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a b s t r a c t

Solving the Euler equation which corresponds to the energy minimum of a density functional expressed
in orbital-free form involves related but distinct computational challenges. One is the choice between all-
electron and pseudopotential calculations and, if the latter, construction of the pseudopotential. Another
is the stability, speed, and accuracy of solution algorithms. Underlying both is the fundamental issue
of satisfactory quality of the approximate functionals (kinetic energy and exchange–correlation). We
address both computational issues and illustrate them by some comparative performance testing of our
recently developed modified-conjoint generalized gradient approximation kinetic energy functionals.
Comparisons are given for atoms, diatomic molecules, and some simple solids.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Investigation of orbital-free density functional theory (OF-DFT)
[1–12], including development of approximate orbital-free kinetic
energy (OFKE) functionals, has at least two motivations. One is
simply the beguiling notion of direct realization of the content
of the Hohenberg–Kohn theorem [13–17]. The other is practical,
namely the possibility of eliminating the computational bottleneck
of solving the Kohn–Sham (KS) eigenvalue equations, thereby
dramatically broadening the applicability of Born–Oppenheimer
molecular dynamics runwithDFT electronic energies. The practical
aspect is the main focus of the present work.

In OF-DFT, the total electronic energy of an Ne electron system
is a functional of the electron density n(r)

EOF-DFT[n] = Ts[n]s + ENe[n] + EH[n] + Exc[n] + ENN, (1)

where Ts[n] is the KS (non-interacting) kinetic energy functional
given explicitly as a density functional, ENe[n] is the nuclear–
electron interaction energy, EH[n] is the Hartree energy (classical
electron–electron repulsion), Exc[n] is the exchange–correlation
(XC) energy functional, and ENN is the inter-nuclear repulsion
energy. Minimization of the functional Eq. (1) gives a single Euler
equation to be solved,

δTs[n]
δn(r)

+ vKS([n]; r) = µ. (2)
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Here vKS is the Kohn–Sham potential, δ(ENe + EH + Exc)/δn and
µ is the chemical potential. The ordinary KS equation has the
same potential but requires solution for Ne or Ne/2 orbitals (in the
all-electron, spin-polarized and non-spin-polarized cases respec-
tively). Solution of the ordinary KS problem scales computationally
as≈N3

e in general, whereas solution of Eq. (2) should scale approx-
imately linearly.

Practical implementation of OF-DFT requires approximation of
both Ts[n] and Exc[n]. Simply because of their relative magnitudes,
the quality of an OF-DFT calculation is dominated by the quality of
the approximate Ts. There are twodistinct classes of approximation
in the literature, one-point functionals,

Ts[n] =
∫

ts([n]; r)d3r (3)

and two-point functionals

Ts[n] =
∫

f1,s([n]; r)χ(r, r′)f2,s([n]; r′)d3rd3r′. (4)

Here f1,s and f2,s are weighting functionals and χ(r, r′) is a type
of response function. For reasons of computational efficiency as
well as conceptual simplicity (two-point functionals take the
development out of the framework of an effective Kohn–Sham
equation (see Eq. (8) below) unless an optimized effective
potential [18] is used, itself an extra complication), we (and our
collaborators) have focused exclusively on one-point functionals
and do so here as well.

An interesting feature of the literature on developing approxi-
mate OFKE functionals, including our contributions with collab-
orators, is that there are more tests of approximate functionals
using inputs from other sources (e.g. conventional KS calculations,
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Hartree–Fock calculations, etc.) than tests by solving the Euler
equation, (2). A side-effect is that comparatively little is known
about the difficulty of solving that equation with approximations
other than of the Thomas–Fermi kind (see below) and about the
relative effectiveness of various solution techniques.

To frame that issue and the calculations reported here, it is
useful to decompose the non-interacting KE functional into the von
Weizsäcker contribution [19] plus a non-negative remainder, the
Pauli term [20–23],

Ts[n] = TW[n] + Tθ [n], Tθ [n] ≥ 0. (5)

The von Weizsäcker functional (in Hartree atomic units) is

TW[n] =
1

8

∫ |∇n(r)|2

n(r)
d3r ≡

∫

tW([n]; r)d3r. (6)

It is exact for one electron and for a two-electron singlet. From

δTW[n]
δn(r)

=
1

√
n(r)

(

−
1

2
∇2

)

√

n(r), (7)

the Euler equation Eq. (1) takes a Schrödinger-like form [23–25]
{

−
1

2
∇2 + vθ ([n]; r) + vKS([n]; r)

}

√

n(r) = µ
√

n(r). (8)

Observe that, unlike familiar quantum mechanical eigenvalue
problems, the ‘‘orbital’’ in Eq. (8) is normalized to Ne, not unity.
Here vθ is the Pauli potential,

vθ ([n]; r) =
δTθ [n]
δn(r)

vθ ([n]; r) ≥ 0. (9)

Non-negativity of Tθ and vθ has proved to be an important pair of
constraints for OFKE functional development [9–11].

Eq. (8) resembles the ordinary KS equation, a fact that has led
to contradictory statements about solution techniques. On the one
hand, Ref. [25] declares that Eq. (8) ‘‘. . . can be solved iteratively to
self-consistency by any Kohn–Sham computer program: just se-
lect the lowest eigenvalue. The solution is very simple and quick,
for there is only one ‘orbital’ . . . ’’. Ref. [26] makes precisely the con-
trary claim, at least in the context of the widely used Gaussian-
type orbital (GTO) basis sets. Those authors expanded

√
n in a GTO

basis with coefficients ci, with respect to which they minimized
L := EOF-DFT[n] − µNe. They state that ‘‘Due to the highly non-
quadratic nature of the kinetic energy, the optimization of L is a
nontrivial problem. The iterative self-consistent procedure used in
Kohn–Sham calculations does not work, and we require more ro-
bust minimization techniques. Moreover, . . . first derivative meth-
ods such as conjugate gradient minimization and quasi-Newton
search perform poorly, requiring many hundreds of iterations to
achieve convergence’’. A related discussion and references to the
few earlier papers on the issue is at p. 135 of Ref. [14]. This is one
of the issues addressed in the present study.

2. Approximate kinetic energy functionals

To set the stage for another technical issue, we consider types
of approximate one-point OFKE functionals next. For work on
minimization involving two-point functionals, see Refs. [27,28]
and references therein.

2.1. Thomas–Fermi type

Diverse approximate OFKE functionals can be written in the
generic form

Ts[n] = TW[n] + λTTF[n] + T∆[n] 0 ≤ λ ≤ 1. (10)

The simplest local approximation for the KE is the Thomas–Fermi
(TF) [29,30] functional

TTF[n] ≡
∫

tTF([n]; r) d3r = c0

∫

n5/3(r) d3r

c0 =
3

10
(3π2)2/3 (11)

alone. The approximation T∆ = 0 andλ = 1 iswidely used inmany
OF-DFT applications (see Ref. [2] for discussion and references)
despite its known deficiencies [31]. A related form, commonly
called Thomas–Fermi–Dirac–von Weizsäcker theory, is a linear
combination of TTF with some fraction of TW,

TTFvW,α = αTW + TTF; 0 ≤ α ≤ 1 (12)

along with the local Dirac exchange functional. Early reports of
special self-consistent OF-DFT calculations mentioned above were
for this model [26,32,33].

As an aside, there is an extensive literature of efforts to
determine an optimal value of α in Eq. (12). Since the Pauli term
decomposition, Eq. (5), provides both an exact lower bound on
Ts and leads to the density Schrödinger equation, Eq. (8), that
decomposition, and its elaboration Eq. (10), seems preferable to
using TTFvW,α and attempting to optimize α. But because TTFvW,α

is prevalent in the literature, we consider the numerical issues
associated with it as well.

2.2. Generalized gradient approximation KE functionals

Generalized gradient approximations (GGA) are best known
in DFT as improvements on the local approximation for Exc. For
either Exc or Ts, a GGA is a truncation of the corresponding
gradient expansion which is altered to meet relevant constraints
and suppress unphysical behaviors. For the KE functional, a GGA
can be written as

TGGA
s [n] =

∫

tTF([n]; r)Ft(s(r))d3r, (13)

where Ft is the kinetic energy enhancement factor. It is a function
of the dimensionless reduced density gradient,

s ≡
|∇n|

(2kF )n
=

1

2(3π2)1/3

|∇n|
n4/3

. (14)

Because tW = 5
3
s2tTF, the GGA Pauli term in Eq. (5) is

TGGA
θ [n] =

∫

tTF([n]; r)Fθ (s(r))d
3r

Fθ (s) = Ft(s) −
5

3
s2. (15)

Ref. [10] showed that the KS KE of a molecular system is
dominated by the behavior of Fθ over a relatively small range of
s. For much of that range, Fig. 1 displays the Pauli enhancement
factors for the functionals TTFvW,α , with α = 1, 1/9 Eq. (12), the
Tran–Wesolowski GGA [34] (PBE-TW), and the mcGGA functional
(PBE2) of Ref. [9]. The latter two use the same enhancement
factor form as the Perdew, Burke, and Ernzerhof (PBE) [35] GGA X
functional, Fx(s) = 1 + cs2/(1 + as2). In PBE-TW Ft ∝ Fx,PBE with
parameters fitted to reproduce the kinetic energy of a small
training set, an assumption called conjointness. PBE2 is a ‘‘modified
conjoint’’ GGA (mcGGA) functional because the parameters in it
were constrained to satisfy Pauli-termnon-negativity; see Ref. [10]
for details.

Observe in Fig. 1 that the PBE-TW and TTFvW ,α=1/9 Pauli en-
hancement factors are almost identical, especially for small s.
There, both have negative slope (with respect to s2) which causes
violation of vθ non-negativity [10], recall Eq. (9). The common
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Table 1

All-numerical and GTO results for the atoms H, Li, and Ne for the TTFvW ,α=0,1 models with simple Slater exchange. Energies in
Hartree a.u.

Ts = TW numer. Ts = TW GTO Ts = TW + TTF numer. Ts = TW + TTF GTO Ts = TW + TTF
a

H atom

Etot −0.406534 −0.400737 −0.261827 −0.259969 −0.2618
Ts 0.406534 0.859699 0.261827 0.262042 –
Tθ 0.000 0.000 0.091034 0.090221 –
µ −0.1943 −0.1764 −0.0715 −0.0696 −0.071

Li atom

Etot −8.525825 −8.523413 −4.105425 −4.096347 −4.1054
Ts 8.525825 8.523126 4.105425 4.103660 –
Tθ 0.000 0.000 2.019249 2.009622 –
µ −0.9575 −0.9526 −0.1306 −0.0.1365 −0.131

Ne atom

Etot −274.68080 −274.652253 −85.734451 −85.730041 −85.7343
Ts 274.68080 274.664688 85.734438 85.728273 –
Tθ 0.000 0.000 54.352106 54.347495 –
µ −7.0607 −7.0594 −0.1807 −0.1806 −0.181
a From Ref. [26].

Fig. 1. Pauli term enhancement factors Fθ of OFKE functionals as a function of s2 .
GGAdenotes the Tran–Wesolowski functional,mcGGAdenotes the PBE2 functional.
See text for details.

property of the TTFvW ,α=1 and PBE2 approximations is satisfaction
of that non-negativity constraint. The low slope of the PBE2
enhancement factor at small values of s2, F PBE2

θ (s) ≈ 1+ 0.3642s2,
makes the enhancement factors for TTFvW,α=1 and TPBE2 close for
s < 1. This comparison suggests that the results obtained with the
PBE-TW KE functional should be close to those from TTFvW,α=1/9

and, similarly, the results from PBE2 should be close to those from
TTFvW ,α=1.

A technical problem common to these GGAs is that both
vθ,PBE-TW and vθ,PBE2 are singular at nuclear sites, the former
negative, the latter positive. Numerical solution of the Euler
equation Eq. (2) must address this problem, an issue to which we
return below.

3. All-electron solutions of the OF-DFT Euler equation

As in ordinary KS calculations, solution of Eq. (8) can be either
all-electron or via pseudopotentials. In this section, we consider
all-electron solutions, by both GTO-basis and numerical grid tech-
niques and address pseudopotentials in the subsequent section.

3.1. Atoms

To test the notion that any standard KS code can be used
straightforwardly [25], we modified the GTO-basis code SOAtom
to handle Tθ and vθ as in Eqs. (5), (8) and (9). SOAtom, a part of the

GTOFF suite [36,37], solves the KS equation in a Hermite Gaussian
basis with analytical evaluation of all the matrix elements except
for those involving XC. Those are done on a radial grid. We also
modified the Laaksonen all-numerical diatomic molecular code
[38] correspondingly. It is based on a prolate spheroidal grid.

Insofar as numerical stability is concerned, the results are
quite clear. Even for TTFvW ,α=1 with simple Slater exchange (i.e.
TFvWD), the typical iterative SCF procedure is only marginally
stable. The problem is worse in the GTO basis than in the grid-
based calculation, at least in the specific sense that a simple SCF
stabilization procedure (Pratt, i.e. linear mixing of a fraction of
current iteration density and the rest from the preceding iteration)
fails completely for many OF-DFT calculations. Ordinary KS
calculations on the same atoms with the same simple stabilization
scheme converge in a few iterations.

The lithium and carbon atoms are examples. For Li in a 9 s GTO
basis in the SOAtom code, the pure TF form (Ts = TTF, i.e., Eq. (12)
with α = 0), the Tθ = TTF form (Eq. (10) with λ = 1, T∆ = 0),
and the Tθ = λTTF form (Eq. (10) with T∆ = 0) can be brought
to numerical convergence but the mcGGA form Tθ = TmcGGA −
TvW cannot. For the successes, more iterations by one to two
orders of magnitude are required than for conventional KS and
the numerical convergence is poor. One can get to fractional
total energy errors of 10−4 → 10−2 for lighter to heavier atoms
respectively, but not much better. The contrast with conventional
KS atomic calculations is stark: in them convergence to 10−6 is
trivial to achieve.

Table 1 illustrates this point with comparison of numerical grid
andGTO-basis results for Ts = TvW and TvW+TTF with simple Slater
exchange (Dirac exchange) on H, Li, and Ne. (The GTO calculations
are with 9 s basis sets for H and Li, 13 s for Ne.) The two total
energies for Li differ at the 1 mHa scale. Notice that the numerical-
grid results match rather well with the values from Ref. [26],
which were calculated with a direct minimization scheme, not
a modified KS code. Ironically, a misbehavior of simple Slater
exchange, namely that it satisfies the virial theorem in the form
Etot = −Ts (which the exact Exc does not), in this case highlights
the convergence problem, especially in the GTO calculation.

Results for the carbon atom in the GTO basis, not shown in
the table, are worse. The TTFvW ,α=1/5 calculation with a 13 s basis
cannot be brought to SCF convergence, even with tricks such as
starting with full TW and no TTF contribution, then slowly scaling
down the former while scaling up the latter. The corresponding
standard KS calculation converges trivially.

For the numerical-grid calculations, SCF convergence is very
slow compared to standard KS calculations, but reasonable results
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Table 2

Self-consistent atomic total energies obtained from various OFKE functionals (Hartree a.u.) and simple Slater exchange.

1/9 vW+TFa 1/9 vW+TF 1/5 vW+TFa 1/5 vW+TF vW+TFa vW+TF GGA (PBE-TW) mcGGA (PBE2) KSb

H −0.6664 −0.6664 −0.5666 −0.5666 −0.2618 −0.2618 −0.71 −0.32 −0.4065
He −3.2228 −3.2228 −2.8184 −2.8184 −1.4775 −1.4775 −3.4 −1.5 −2.7236
Li −8.2515 −8.2515 −7.3227 −7.3227 −4.1054 −4.1054 −8.6 −4.1 −7.1749
Be −16.1631 −16.1631 −14.4841 −14.4841 −8.4922 −8.4922 −16.7 −8.4 −14.2233
B −27.2876 −27.2876 −24.6284 −24.6284 −14.9258 −14.9259 −28.0 −14.6 −24.5275
C −41.9052 −41.9053 −38.0332 −38.0332 −23.6568 −23.6569 −42.9 −23.0 −37.6863
N −60.2622 −60.2623 −54.9428 −54.9429 −34.9084 −34.9084 −61.6 −33.9 −54.3977
O −82.5798 −82.5799 −75.5765 −75.5765 −48.8831 −48.8832 −84.3 −47.3 −74.8076
F −109.0592 −109.0594 −100.1345 100.1346 −65.7674 −65.7676 −111.1 −63.5 −99.4072
Ne −139.8865 −139.8867 −128.8014 −128.8016 −85.7343 −85.7344 −142.3 −82.7 −127.4907
a From Ref. [26].
b Spin-restricted LDA (Slater exchange) calculation.

can be obtained. Table 2 shows total energies for the first
row atoms obtained from numerical-grid self-consistent OF-DFT
calculations with various OFKE approximations, again with Slater
exchange. For TFvWD and TTFvW ,α=1/5,1/9, comparison with the
direct minimization of Ref. [26] (the first six columns of data)
confirms that our calculations succeeded.

Note that the total energies from the TF+vWandmcGGA(PBE2)
kinetic energy functionals are overestimated (as a consequence of
overestimation of the KS KE). In contrast, all of the functionals with
scaled von Weizsäcker contributions underestimate the KS KE, so
that the resulting total energies are below the reference KS values.
Such behavior is characteristic of a failure of N-representability in
the KE functional [39]. Observe also that TF+1/9vW andGGA (PBE-
TW) total energies are close to each other, though the functional
forms differ.

Table 3 shows the effects of using the full LDA Exc, in this case
the VWN parameterization [40]. Unsurprisingly but reassuringly,
inclusion of the C functional shifts the total energies downward
without altering the trends.

These atomic results lead us to nuanced agreement with the
claim of Ref. [26] and disagreement with the claim of Ref. [25].
The OF-DFT Euler equation is not, in general, solvable by simple
modification of a standard GTO KS code (the norm for molecular
calculations). Even a good all-numerical KS code is challenged to
achieve solutions but can be made to succeed for isolated atoms.
Realizing the computational speed-up potential of OF-DFT clearly
depends on algorithms and implementations well suited for OF-
DFT, even for one-point functionals.

3.2. Diatomic molecules

Numerical-grid solution of Eq. (8) for diatomic molecules, if
possible, would yield two kinds of insight: numerical method
behavior and the comparative behavior of n(r) and vθ (r) for
different OFKE approximations. Though the difficulties of using a
modified KS code are just as evident in this case, we have been able
to achieve solutions for several light molecules.

Numerical requirements include extremely tight convergence
tolerances on the eigenvalue µ and normalization (10−3 more
stringent than normal KS calculations), much larger maximum
distance cutoff (80–100 a.u. vs. normal KS 30–40 a.u.), and about
a factor of five more points in both of the prolate spheroidal
coordinates (roughly 1100×1300 points vs. the typical 200×300).
Even so, the total energy convergence is mediocre for GGA and
mcGGA functionals, about 0.01 Hartree at best. Convergence is
better for the TTFvW,α functionals, between 0.1 and 1mHartree. This
need for extreme measures to achieve limited-quality outcomes
is an additional confirmation of the unsuitability of unmodified
conventional KS schemes for solutions of the OF-DFT Euler
equation.

The solutions nevertheless provide real comparative insight
regarding different OFKE approximations. Fig. 2 compares the

Fig. 2. All-electron self-consistent Kohn–Sham and OF-DFT electron densities
plotted along the SiO molecule internuclear axis in the vicinity of the Si site. Si at
(0, 0, −1.05) Å, O out of the picture at (0, 0,+1.05) Å. See text.

Table 3

OF-DFT self-consistent atomic total energies (Hartree a.u.) obtained from various
kinetic energy functionals and VWN Exc,LDA with the numerical grid KS code.

1/9
vW+TF

1/5
vW+TF

vW+TF GGA
(PBE-TW)

mcGGA
(PBE2)

KSa

H −0.7101 −0.6084 −0.2924 −0.76 −0.36 −0.4457
He −3.3244 −2.9175 −1.5590 −3.5 −1.6 −2.8348
Li −8.4175 −7.4860 −4.2469 −8.7 −4.2 −7.3352
Be −16.3982 −14.7162 −8.6995 −16.9 −8.5 −14.4472
B −27.5953 −24.9329 −15.2033 −28.4 −14.8 −24.3436
C −42.2886 −38.4132 −24.0078 −43.3 −23.4 −37.4202
N −60.7237 −55.4007 −35.3357 −62.1 −34.3 −54.0250
O −83.1215 −76.1146 −49.3893 −84.8 −47.8 −74.4613
F −109.6832 −100.7547 −66.3545 −111.7 −64.1 −99.0960
Ne −140.5945 −129.5054 −86.4042 −143.1 −83.4 −128.2335
a Spin-restricted LDA calculation.

all-electron KS density (Exc,LDA, VWN) around the Si site in
SiO with the densities from TGGA,PBE-TW (the Tran–Wesolowski
[34] GGA), TmcGGA,PBE2 (the PBE2 mcGGA [9]), and TTFvW ,α=1/9,1.
These approximate functionals form pairs. TGGA,PBE-TW pairs with
TTFvW ,α=1/9, while TTFvW ,α=1 pairs with TmcGGA,PBE2. This pairing
conforms to the expectations formed in considering the small-
s behavior of the respective enhancement factors. The pairing
also is interpretable directly from the near-nucleus repulsion
or attraction behavior of the various approximations. TGGA,PBE-TW

generates a vθ with a spurious negative singularity near the nuclei,
while TTFvW ,α=1/9 drastically lowers the von Weizsäcker lower
bound to Ts. Both lead to excess near-nucleus density. In contrast,
vθ,mcGGA,PBE2 has spurious positive nuclear site singularities [10].
Near the nuclei, however, vθ,mcGGA,PBE2 and vθ,TFvW ,α=1 match quite
well, as shown in Fig. 3. The result, shown in Fig. 2, is that these
two functionals give rather close to the same density. Observe
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Fig. 3. Pauli potentials vθ around the Si site in SiO from self-consistent all-
electron Kohn–Sham and OF-DFT calculations with the PBE2 mcGGA, TW GGA, and
TTFvW ,α=1/9,1 OFKE functionals.

Fig. 4. All-electron self-consistent Kohn–Sham and OF-DFT electron densities near
the Si site along the SiOmolecular axis. These are scaled by the factor 4π(|z|−R/2)2 ,
with R = 2.10 Å, the internuclear distance. This puts the origin of the scaling at the
Si site (0, 0, −1.05) Å. The O is out of the picture at (0, 0, +1.05) Å.

that the behavior of vθ in the vicinity of the nucleus for each
of these approximate functionals differs dramatically from that
of vθ obtained by inversion of the standard KS scheme. It is
that improper behavior which we believe causes the problems
with convergence of standard KS codes used with approximate
OFKE functionals. The positive near-nuclei singularities appear, in
particular, to pose numerical problems.

Details of the density near the Si site are provided in Fig. 4.
For purposes of display, the densities are weighted by a quasi-
radial factor with origin at the Si site, 4π(|z| − R/2)2. The proper
KS shell structure is missing, as is usual with single-point OFKE
functionals. The more repulsive nature of the pair TmcGGA,PBE2 and
TTFvW ,α=1 compared to TGGA,PBE-TW and TTFvW ,α=1/9 also is evident.
It is interesting that in the region −2.5 < z < 2.0TmcGGA,PBE2 does
give a weak mimicry of the outermost shell structure in Ts, unlike
the othermodels.We are uncertain as to how reliable or useful this
feature is.

Fig. 5 compares the behavior of EOF−DFT[n] as a function of
SiO bond length with standard KS results. One sees immediately
that the GGA and mcGGA forms introduce numerical difficulties
because of their dependence on the reduced density gradient
s, Eq. (14). Clearly there is a grid interval-size problem which
could be obviated by going to even denser grids but at obvious
computational cost. The known failure of TGGA,PBE-TW to give

Fig. 5. Total energy of the SiO molecule as a function of bond length
obtained from self-consistent all-electron Kohn–Sham and OF-DFT calculations
with Thomas–Fermi, Tran–Wesolowski (GGA) and PBE2 (mcGGA) kinetic energy
functionals. Kohn–Sham values are shown for comparison. Values are shifted to
a common zero by 363.076 (KS), 386.339 (TF+vW/9), 250.529 (TF+vW), 83.902
(GGA) and 241.564 (mcGGA) Hartree a.u.

binding [9] is evident. ETFvW ,α=1/9 apparently does not bind either,
in keepingwith the too-weakened lower bound just discussed. Full
TFvWD and EmcGGA,PBE2 are fairly close, with the mcGGA being the
best of the lot with respect to equilibrium bond length.

3.3. Simple analysis of the difficulty

The barrier to use of a standard KS code to solve Eq. (8) can
be traced to the near-nucleus repulsion of vθ . As displayed in
Fig. 3, the exact vθ is strongly repulsive in a fairly small region
around the nuclear site and can have rather sharp structure within
a radius of about 1 bohr of a nuclear site. In contrast, some simple
approximations which are properly positive definite, including
our mcGGA, actually are singular at the nuclei; again see Fig. 3.
Such strong repulsion overwhelms the attractive vxc. That figure
also shows that some approximations deliver Pauli potentials with
negative nuclear-site singularities. We consider that case below.
First, however, the simplest example will suffice to illustrate the
problem with properly positive vθ . Pick Tθ = TTF, Eq. (11), and Exc
to be simplest Slater exchange:

Exc = cx

∫

n4/3(r)d3r

cx = −
3

4

(

3

π

)1/3

. (16)

Then in Eq. (8), the potentials become

vθ =
1

2
(3π2)2/3n2/3(r)

vKS = vH + vNe + vxc

vxc = −
(

3

π

)1/3

n1/3(r). (17)

A hydrogen-like density,

nH(r) :=
N4

e

π
exp(−2Ner), (18)

obeys the Kato cusp condition near the nucleus [16,41–44], hence
is useful for testing. At the nucleus, this density yields the ratio of
potentials

vxc(0) + vθ (0)

|vxc(0)|
= −1 + 3.318004N4/3

e . (19)
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For Ne = 6, this ratio is already 35.2. By Ne = 10 it is 70.5.
Additional simple calculations with the potential which appears in
Eq. (8) without the positive Hartree contribution, that is vNe(r) +
vθ (r) + vxc(r), illustrate the point. At small r with Ne = 6, that
potential becomes positive for r > 0.028 Bohr. For Ne = 10 it
is positive for r > 0.011 Bohr. These little exercises illustrate
why the use of an ordinary KS code becomes so difficult. Such
peculiar behavior is quite different from what is encountered in
the ordinary KS problem.

From the perspective of numerical stability, the case of a
vθ which has a spurious negative singularity near each nuclear
site, e.g. PBE-TW, is at least as bad if not worse. As a site is
approached, such potentials first are increasingly repulsive, then
plunge abruptly into the negative singularity; see Fig. 3.

4. Pseudo-potential solutions of the OF-DFT Euler equation

Having demonstrated the difficulties with solving the OF-
DFT Euler–Lagrange problem with a modified KS eigenvalue
code, we turn to the use of direct Euler–Lagrange minimization.
The specific objective is to exploit the numerical methodology
in the Profess code [27,28]. Written originally for use with
two-point functionals, Profess performs OF-DFT calculations by
minimization of the Euler–Lagrange equation as a functional of
n(r) under periodic boundary conditions. It uses a numerical 3D
mesh and FFTs. As published, the code includes the TF, vW, and
TFvW, α functionals as well as the Wang–Teter (WT) [45], and
Wang–Govind–Carter (WGC) [46] OFKE functionals. The PZ and
PBE Exc functionals are implemented in Profess. For this study, we
added the Tran–Wesolowski GGA [34] and our PBE2 mcGGA [9]
OFKE functionals.

As is the case with standard KS calculations done in a plane-
wave basis, Profess relies upon pseudopotential (PP) techniques
to screen the nuclear–electron potential cusp and exclude
chemically inactive core states. Though OF-DFT has no problem
with core states and the density (and its square root) is a
comparatively unstructured, smooth function, regularization of
the nuclear–electron interaction singularity still is a requisite for
an efficient implementation.

High-quality pseudopotentials developed for conventional KS
calculations generally are non-local, in the specific sense that they
contain projection operators which provide different potentials
for different orbital angular momenta. That explicit orbital depen-
dence makes non-local pseudopotentials (NLPP) inapplicable in
OF-DFT calculations. Instead, local pseudopotentials (LPP), i.e., of
the form of a simple multiplicative operator which is the same
for all orbitals, must be developed. Profess requires an LPP in real
or reciprocal space as input. Observe that this limitation to local
form is an additional approximation, over and beyond the PP itself,
which has accuracy limitation implications for both conventional,
orbital-based KS or OF-DFT implementations.

In addition to their simplicity, there is a formal advantage of
LPPs which is at least of peripheral interest here. Calculations
with local PPs are within the framework of the standard KS
scheme, which assumes a local effective potential. The NLPP
case obviously does not meet that assumption. Although the
Hohenberg–Kohn theorem has been extended to the case of a non-
local external potential [47], the exchange–correlation energy in
that case becomes a functional of the one-particle reduced density
matrix instead of a functional n(r) alone.

Many methods have been proposed to develop LPPs. Among
them we mention (i) empirical (or model) LPPs, for example in
Refs. [48–52]; (ii) local potentials obtained from non-local ones,
for example, by use of just one l-channel from an NLPP as an
LPP (for example, Ref. [53]); (iii) LPPs constrained to reproduce
atomic properties, eigenvalues, or pseudo-density, etc., which

follow from a (presumably superior) NLPP (for example, Ref. [54]),
and finally (iv) local PPs derived to reproduce some bulk property
values, either experimental or those predicted byNLPP calculations
[54–56].

4.1. Local pseudopotentials for OF-DFT calculations

4.1.1. Development

Some time ago, an iterative procedurewas developed [57,58] to
solve the inverse problem of determining the KS effective potential
vKS(r) from a given density n(r). Subsequently, we [59] introduced
and tested an improvement. In the case of Li, however, both
versions share a problem. For a single valence orbital (singly or
doubly occupied) the solution of the inverse problem is trivial and
known. The local pseudopotential is equal to the s-channel of the
NLPP, vlocal(r) = vl=0(r). Hence the LPP contains no information
about the l > 0 channels of the NLPP. Those channels are critical
in crystalline binding.

Therefore, to include information about all l channels of
the reference NLPP, we consider a sort of normalized linear
combination of l components of that NLPP,

vlmax(r) =
lmax
∑

l=0

clvl(r)

/ lmax
∑

l=0

cl (20)

where the parameters {cl} are to be adjusted to fit selected
equilibrium bulk material properties calculated with the reference
KS method. This particular method of LPP generation amounts to
a mixture of methods (ii) and (iv) described at the outset of this
section.

In the present case, we simply took the bcc Li lattice constant
as predicted by a standard KS calculation with PBE [35] Exc, and
the plane wave (PW) basis set (see Table 4, namely a = 3.44 Å).
Components of the Troullier–Martins norm-conserving NLPP were
used in Eq. (20). For generation of the NLPP with PBE XC, we
took the core radius to be 2.45 a.u. The parameters {cl} in
Eq. (20), for the s, p, and d channels respectively, were determined
by constraining a KS calculation with the LPP equation (20) to
reproduce the reference optimized bcc Li lattice constant value.
Those KS calculations were done with PBE XC in the Siesta

code [60] and a DZP numerical atomic orbital (NAO) basis set. The
optimized parameter values are c0 = 0.69, c1 = 0.34, c2 = 0.10.
We designate this LPP as vGGA,spd1. To generate the LDA local
LPP, vLDA,spd1 for the Perdew–Zunger [61] LDA XC functional,
components of the LDA NLPP and the same set of channel-mixing
parameters were used in Eq. (20).

An alternative LPP formwhichwe also studied is amodification
of the potential proposed by Heine and Abarenkov [50], Goodwin
et al. [51]. In real space, the Heine–Abarenkov model potential is

vmod (r) =
{

−A, r < rc
−Z/r, r ≥ rc

(21)

where A is a constant, rc is the core radius, and Z is the core charge.
The model potential in reciprocal space is given by

vmod (q) =
−4π

Ωq2
[(Z − Arc) cos(qrc) + (A/q) sin(qrc)], (22)

where Ω is the unit cell volume. In Ref. [51], this potential was
multiplied by a smoothed step function f (q) = exp[(−q/qc)

6] to
reduce spurious oscillations in vmod (q) and to ensure rapid decay
of vmod (q) at large wave-vectors. Those oscillations are caused by
the discontinuity of the real-space potential at the core radius.
Here, the parameter qc was chosen as suggested in Ref. [51],
namely, to equal the second zero position of vmod (q).
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Fig. 6. Real space pseudopotentials for Li: local vGGA,spd1 , and different l-
components of the non-local Troullier–Martin (TM) pseudopotential. Pseudoden-
sities generated with local and non-local PPs are shown for comparison.

Fig. 7. Reciprocal space local pseudopotentials for Li: vGGA,spd1 and vGGA,mod1 .

To obtain counterparts of the local potentials vGGA,spd1 and
vLDA,spd1, Eq. (21) in the simple modified Heine–Abarenkov
model form, the two parameters, A and rc , were determined by
minimization of

∫

dr|vspd1(r)−vmod1(r)|2. This yields A = 0.45499

Hartree, rc = 2.2261 Bohr, gc = 2.86 Bohr−1 for vGGA,mod1 and
A = 0.45376 Hartree, rc = 1.8818 Bohr, gc = 2.94 Bohr−1 for
vLDA,mod1. The local potentials vGGA,spd1 and vLDA,spd1 in reciprocal
space aremultiplied by the same smoothed step function f (q)with
qc values equal to 2.95 and 3.25 Bohr−1 respectively.

Fig. 6 shows the vGGA,spd1 LPP in real space in comparison with
the NLPP l channels, along with the two pseudodensities which
result. Fig. 7 shows the vGGA,spd1 and vGGA,mod1 LPPs in reciprocal
space.

4.1.2. KS tests of local pseudopotentials

Kohn–Sham calculations with the LPPs were performed using
the Abinit PW code [62] with PZ and PBE exchange–correlation
functionals. We also used Siesta with the same exchange–
correlation functionals and a 2s22p2 numerical atomic orbital
basis set (8 NAO per atom). Table 4 shows the equilibrium
lattice constants and bulk moduli for the various LPPs. Those
results are compared to the Kohn–Sham calculations performed
with the non-local projector augmented wave (PAW) scheme (as
implemented in Vasp [63] and Abinit) and TM norm-conserving
pseudopotentials with core correction [64]. The lattice constants
and bulk moduli reported in Table 4 were obtained by fitting

Table 4

Kohn–Sham lattice constant (Å) and bulk modulus (GPa) for bcc Li calculated using
Vasp PW PAW schemes, Abinit PW PAW and local pseudopotentials, Siesta non-
local Troullier–Martins [64,65] and local pseudopotentials. Orbital-free calculations
used TmcGGA,PBE2 , TTFvW ,α=1 , TGGA,PBE-TW , and TTFvW ,α=1/9 kinetic energy functionals
in combination with Exc,LDA,PZ and Exc,GGA,PBE with local pseudopotentials vLDA,spd1 ,
vGGA,spd1 , vLDA,mod1 and vGGA,mod1 . Conventional KS calculations were done with a
two-atom unit cell and 7 × 7 × 7 (Vasp and Siesta) or 9 × 9 × 9 (Abinit) k-mesh.
The Siesta basis set was 2s22p2 (8 NAO per atom). Orbital-free calculations used a
128-atom supercell.

Method PP LDA GGA

a B a B

Kohn–Sham
PW (Vasp) PAW 3.37 15.0 3.45 13.7
PW (Abinit) PAW 3.37 15.1 3.44 13.9
NAO (Siesta) TM 3.37 15.6 3.44 14.3

Kohn–Sham
PW (Abinit) spd1a 3.37 14.8 3.44 13.8
NAO (Siesta) spd1a 3.38 14.9 3.45 13.9

Kohn–Sham
PW (Abinit) mod1b 3.37 14.8 3.44 13.9
NAO (Siesta) mod1b 3.38 14.9 3.44 13.9

OF-DFT
mcGGA spd1c 3.37 16.2 3.43 15.4
TF+vW spd1c 3.37 16.0 3.43 15.2
GGA spd1c 3.37 11.8 3.46 11.8
TF+1/9vW spd1c 3.37 11.4 3.46 11.4

OF-DFT
mcGGA mod1d 3.36 16.2 3.43 15.2
TF+vW mod1d 3.37 15.9 3.43 14.9
GGA mod1d 3.42 10.8 3.49 10.1
TF+1/9vW mod1d 3.42 10.3 3.49 9.5
a Real space potential defined by Eq. (20) (see text for details).
b Real space potential defined by Eq. (21) (see text for details).
c Reciprocal space potential defined by Fourier–Bessel transform of local

potential Eq. (20) and multiplied by f (q) function (see text for details).
d Reciprocal space potential defined by Eq. (22) multiplied by f (q) function (see

text for details).

the calculated total energies per cell to the stabilized jellium
model equation of state (SJEOS, [66]). All the local PPs reproduce
the PAW results rather closely for both lattice constant and bulk
modulus. The bulk moduli calculated using NAO orbitals and norm
conserving TM pseudopotentials are slightly larger than the PAW
plane wave results.

As a check against an all-electron localized-orbital calculation,
we did high-quality GTO-basis KS calculations (10s6p3d basis)
with the GTOFF code [37]. For Exc,PZ and Exc,PBE, we obtained
optimized bcc Li lattice parameters of 3.360 and 3.435 Å, respec-
tively, essentially the same as from the SiestaNAO and planewave
PAW calculations.

4.2. Pseudopotential OF-DFT tests

4.2.1. OF-DFT comparison for bcc Li

For the OF-DFT bcc Li studies, we used a 128-atom supercell
in Profess with the vspd1, vmod1 LPPs just described and both
Exc,LDA and Exc,GGA. We did the Profess calculations for the
TTF, TTFvW ,α=1,1/9, TGGA,PBE-TW, and TmcGGA,PBE2 functionals. The
computed Etot/atom values are plotted as a function of bcc lattice
constant in Fig. 8.

One sees that, asmight be expected, the pure TF+XCmodel fails
to bind. The pairing of other functionals, which we have discussed
already, reappears. TTFvW ,α=1 pairswith TmcGGA,PBE2, and TTFvW ,α=1/9

pairs with TGGA,PBE-TW. The former pair gives a better description
of both the lattice constant and bulk modulus than the latter pair.
The computed equilibrium lattice constants and bulk moduli are
shown in Table 4.
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Fig. 8. Energy per atom vs. lattice constant for bulk bcc Li. OF-DFT results
for TTF , TTFvW,α , TGGA,PBE-TW , and TmcGGA,PBE2 compared to the KS values. OF-DFT
calculations with 128-atom supercell, vGGA,mod1 LPP, and Exc,GGA,PBE . KS calculations
two-atom unit cell with non-local PAW PBE pseudopotentials (Vasp) and with
Troullier–Martin PPs with PBE exchange–correlation, 2s22p2 basis set (8 NAO per
atom) (Siesta).

Fig. 9. As in Fig. 8 for bulk Al but with a four-atom supercell. Siesta calculations
performed with standard DZP basis set. The Goodwin et al. [51] local model
pseudopotential was used in the orbital-free calculations. See text.

The equilibrium lattice constants predicted by the OF-DFT
calculations with vspd1 LPPs agree well with the KS PAW results.
When the vmod1 model pseudopotential is used, the lattice constant
from the OF-DFT calculations with TGGA,PBE-TW and TTFvW ,α=1,1/9 is
an over-estimate of about 1% for both LDA and GGA XC functionals.
This pair of OFKE functionals also predicts low bulk modulus
values, again for both LDA and GGA XC cases. The mcGGA and
TF+vW KE functionals do very well for the lattice parameter and
slightly overestimate the bulk modulus value.

4.2.2. OF-DFT comparison for fcc Al

The utility of existing LPPs for OF-DFT calculations obviously
is a pertinent issue. To explore that, we considered bulk Al. The
model LPP in the form of Eq. (22) with parameters from Goodwin
et al. [51]was used in OF-DFT calculations. As before, thiswas done
with the five OF-KE functionals, but here only in combination with
the PBE GGA XC functional. Fig. 9 shows Profess results for a four-
atom fcc cell comparedwith conventional KS results obtainedwith
Vasp in the same cell with a 5 × 5 × 5 k-mesh calculation. The
GGA and mcGGA KE functionals introduce numerical instability at
expanded geometry. Aside from that, one again observes the same
pairing of KE functionals as before. The TGGA,PBE-TW and TTFvW ,α=1/9

functionals do not produce detectable minima. The TmcGGA,PBE2 and

TTFvW ,α=1 pair predict equilibrium lattice constants (a = 4.05 and
4.06 Å correspondingly), very close to the KS results (a = 4.05
and 4.09 Å for PAW Vasp and NAO DZP Siesta calculations
respectively). However, the shape of the twoOF-DFT energy curves
differs perceptibly from the KS results. In particular, the OF-DFT
functionals predict a softer solid.

5. Summary discussion

Several clear results emerge from this study. First, use of
standard KS codes to solve the OF-DFT Euler equation as amodified
KS eigenvalue problem is problematic at best. At least for the all-
electron case, it seems implausible as a productive route to routine
OF-DFT calculations. One could speculate that a better-behaved
one-point approximate OFKE functional thanmcGGAmight not be
such a challenge to standard KS algorithms. The repulsive nature
of even the exact vθ (recall Fig. 3) makes that outcome seem rather
doubtful.

Second, even if a particular approximate one-point OFKE
functional has singular behavior, it is possible that such a
functional can deliver physically realistic results. Those results
can be obtained with a sufficiently refined direct Euler–Lagrange
solution of the effective KS equation, Eq. (2). Thus, we are able to
extract useful, self-consistent solutions for the recently developed
simple mcGGA OFKE functional as well as the Tran–Wesolowski
GGA. These solutions enable understanding of the consequence
of the singular behavior of their respective Pauli potentials. The
Tran–Wesolowski GGA has attractive singularities which cause
strong overestimates of the self-consistent density near the
nuclear sites. In contrast, the properly positive mcGGA OFKE Pauli
potential has positive singularities near the nuclei and the density
is underestimated there.

Third, we have presented a procedure for developing a local
pseudopotential for OF-DFT calculations by doing a multi-channel
weighting of a corresponding non-local pseudopotential. The
weighting is determined by KS calculations with the LPP such
that the equilibrium non-LPP lattice parameter is reproduced. We
showed that this yields a very good LPP. A remaining challenge
for the OF-DFT agenda is to construct a good LPP from an existing
non-LPP without appeal to any bulk or aggregate system KS
calculations.

Fourth, once a suitable local pseudopotential procedure is
defined, the progress made on computational solution of the
minimization problem for two-point OFKE approximations can be
appropriated directly for usewith one-pointOFKE approximations.
Even so, we do observe numerical instabilities in the case of the
mcGGA and GGA OFKE functionals.
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