Although
the development of theoretical models pursuing description of the phenomenon fell behind
by nearly four decades, with the earliest work by Wajnflasz in 1970.2%2

It could be argued that a reason that hampered early developments of thermodynamic and
microscopic models is, in part, that prediction of spin conversion curves from simple modeling

considerations poses a major challenge.?” %’ Given the relatively small energy interval for

the spin gap, subtle changes to the composition of the ligands result in different transition

30-36 37,38

profiles, emergence of polymorphs, or suppression of the spin conversion.?® The
resulting variations to the intra- and inter-molecular cooperative interactions thus affect
noticeably the spin equilibrium.

From the perspective of practical computational efforts, on the other hand, the need
to facilitate efficient high-throughput analyses is becoming progressively more relevant for
large-scale data curation of spin crossover candidates. This allows to model, and eventually
understand, how different chemical functional groups influence the physical chemical proper-
ties for these materials. Common electronic structure codes like GAUSSIAN, " NWCHEM, 4!
ORCA,*? Vasp,*® QUANTUM ESPRESSO,* among others, offer parallelization advantages

to achieve that purpose. However, post-treatment of output data most often still is done

with ad hoc scripts crafted individually by different research groups. These are not read-



ily available to the public, transferable between different electronic structure codes, readily
reproducible nor, typically, have they been validated or cross-checked.

In this work, we address the problem by introducing the development of pySCO, a python
library for automated scalable workflows with minimum user input requirements. We show-
case its use on an Fe(II) metal complex for the determination of the spin-crossover energy,
transition temperature, thermal evolution of the magnetic susceptibility and diverse analyses

of the Gibbs free energy with the inclusion of a phenomenological interaction parameter.

Thermodynamic Fundamentals in the Library

The spin switching phenomenon and its diverse conversion behaviors may be treated theo-

25294553 among them, the basic fundamentals for the regular

retically with several models,
solution model®*® consist of assuming that the spin state mixture for a given molecular
aggregate is distributed statistically and forms a regular solution. For a given material at
constant pressure, the conversion from low to high spin is a thermal equilibrium between
both spin configurations. The state function therefore is the Gibbs free energy G = H—-T'S,
where H and S label the enthalpy and entropy for the system, respectively. Here, the largest
contribution to G is the internal electronic energy for the low- and high-spin states, where a
spin conversion energy no larger than 10 kJ mol~! typically is expected for the spin crossover
in molecules and materials.

The total electronic energy for each spin state is readily available from electronic structure

computations, and may be read from the output files using the pySCO library as show in

Scheme 1. The energy for the spin crossover conversion
Al?sco = EHS - ELS + AFJ’zpe (1)

is calculated from the total energy difference between the high- (HS) and low-spin (LS)

states, Eng and Fpg, respectively, plus the zero-point vibrational energy difference AFE,,.,



from pysco import read

# VASP outputs
low_spin = read.vasp( "low_spin_dir" )
high_spin = read.vasp( "high_spin_dir" )

7 # Orca output
8 low_spin = read.orca( "low_spin_file" )
high_spin = read.orca( "high_spin_file" )

11 # NWChem output

12 low_spin = read.nwchem( "low_spin_file" )
high_spin = read.nwchem( "high_spin_file" )

low_spin read . gaussian( "low_spin_file" )

1

1

15 | # Gaussian output
16

17 high_spin read.gaussian( "high_spin_file" )

Scheme 1: Reading output files from the VASP, ORCA, NWCHEM or GAUSSIAN electronic
structure codes.
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Here, N4 and kp are Avogadro’s number and Boltzmann’s constant, respectively, and the
vibrational temperature 0., ; = hv;/kp is computed from the set of harmonic vibrational
frequencies {v;} for each spin state.

As measured, spin-crossover is a cooperative behavior in a bulk molecular crystal. From
that perspective, it is legitimate to consider a set of N weakly interacting molecules of
which Nyg are in the high-spin state at temperature T. Therefore the relative high-spin
is ngs = Nys/N, in terms of which the Gibbs free energy of an ideal solution model that

includes the Gibbs free energy of the individual molecular spin states is
G = nus Gus + (1 — nus) Grs — T Shix (3)

On the assumption that the inter-molecular coupling has negligible dependence on those spin

states, and that the ideal entropy of mixing, Sy, in the thermodynamic limit is

Smix = —kp Na ( nus In[nps] + (1 — nps) In[1 — nys] ) (4)



from pysco import thermo
Esco = thermo.spin_crossover_energy (
1s = low_spin ,

hs = high_spin

)

Thalf = thermo. transition_temperature (
ls = low_spin ,
10 hs = high_spin
11 )

Scheme 2: Calculation of the spin crossover energy AFE(., and transition temperature 77,
for low- and high-spin states defined as in Scheme 1.

The equilibrium condition is thus obtained by minimizing G and calculating the associ-

(iﬁs ) T.p - )

Hence, the thermal evolution of nyg is

ated maximum spin conversion,

AH

T = (6)
kBNA In [%} +AS
with the extremum
AH
Ty = ——= (7)
AS TLHS:1/2

being the transition temperature that is reported from experiments. Notice that eq (7) shows
that the equilibrium occurs for nys = 1/2, meaning that there exists an equal population of
low- and high-spin states at 7/,. Both AF, and T}/, from eqs (1) and (7), respectively,
can be computed with the pySCO library as illustrated in Scheme 2.

In order to deepen our analysis to the microscopic picture of the spin conversion phe-
nomenon, we now focus attention to the enthalpy and entropy differences in eq (6), AH and

AS, respectively. These are expressed in terms of the thermal expansion P AV, as well as



the electronic, vibrational and rotational contributions,

AH = AFEq, + AFEp, + AE o + AE. ot + PAV (8)

AS = ASele + ASVib + AS‘cra + ASrot (9)

These are obtained through the equations?%>7

evi i
sba =t 3 () -

i€ HS

gvib,i
knNa D (m) (10)
Ovin, i/ T o
ASip, = kp Na Z (eevmi”/—T/_l —In [1 _ €0v1b,z/T:|> _

evi 7 T S
kg Na Z (—eevibj’/T/ — I [1- eeww/T}) (11)

In addition, the change in the electronic entropy ASece = ASspin + ASorb + ASFermi, 18
given by three contributions, namely, ASqin = kg Naln| (1 + 2 Sus)/(1 + 2 SLs) | that is
associated with the change in the total spin S during the spin conversion, and the analogous
expression for the entropy variation AS,y, due to orbital angular momentum L.%® The Fermi
entropy difference, ASgemi, on the other hand, depends on the Fermi distribution f(g) =
1/(1 + e%emi/T) " with Opemi = (€ — Epermi)/kp, Where € and epem; are the single-particle

energy state and Fermi energy, respectively, for each spin state, so that

AStermi = — kg Na /n(a)( fle)ln[f(e)] + (1 = f(e)) In[l — f(e)] ) de

{e} €HS

+ kg Ny / n(e)( f(&) L) + (1 = f(£)) 1 — ()] ) de (12)

{e} €LS

where n(e) is the electronic density of states.” It is worth noting that because the spin-
switching metal complexes have a well-defined gap, ASpgerm; is expected to barely contribute

to the computed T7 /5.



The changes for the translational contributions to the energy and entropy, AFE:.. and
ASia, respectively, and the rotational contribution to the energy, AFE,y, are sufficiently
small that often are neglected. The rotational contribution to the entropy, AS,., on the

other hand, is given by the expression

ASrot = k)B NA In

kBNA In

1
0-7"

1

oy

(
(
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)1/2'

) 1/27]

{or,6,} € HS

{or,0,} €LS

(13)

where o, is the rotational symmetry number, and the set {6,.} corresponds to the rotational
temperatures that depend on the moment of inertia. %7

It is clear from eqs (6) through (13) that ngg and 7', share a non-linear dependence. This
means that we must evaluate numerically eq (6) to find 7j/,. For each choice of nyg during
the numerical procedure, one must also compute all temperature-dependent terms in AH
and AS, while looping through the harmonic frequencies, {v}, in eqs (10) and (11), and
single-particle energy states, {¢}, in eq (12) for both the low- and high-spin states. This is
one of the main tasks of pySCO. It is handled automatically by the library without requiring
user intervention.

We have discussed so far the basics of gradual spin conversions for weakly interacting
molecules. Nonetheless, some highly cooperative materials with comparatively stronger inter-
molecular interaction exhibit rather abrupt spin switching. An energy barrier between the
spin states hinders rapid thermal equilibration. This splits the heating, 7}, and cooling,
T), transition temperatures into two distinct values separated by a finite hysteresis ATy =
T —1T.

Slichter and Drickamer®® proposed the addition of a non-linear mean field term indepen-

dent of T" to the regular solution model to parametrize that splitting in the form

G = (1 — nps) Gis + nus Gus + I'nps (1 — nus) — T’ Shix (14)



where the coefficient I" for this second-order contribution in eq (14) is known as the phe-
nomenological interaction parameter and, as the name suggests, accounts for the cooperative
inter-molecular interactions. Analyzing the behavior of G during the spin transition, with
both equations (3) or (14), is possible in the pySCO library for different isothermal profiles,
as depicted in Scheme 3.

At this point, it is important to highlight the usefulness of the sign of I', namely, I' < 0 is
indicative that the molecules in the crystal prefer to be surrounded by other molecules with
opposite spin, whereas the converse I' > 0 is characteristic of molecules with preference for

being enclosed by others with the same spin.

from pysco import thermo

# Without interaction parameter

nHS_and_G = thermo.regular_solution_model(
ls = low_spin ,
hs = high_spin ,
temperature = 132 # K

)

1

11 # With an interaction parameter

1

1 nHS_and_G = thermo.regular_solution_model(
14 ls = low_spin ,

15 hs = high_spin ,

1 temperature = 132, # K

1 interaction = 4 # kJ/mol
1

Scheme 3: Calculate the isothermal Gibbs free energy G as a function of the relative high-
spin population ngg using a fixed value for the phenomenological interaction parameter for
low- and high-spin states defined as in Scheme 1.

Furthermore, the equilibrium condition for eq (14) is the same as in eq (5), but with the

following expression for the thermal evolution of nyg,

_kBNA In [%}-{-AS (15)

Note that in this model, the hysteresis contribution vanishes for nys = /2, and thus eq (15)
reduces to eq (6) because the term I' (1 — 2nug) = 0] ,5=1/2. Analogous to the previous

code snippet, computing the thermally driven variation of nyg, with either eq (6) or (15),



using pySCO is exemplified in Scheme 4.

import numpy as np
from pysco import thermo

# Without interaction parameter

)

# With an interaction parameter

temperatures = np.arange(
start = 50,
stop = 251,
10 step =1,
11 dtype = float
12 )
1
1 T_and_nHS = thermo.high_spin_population (
1 ls = low_spin ,
16 hs = high_spin ,
17 points = temperatures # K
1
1

T_and_nHS = thermo.high_spin_population (
ls = low_spin ,
hs = high_spin ,
interaction = 4 # kJ/mol

Scheme 4: Compute the relative high-spin population nyg as a function of temperature T,
without and with consideration of the phenomenological interaction parameter I', for low-
and high-spin states defined as in Scheme 1.

Experimental determination of the interaction parameter usually is done with a nonlinear
least squares fit to eq (15) to get an estimation for AH, AS, and I". The former two relate to
T2 through eq (7). Bear in mind that first-principles calculation of I' has proven difficult to
date, 27296166 hoth because of the complicated physical processes subsumed in its mean field,
and because its magnitude is substantially smaller that A Fy., which itself is computationally
challenging. This phenomenological parameter results from averaging the different energy
contributions to the inter-molecular interactions in a lattice and, in consequence, I' may
undergo sign flips during lattice relaxations of molecular crystals. %708

To compute I" with electronic structure methods, customarily one samples a series of
different microscopic mixtures of low- and high-spin state configurations using super-cells.
For instance, a unit cell with four metal centers has 2* = 16 possible distributions, namely,
one for nyg = 0 with all four being low-spin, and the opposite for nys = 1; four for nys =

1/4 with only one high-spin molecule, and four ngys = 3/4 for the converse; and finally six

configurations for nyg = 1/2 with an equal mixture of molecules in both spin states. The total

9



from pysco import read
from pysco import thermo

mid_spins = []
configs = [ "LLLH", "LHLH", "HLHL", "HHHL" ]
low_spin = read.vasp( "LLLL_dir" )

high_spin = read.vasp( "HHHH_dir" )

1
1

1 for i in configs:

13 mid_spins.append( read.vasp( f"{i}_dir" ) )
1

1 interaction, R = thermo.interaction_parameter (
1 ls = low_spin ,

1 hs = high_spin ,

1 ms = mid_spins

1

)

Scheme 5: Compute the phenomenological interaction parameter I' using a series of configu-
ration choices sampling the interval 0.0 < ngs < 1.0 in steps Angg = 1/4. For each unit cell,
the generic labels L and H depict a metal center in a low- or high-spin state, respectively.
As a result, nys = 0.0 € {LLLL}, nys = 0.25 € {LLLH}, nys = 0.5 € {LHLH, HLHL},
nys = 0.75 € {HHHL}, and nys = 1.0 € {HHHH}.

number of possible distributions evidently becomes larger for progressively increasing super-
cells, but it may be reduced due to the presence of symmetry-related configurations. The
results for these spin distributions are then used for fitting the interaction parameter. ™

This is a straightforward method, illustrated in Scheme 5, with the pySCO library.

Computational Details

With the purpose of demonstrating the capabilities of the pySCO library, we focus attention
on the homoleptic complex [Fe(tBuyqgsal),], with an average T/, = 123 K reported experi-
mentally and characterized in ref 75. This metal complex is constituted by two tert-butyl
substituents on one side of the adduct while leaving the other side free of steric hindrance
that, arguably, helps increase the volatility of the material and, at the same time, preserve
the strong elastic coupling between the neighboring molecules in the crystal. As a result,
the material exhibits a hysteresis ATy, = 12 K, that is evidence of the strong cooperative
behavior during the abrupt spin transition.

Before proceeding with the details pertaining to the electronic structure calculations for

10
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Figure 1: Variation of the transition temperature, T;/5, and spin-crossover energy, AF,
as a function of the magnitude for the Hubbard-U correction. Results for the solid-state
phases for the [Fe(tBuagsal)s], [Fe(gsal-Br)s][NOs], and [Fe(tzpy)2(NCS)s] metal complexes
are shown for comparison. The structures were taken from refs 75-77.

[Fe(tBugqgsal)s], the reader should be aware that the choice of density functional approxi-
mation plays a crucial role in determining the quality of the results, as does the admixture
of single-determinant exchange.™ ® The analogous remains true for distinct choices of level
of theory known for delivering qualitatively different trends, even for small spin-crossover
archetypes.8'%2 For our study we chose periodic boundary conditions with the Vasp 6.3 code
and the set of standard PBE potpaw.54 projector augmented wave potentials for Fe, O,
N, C, and H that correspond to the valence electron configurations 3s? 3p® 3d” 4s', 2s? 2p?,
2s%2p3, 2s%22p?, and 1s!, respectively.*® For the sake of consistency, the PBE generalized
gradient exchange-correlation density functional approximation with the Hubbard-U cor-
rection also was selected.®> % The value U = 2 eV was fitted as shown in Figure 1 to
reproduce as close as possible the reported experimental transition temperature 7’ f72p b =123
K for [Fe(tBuggsal),].”™ Note that the magnitude for U varies for different metal complexes,
as illustrated in Figure 1 for [Fe(tBuagsal)s], [Fe(gsal-Br)s][NO3] with Tf;‘zpt =232 K, and
[Fe(tzpy)2(NCS),] with Tf;‘;’t = 118 K, ™ with ligands tBuyqsal = 2,4-di(tert-butyl)-6-((quin-

oline-8-ylimino)methyl)phenol, gsal-Br = (N-8-quino-lyl)-5-Br-salicylaldiminate, and tzpy =

11



(3-(2-pyridyl)(1,2,3)triazolo(1,5-a)pyridine). The Hubbard-U magnitude is not transferable
to a different choice of potential for the transition metal center.®”

In addition, the plane wave kinetic energy cutoff was set to 600 eV, with augmentation
charges evaluated with an auxiliary support grid. Non-spherical corrections to the electron
density gradient also were included. The threshold for the convergence of the self-consistent
field was set to 107 eV, with a Gaussian smearing width of 1072 eV. Furthermore, the
coordinates for the solid-state materials were optimized with the conjugate gradient algo-
rithm until forces were smaller than 1072 eV A~!. A k-point density of 0.2 A~! was used
for this purpose, whereas solely the Gamma ¢-point was considered for phonon computa-
tions. These were done with a finite differences approach and a step size of 1072 A. Only
the atoms through the first coordination shell for each of the Fe(II) centers in the unit cell
were considered for the vibrational degrees of freedom. %%

Treatment of the output files and thermodynamic analyses were done with the pySCO

library. In addition, the thermal variation of the magnetic susceptibility obtained from the

pySCO output depicted in Scheme 4 was approximated by

pse=\VA4S(S+1)+ L(L+1)pup (16)

where S and L are the total spin and spin momentum, respectively, and pp = 9.274 J T~ is
the Bohr magneton. pugy, is then expressed as an ensemble average for the low- and high-spin

states weighted by ngg. "

The [Fe(tBuyqgsal);] Metal Complex

Discussion of our results for the [Fe(tBuyqgsal)s| metal complex evidently must start with the
key contribution to T/, in eq (7), namely, AEg,. As already stated, both quantities are
readily available with pySCO following the procedure depicted in Scheme 2. We obtained

a AFEg, = 3.21 kJmol™! that is well within the expected energy range for spin-switching

12



materials. Though the calculated 7'/, = 132 K is nine units larger than the average experi-
mental reference, the calculated value is close to the upper experimental limit 77 /o = 123 £ 6
K. In the absence of reliable confidence limits on the calculated values, de facto this amounts
to agreement with experiment.

With the T}/, validated, we proceed with the analysis of the thermal variation of the
magnetic susceptibility, x 7', following Scheme 4. For that it is necessary to compute the
interaction parameter in eq (15) to model the hysteresis. In the interest of preserving a
representative illustration, we considered the same subset of six spin distributions shown in
Scheme 5. More specifically, the subset includes the pure low- and high-spin configurations,
with ngs = 0 and nys = 1, respectively, one for nyg = 1/4, two configurations for nys = 1/2,

and one for nyg = 3/4.

T
L Expt. i
30T & Heating
= Expt. f ot
= 2.5 + =+ Cooling d B Tl/2 = 123K i
> — Calc. ' Tyjy = 132K
220+ [ ATy = 12K
2. ' = 4kJmol
=
ZE 15 ¢ ! ,
& l 125 175 225 275
o ‘ ; ‘ ;
7 9 3+ |
& 1.0 r - Expt. |
.2 ¢ —Fit
5 2}
0.5 i, = 119K §
= ! It |[AH = 8.9kJmol™
-—d || AS = 74.6Jmol 'K
0.0 0 = 28kJmol™' |7
| | | | |
50 100 150 200 250

Temperature [K]

Figure 2: Comparison between the calculated and experimental transition temperature, 711 o,
and the temperature dependence of the magnetic susceptibility, x 7', for [Fe(tBuygsal)s].
The phenomenological interaction parameter, I', was fitted to reproduce the experimental
hysteresis ATy, = 12K. On the other hand, the reference quantities reported in the inset
correspond to the Slichter and Drickamer model fitted with the experimental data for xy T
taken from ref 75. The number of points shown in the inset were reduced to ease visualization.

The interaction parameter calculated with the procedure in Scheme 5 is I' = 2.28
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kJmol~!. However, that value yields no hysteresis. Details follow later in the discussion. As
an aside, we resorted to fitting I' = 4 kJmol~! that reproduces the experimental hysteresis
width. Results in Figure 2 show the agreement between the computed magnetic suscepti-
bility with the experimental reference. We observe a shifted spin transition due to the 9 K
overestimation for the calculated 7}/, that leads to AH = 12.17 kJ mol~! and AS = 92.0
Jmol ' K~!. For comparison, the inset in Figure 2 shows the reference values AH = 8.9
kJmol™!, AS = 74.6 Jmol ' K~!, and I" = 2.8 kJmol~! that were extracted by fitting eq
(15) to the experimental data. Both the predicted AH and AS agree reasonably well with
the experiment, and eq (7) provides the basis to argue that the slight overestimation arises
from the larger 7'/, computed for the metal complex.

Details regarding the effects arising from the phenomenological interaction parameter,
on the other hand, are better illustrated by monitoring the Gibbs free energy during the
spin transition for the metal complex, described in Scheme 3. The spin conversion may be
classified into three regimes depending on the sign of the second derivative of eq (14) around
Ty s,

0*G
Ongig T, P,ngs=1/2

First are the weak interactions with 9*G/dn¥g > 0 that result in gradual spin conversions
if I' < 2kp NoTyo. It is the set of convex curves in Figure 3(a). Next is the critical point for
which 9°G/dnfg = 0 with abrupt transitions if I' = 2 kg N T} o. It is highlighted in Figure
3(a) with the dotted line. This critical interaction for [Fe(¢Buygsal)s] is 2.2 kJmol™, close in
magnitude to I' = 2.8 kJmol™! calculated previously and thus the reason for the absence of
hysteresis with the latter. Then come the strong interactions with 92G/On¥g > 0. It is the set
of concave curves shown in Figure 3(a). Often this case involves first-order phase transitions

and hysteresis, ®

91 with cooling T, transition T} /2, and heating T} temperatures, each with
associated Gibbs free energy minimum, Gy, as shown in Figure 3(b). The possibility of
observing three nug values for a T) < T" < T} is well established for this regime. '® These

may be related to stable, metastable or unstable spin configurations. See refs 92 and 65 for

14
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Figure 3: (a) Isothermal Gibbs free energy, G, for the progressively increasing relative high-
spin population, nyg, for different choices of the phenomenological interaction parameter, I'.
The critical point I' = 2 kg N4 T} /2 delimits the region between weakly and strongly interact-
ing molecules. All the isotherms are for the computed transition temperature 7/, = 132 K.
(b) Gibbs free energy as a function of the relative high-spin population for different choices
of temperature at fixed I' = 4 kJ mol ~*. Three isotherms are highlighted, namely, 7', T2,
and T}, that correspond to the cooling, transition, and heating temperature, respectively.
(c) — (0*°G/On?g) p for various temperatures. The shaded area in panels (b) and (c) depicts
the hysteresis temp’erature interval T, <T < T}, whereas the dotted lines depict the cooling,
transition, and heating temperature T, T},2, and T}, respectively.
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detailed discussions.

A more detailed analysis of the hysteresis regime, T}/, £ 6 K, for [Fe(tBusgsal)s] can be
done by means of a series of isotherms for — (9°G'/Onfis)y p, as depicted in Figure 3(c). The
negative Gibbs curvature shows favorable minima near ngyg = 0 and unfavorable near ngys = 1
for T' < T|. The converse is observed for 7' > T}. This is the typical behavior during spin
conversion, namely, low temperatures favor the low-spin state, whereas high temperatures
favor the high-spin state. For the hysteresis temperature interval, T} <7 < T, on the other
hand, the existence of two minima is evident in Figure 3(c). In further detail, notice that
there are meta stable high-spin states near nyg = 0 for T) < T' < T3, whereas the presence
meta stable low-spin states near nyg = 1 is observed for 11, < T < T}. At the transition
temperature, 77,5, we can see in Figure 3(c) that there are two equally favorable minima
near both the vicinities of nys = 0 and nygs = 1. These minima are blocked energetically in
the hysteresis temperature regime and, as a result, the metal complex may remain partially
trapped in either spin state. A relatively slow relaxation towards the more stable spin state
depends upon a delicate balance between temperature and the energy barrier height.

Lastly, it is worth noting that the experimental interaction parameter I' = 2.8 kJ mol ™!
for [Fe(tBuggsal)s] is close in magnitude to the 1.97, 2.30, and 2.97 kJ mol™! reported?® for
[Fe(btz)2(NCS)s,],%* [Fe(bpz)s(bipy)s],”” and [Fe(phen)s(NCS),],% respectively, with ligands
phen = 1,2-phenanthroline, btz = 5,5,6,6'-tetrahydro-4 H 4’ H-2-2'-bi-1,3-thiazine, dpz = di-
hydrobis(1-pyrazolil)borate, and bipy = 2,2'-bipyridine. All these metal complexes share
somewhat similar asymmetric steric hindrance and are considered attractive for use in subli-
mation techniques to fabricate thin films,? which confirms the importance of understanding
the influence of different choices of ligands upon the inter-molecular interactions for these

materials.
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Concluding Remarks

In summary, we introduced the pySCO library that allows for conducting high-throughput
scalable analyses with greater ease, facilitating the study of the spin conversion phenomenon
in molecules and solid state materials. By showcasing its use on the [Fe(¢Buggsal)s] metal
complex, we discussed the influence of the phenomenological interaction parameter using the
mean field regular solution model available in the library. Our results served to provide a
detailed examination of the interaction regimes for this complex. These are in part respon-
sible for the volatility characteristics in asymmetric metal complexes, which are of interest

for the preparation of ultra thin interface heterostructures.

Data and Software Availability

The pySCO library is an open source project and is available for download in the public
repository github.com/amalbavera/pysco. ' The library uses the International System of
Units, therefore, the spin conversion energy AFq.,, the enthalpy AH, and the phenomeno-
logical interaction parameter I' are in kJmol~!, whereas the temperature 7' is in Kelvin,
and the entropy AS in Jmol™' K=!. The repository also collects the VASP output files for
the [Fe(tBuggsal)s] metal complex needed for the calculation of the spin crossover energy,
transition temperature, and analyses for the phenomenological interaction parameter. A

Jupyter notebook also is included with illustrative code blocks to reproduce the results.
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