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a b s t r a c t

As the foundation for a new computational implementation, we survey the calculation of the complex
electrical conductivity tensor based on the Kubo–Greenwood (KG) formalism (Kubo, 1957; Greenwood,
1958), with emphasis on derivations and technical aspects pertinent to use of projector augmented wave
datasets with plane wave basis sets (Blöchl, 1994). New analytical results and a full implementation of
the KG approach in an open-source Fortran 90 post-processing code for use with Quantum Espresso
(Giannozzi et al., 2009) are presented. Named KGEC ([K]ubo [G]reenwood [E]lectronic [C]onductivity),
the code calculates the full complex conductivity tensor (not just the average trace). It supports use of
either the original KG formula or the popular one approximated in terms of a Dirac delta function. It
provides both Gaussian and Lorentzian representations of the Dirac delta function (though the Lorentzian
is preferable on basic grounds). KGEC provides decomposition of the conductivity into intra- and inter-
band contributions as well as degenerate state contributions. It calculates the dc conductivity tensor
directly. It is MPI parallelized over k-points, bands, and plane waves, with an option to recover the plane
wave processes for their use in band parallelization as well. It is designed to provide rapid convergence
with respect to k-point density. Examples of its use are given.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Calculation of transport properties ofmatter is a venerable but still very active research area in part because of the physical significance
of transport coefficients and in part because of the major theoretical and computational challenges involved. The computational goal of
the present work is to design algorithms for the calculation of the Kubo–Greenwood (KG) electrical conductivity [1,2] and implement
them as a post-processing tool for the widely used Quantum Espresso [3] (QE) code. We begin by reviewing the state of the art of KG
electrical conductivity calculations, with emphasis upon derivations and their technical implications. The computational context of the
formulation is projector augmented wave (PAW) datasets used with plane wave (PW) basis sets [4] for the solution of the Kohn–Sham
(KS) equations [5]. The resultant new program is named KGEC, from the initial letters of Kubo–Greenwood Electrical Conductivity.

Though the primary goal was computational, that reconsideration of the underlying analysis also has proved fruitful, as will become
apparent, for example, in the treatment of contributions of intra-band and degenerate band transitions to the conductivity. Beyond the
obvious goal of providing new capability for users of QE, the project also was motivated by the opportunity to include finite-temperature
effects via free energy density functionals [6,7] and to provide benefits from orbital-free density functional theory (DFT) molecular
dynamics via the Profess@QEpackage [8]. The coupling of KGECwith these developments opens awide range of possibilities for simulations
of systems over a wide range of state conditions, e.g. warm dense matter.

Startingwith the KG general formula in the next section (Section 2)we derive in detail all of themathematical expressions necessary for
a full KG implementation. In Section 3 we provide the essential ingredients of the PAW method, followed by derivation of the expression
for the matrix elements of the gradient operator (Section 3.1). Next, Section 4 provides an overview of the work flow in KGEC, its
installation, execution, input, output andMPI parallelization.Wealso present results fromvarious tests in Section 5, including a comparison
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with similar Abinit calculations [9]. Underlying difficulties including numerical problems are discussed in Section 6, while remarks and
comments about future work are in Section 7.

2. The Kubo–Greenwood electrical conductivity formula

2.1. General expression

The KG expression [1,2] for the frequency-dependent complex electrical conductivity tensor is

σ (ω) = i
2e2h̄3

m2
eV

∑
m

∑
m′

(f (ϵm′ ) − f (ϵm))
(ϵm − ϵm′ )

⟨m|∇|m′
⟩⟨m′

|∇|m⟩

ϵm − ϵm′ − h̄ω + iδ/2
(1)

or in more compact form

σ (ω) = i
2e2h̄3

m2
eV

∑
m

∑
m′

∆fm′m

∆ϵmm′

⟨m|∇|m′
⟩⟨m′

|∇|m⟩

(∆ϵmm′ − h̄ω + iδ/2)
. (2)

Before proceeding, note an unconventional aspect compared to the usual KG presentation. In both Eqs. (1) and (2), the expression
⟨m|∇|m′

⟩⟨m′
|∇|m⟩ is a dyadic in the coordinate indices of the gradients. For didactic clarity, in a Cartesian system, Eq. (2) becomes

σx,z(ω) = i
2e2h̄3

m2
eV

∑
m

∑
m′

∆fm′m

∆ϵmm′

⟨m|
∂
∂x |m

′
⟩⟨m′

|
∂
∂z |m⟩

(∆ϵmm′ − h̄ω + iδ/2)
(3)

for the x–z element of the conductivity tensor. The more familiar version comes from taking the trace.
In these expressions m, m′ label non-spin-polarized single-particle states with ϵm, ϵm′ the corresponding eigenvalues and associated

Fermi–Dirac occupation numbers f (ϵm), f (ϵm′ ). (For simplicity of notation, the temperature is suppressed for now.) In practice and in our
implementation, the states and occupations are from a KS DFT calculation, though the analysis presented in this section and the next one
does not depend upon that particular choice of mean-field Hamiltonian. (Note that because of the spin-unpolarized formulation, the net
occupation of each KS orbital is 2f (ϵm).) Then ∆ϵmm′ = ϵm − ϵm′ and ∆fm′m = f (ϵm′ ) − f (ϵm). The constants e, h̄,me and V are the electron
charge, Planck’s constant, electronmass, and system volume, respectively. The iδ/2 is an imaginary factor related to damping or relaxation
effects. In the Drude model for the electrical conductivity, it is identified with the inverse of the average inter-collision time.

If the matrix element dyadic product ⟨m|∇|m′
⟩⟨m′

|∇|m⟩ is real, the real and imaginary parts of σ (ω) can be separated by multiplying
and dividing by (∆ϵmm′ − h̄ω − iδ/2), leading to

σ (ω) = σ1(ω) + iσ2(ω), (4)

with

σ1(ω) =
2e2h̄3

m2
eV

∑
m

∑
m′

∆fm′m

∆ϵmm′

⟨m|∇|m′
⟩⟨m′

|∇|m⟩
δ/2

(∆ϵmm′ − h̄ω)2 + δ2/4
(5)

and

σ2(ω) =
2e2h̄3

m2
eV

∑
m

∑
m′

∆fm′m

∆ϵmm′

⟨m|∇|m′
⟩⟨m′

|∇|m⟩
(∆ϵmm′ − h̄ω)

(∆ϵmm′ − h̄ω)2 + δ2/4
. (6)

Again be reminded that both σ1 and σ2 are tensors, not scalars.
Commonly it is argued that for small δ, the Lorentzian in σ1(ω) behaves like a Dirac delta function, that is

δ/2
(∆ϵmm′ − h̄ω)2 + δ2/4

≈ πδ(∆ϵmm′ − h̄ω), (7)

which allows σ1(ω) to be written as

σ1(ω) =
2πe2h̄3

m2
eV

∑
m

∑
m′

∆fm′m

∆ϵmm′

⟨m|∇|m′
⟩⟨m′

|∇|m⟩δ(∆ϵmm′ − h̄ω), (8)

or

σ1(ω) =
2πe2h̄2

m2
eVω

∑
m

∑
m′

∆fm′m⟨m|∇|m′
⟩⟨m′

|∇|m⟩δ(∆ϵmm′ − h̄ω). (9)

Both forms commonly are encountered.Wewill label Eq. (8) ‘‘theDirac-delta form’’ (notation ‘‘D-d’’) or ‘‘the exact formor expression’’. Note
that if one starts with it and represents the Dirac delta function by a Lorentzian, the original Kubo–Greenwood expression is recovered.
Similarly Eq. (9)will be labeled ‘‘the approximated formula or expression’’ because one cannot recover the exact Kubo–Greenwood formula
from it by simple substitution for the delta function.

In computation, the Dirac delta function in σ1 often is represented by a Gaussian, even though its natural representation is a Lorentzian.
Distinctions among these representations should disappear as δ → 0, but in practice they are manifest even for a small, non-zero δ. We
return to that in the discussion of numerical tests in Section 5. Notice also that, becauseω > 0 the Dirac delta function in Eq. (9) selects only
states with positive energy differences, but the original expression included contributions from states with negative energy differences.
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That discrepancy can be resolved by introduction of the δ(∆ϵmm′ + h̄ω) term as well. Another problem is that only non-degenerate inter-
band contributions are included in the approximated formula. We return to that below as well.

2.2. KG formula in the Bloch picture

We focus on periodic systems, so the state indices m and m′ become band index and Brillouin zone wave vector pairs n, k and n′, k′

for Bloch states. Because the gradient matrix elements between k and k′ states are zero if k ̸= k′, the KG formulae, (Eqs. (5) and (6)),
become

σ̃1(ω) =
2e2h̄3

m2
eΩ

∑
k

wk
∑
nn′

∆fn′k,nk

∆ϵnk,n′k
⟨Ψnk|∇|Ψn′k⟩⟨Ψn′k|∇|Ψnk⟩

δ/2
(∆ϵnk,n′k − h̄ω)2 + δ2/4

(10)

and

σ̃2(ω) =
2e2h̄3

m2
eΩ

∑
k

wk
∑
nn′

∆fn′k,nk

∆ϵnk,n′k
⟨Ψnk|∇|Ψn′k⟩⟨Ψn′k|∇|Ψnk⟩

(∆ϵnk,n′k − h̄ω)
(∆ϵnk,n′k − h̄ω)2 + δ2/4

. (11)

Here Ω is the unit cell volume and wk are the k-point integration weights. We have also used a tilde ˜ atop the σ s to highlight that they
both become complex because the matrix element tensor product no longer is necessarily real (since the Bloch wave functions are, in the
most general case, complex).

Both σ1 and σ2 can be recovered by means of the elementary relations σ1(ω) = ℜ(σ̃1 + iσ̃2), σ2(ω) = ℑ(σ̃1 + iσ̃2) and use of the fact
that the real part of σ must be even and the imaginary part odd with respect to ω. It follows that

σ1(ω) = ℜ(σ̃1(ω)) − ℑ(σ̃2(ω)) = ℜ(σ̃1(ω))

=
2e2h̄3

m2
eΩ

∑
k

wk
∑
nn′

∆fn′k,nk

∆ϵnk,n′k
ℜ(⟨Ψnk|∇|Ψn′k⟩⟨Ψn′k|∇|Ψnk⟩)

δ/2
(∆ϵnk,n′k − h̄ω)2 + δ2/4

(13)

and

σ2(ω) = ℑ(σ̃1(ω)) + ℜ(σ̃2(ω)) = ℜ(σ̃2(ω))

=
2e2h̄3

m2
eΩ

∑
k

wk
∑
nn′

∆fn′k,nk

∆ϵnk,n′k
ℜ(⟨Ψnk|∇|Ψn′k⟩⟨Ψn′k|∇|Ψnk⟩)

(∆ϵnk,n′k − h̄ω)
(∆ϵnk,n′k − h̄ω)2 + δ2/4

. (15)

Sum rules also emerge, to wit∑
k

wk
∑
nn′

∆fnk,n′k

∆ϵnk,n′k
ℑ(⟨Ψnk|∇|Ψn′k⟩⟨Ψn′k|∇|Ψnk⟩)

δ/2
(∆ϵnk,n′k − h̄ω)2 + δ2/4

= 0 (16)

and ∑
k

wk
∑
nn′

∆fnk,n′k

∆ϵnk,n′k
ℑ(⟨Ψnk|∇|Ψn′k⟩⟨Ψn′k|∇|Ψnk⟩)

(∆ϵnk,n′k − h̄ω)
(∆ϵnk,n′k − h̄ω)2 + δ2/4

= 0. (17)

We return to them below.
In correspondence with the general KG formulae of the preceding section, for the solid we have the D-d form

σ D−d
1 (ω) =

2πe2h̄3

m2
eΩ

∑
k

wk
∑
nn′

∆fn′k,nk

∆ϵnk,n′k
ℜ(⟨Ψnk|∇|Ψn′k⟩⟨Ψn′k|∇|Ψnk⟩) δ(∆ϵnk,n′k − h̄ω) (18)

and the approximated form

σ a
1 (ω) =

2πe2h̄2

m2
eΩω

∑
k

wk
∑
nn′

∆fn′k,nk ℜ(⟨Ψnk|∇|Ψn′k⟩⟨Ψn′k|∇|Ψnk⟩) δ(∆ϵnk,n′k − h̄ω). (19)

For calculations it may be numerically advantageous to enforce the even parity of σ1 and use

σ1,calculated(ω) =
1
2
[σ1(ω) + σ1(−ω)]. (20)

2.2.1. Intra-band, degenerate state, and inter-band contributions
Practical use of the foregoing conductivity formulae requires resolution of the potential problems associated with ∆ϵnk,n′k going to

zero. For that we return to Eq. (13) and separate the sums over band indices n and n′ into one over n = n′, a second one for n ̸= n′ and
∆ϵnk,n′k = 0, and a third sum for n ̸= n′ and ∆ϵnk,n′k ̸= 0, To treat the singularities in the first two sums, we add an infinitesimal energy
ε and consider ε → 0. Details are∑

nn′

∆fn′k,nk

∆ϵnk,n′k
ℜ(⟨Ψnk|∇|Ψn′k⟩⟨Ψn′k|∇|Ψnk⟩)

δ/2
(∆ϵnk,n′k − h̄ω)2 + δ2/4

= lim
ε→0

∑
n

f (ϵnk) − f (ϵnk + ε)
ε

ℜ(⟨Ψnk|∇|Ψnk⟩⟨Ψnk|∇|Ψnk⟩)
δ/2

(ε − h̄ω)2 + δ2/4
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+ lim
ε→0

∑
n̸=n′

ϵnk=ϵn′k

f (ϵnk) − f (ϵnk + ε)
ε

ℜ(⟨Ψnk|∇|Ψn′k⟩⟨Ψn′k|∇|Ψnk⟩)
δ/2

(ε − h̄ω)2 + δ2/4

+

∑
n̸=n′

ϵnk ̸=ϵn′k

∆fn′k,nk

∆ϵnk,n′k
ℜ(⟨Ψnk|∇|Ψn′k⟩⟨Ψn′k|∇|Ψnk⟩)

δ/2
(∆ϵnk,n′k − h̄ω)2 + δ2/4

. (21)

Taking the limits reduces the expression to∑
nn′

∆fn′k,nk

∆ϵnk,n′k
ℜ(⟨Ψnk|∇|Ψn′k⟩⟨Ψn′k|∇|Ψnk⟩)

δ/2
(∆ϵnk,n′k − h̄ω)2 + δ2/4

= −

∑
n

∂ f (ϵnk)
∂ϵnk

ℜ(⟨Ψnk|∇|Ψnk⟩⟨Ψnk|∇|Ψnk⟩)
δ/2

(h̄ω)2 + δ2/4

−

∑
n̸=n′

ϵnk=ϵn′k

∂ f (ϵnk)
∂ϵnk

ℜ(⟨Ψnk|∇|Ψn′k⟩⟨Ψn′k|∇|Ψnk⟩)
δ/2

(h̄ω)2 + δ2/4

+

∑
n̸=n′

ϵnk ̸=ϵn′k

∆fn′k,nk

∆ϵnk,n′k
ℜ(⟨Ψnk|∇|Ψn′k⟩⟨Ψn′k|∇|Ψnk⟩)

δ/2
(∆ϵnk,n′k − h̄ω)2 + δ2/4

. (22)

The result is

σ1(ω) = −
2e2h̄3

m2
eΩ

∑
k

wk

[∑
n

∂ f (ϵnk)
∂ϵnk

ℜ(⟨Ψnk|∇|Ψnk⟩⟨Ψnk|∇|Ψnk⟩)
δ/2

(h̄ω)2 + δ2/4

+

∑
n̸=n′

ϵnk=ϵn′k

∂ f (ϵnk)
∂ϵnk

ℜ(⟨Ψnk|∇|Ψn′k⟩⟨Ψn′k|∇|Ψnk⟩)
δ/2

(h̄ω)2 + δ2/4

−

∑
n̸=n′

ϵnk ̸=ϵn′k

∆fn′k,nk

∆ϵnk,n′k
ℜ(⟨Ψnk|∇|Ψn′k⟩⟨Ψn′k|∇|Ψnk⟩)

δ/2
(∆ϵnk,n′k − h̄ω)2 + δ2/4

]
. (23)

Similarly for σ2 we have

σ2(ω) = −
2e2h̄3

m2
eΩ

∑
k

wk

[∑
n

∂ f (ϵnk)
∂ϵnk

ℜ(⟨Ψnk|∇|Ψnk⟩⟨Ψnk|∇|Ψnk⟩)
h̄ω

(h̄ω)2 + δ2/4

+

∑
n̸=n′

ϵnk=ϵn′k

∂ f (ϵnk)
∂ϵnk

ℜ(⟨Ψnk|∇|Ψn′k⟩⟨Ψn′k|∇|Ψnk⟩)
h̄ω

(h̄ω)2 + δ2/4

−

∑
n̸=n′

ϵnk ̸=ϵn′k

∆fn′k,nk

∆ϵnk,n′k
ℜ(⟨Ψnk|∇|Ψn′k⟩⟨Ψn′k|∇|Ψnk⟩)

(∆ϵnk,n′k − h̄ω)
(∆ϵnk,n′k − h̄ω)2 + δ2/4

]
. (24)

The occupation number derivatives ∂ f (ϵnk)/∂ϵnk have been discussed in the closely related setting of density functional perturbation
theory [10] and in consideration of intra-band contributions in the KG context [11]. So far as we can tell, a full treatment for the KG
formalism leading to the appearance of such derivatives from both intra-band transitions and from degeneracies has not been presented.
Note that there has been work on deriving the intra-band contributions using a band dispersion linearization technique [12].

2.2.2. Drude and dc components
A brief detour is useful. If the inter-band, non-degenerate contribution is negligible for small ω, then only the first two sums in Eq. (23)

contribute to the total and therefore we can write

σ D
1 (ω) = −

2e2h̄3

m2
eΩ

δ/2
(h̄ω)2 + δ2/4

×

∑
k

wk

[∑
n

∂ f (ϵnk)
∂ϵnk

ℜ(⟨Ψnk|∇|Ψnk⟩⟨Ψnk|∇|Ψnk⟩)

+

∑
n̸=n′

δϵnkϵn′k

∂ f (ϵnk)
∂ϵnk

ℜ(⟨Ψnk|∇|Ψn′k⟩⟨Ψn′k|∇|Ψnk⟩)
]
. (25)

If we identify the average inter-collision time as

τ = 2h̄/δ (26)
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and the effective charge-to-mass ratio as(
ne

me

)
eff

= −
2e2h̄2

m2
eΩ

∑
k

wk

[∑
n

∂ f (ϵnk)
∂ϵnk

ℜ(⟨Ψnk|∇|Ψnk⟩⟨Ψnk|∇|Ψnk⟩)

+

∑
yn̸=n′

δϵnkϵn′k

∂ f (ϵnk)
∂ϵnk

ℜ(⟨Ψnk|∇|Ψn′k⟩⟨Ψn′k|∇|Ψnk⟩)

⎤⎦ , (27)

then Eq. (25) becomes the Drude expression [13,11]

σ D
1 (ω) =

(
ne
me

)
eff

τ

1 + (ωτ )2
. (28)

The limit ω → 0 yields the direct current (dc) conductivity tensor in the Drude approximation

σ D
dc = −

2e2h̄2τ

m2
eΩ

∑
k

wk

[∑
n

∂ f (ϵnk)
∂ϵnk

ℜ(⟨Ψnk|∇|Ψnk⟩⟨Ψnk|∇|Ψnk⟩)

+

∑
n̸=n′

δϵnkϵn′k

∂ f (ϵnk)
∂ϵnk

ℜ(⟨Ψnk|∇|Ψn′k⟩⟨Ψn′k|∇|Ψnk⟩)
]
. (29)

2.2.3. Exact dc component
Without invoking the Drude approximation, simply taking the limit ω → 0 in Eq. (23) gives

σdc = −
2e2h̄3

m2
eΩ

∑
k

wk

[2
δ

∑
n

∂ f (ϵnk)
∂ϵnk

ℜ(⟨Ψnk|∇|Ψnk⟩⟨Ψnk|∇|Ψnk⟩)

+
2
δ

∑
n̸=n′

ϵnk=ϵn′k

∂ f (ϵnk)
∂ϵnk

ℜ(⟨Ψnk|∇|Ψn′k⟩⟨Ψn′k|∇|Ψnk⟩)

−

∑
n̸=n′

ϵnk ̸=ϵn′k

∆fn′k,nk

∆ϵnk,n′k
ℜ(⟨Ψnk|∇|Ψn′k⟩⟨Ψn′k|∇|Ψnk⟩)

δ/2
(∆ϵnk,n′k)2 + δ2/4

]
. (30)

This expression includes all possible contributions to the dc conductivity, in contrast with Eq. (29), which omits the non-degenerate inter-
band contributions.

2.3. Sum rules

Clearly a key ingredient in the KG conductivity is the set of gradient operator matrix elements. Computing them is a seemingly simple
task that can be complicated by procedures (e.g. PAWs; see below) used in the underlying KS calculations. Knowledge of the exact behavior
ofmatrix element sums therefore has beenused to test both implementations and calculations. Such sumrules are developed in this section
and discussed in terms of their use as possible quality measures of an implementation or accuracy measures of results.

2.3.1. Sum rule in terms of r̂
A seemingly round-about but fruitful way to begin is to use the commutator relation for the Cartesian component α of the position

operator with the Hamiltonian Ĥ

[r̂α, Ĥ] = i
h̄
me

p̂α. (31)

Then for the double commutator we have

[r̂α, [r̂α, Ĥ]] = i
h̄
me

[r̂α, p̂α] = −
h̄2

me
. (32)

Formation of matrix elements of Eq. (32) taken with ⟨m| from the left and |n⟩ from the right and use of the completeness relation∑
m′ |m′

⟩⟨m′
| = Î gives∑

m′

(
⟨m|r̂α|m′

⟩⟨m′
|[r̂α, Ĥ]|n⟩ − ⟨m|[r̂α, Ĥ]|m′

⟩⟨m′
|r̂α|n⟩

)
= −

h̄2

me
⟨m|n⟩. (33)

This reduces to the general sum rule for each Cartesian component of r̂∑
m′

(2ϵm′ − ϵn − ϵm)⟨m|r̂α|m′
⟩⟨m′

|r̂α|n⟩ =
h̄2

me
δmn. (34)
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In particular, form = nwe have the sum rule

2
∑
m′

(ϵm′ − ϵm)|⟨m′
|r̂α|m⟩|

2
=

h̄2

me
, (35)

or

2
∑

m′(̸=m)

(ϵm′ − ϵm)|⟨m′
|r̂α|m⟩|

2
=

h̄2

me
. (36)

Notice that there is no contribution in Eq. (34) from states with ϵm′ = ϵm or ϵm′ = ϵn. That is, there are neither self-contributions nor
degenerate-state contributions.

2.3.2. Sum rule in terms of p̂
Formation of matrix elements of Eq. (31) from the left with ⟨n| and |m⟩ from the right yields

⟨n|r̂α|m⟩ = −i
h̄
me

⟨n|p̂α|m⟩

(ϵn − ϵm)
(37)

for the Cartesian components of p̂ in the case n ̸= m and ϵm ̸= ϵn. Since the result in Eq. (36) is commensurate with that exclusion, simple
substitution yields

2
me

∑
m′(̸=n)
ϵm′ ̸=ϵn

|⟨m′
|p̂α|n⟩|2

(ϵm′ − ϵn)
= 1. (38)

2.3.3. Sum rule involving occupation numbers
Multiplication of Eq. (38) by the net occupation number of state n and summation over all states gives

4
me

∞∑
m=1

∞∑
n=1

(n̸=m)
ϵm ̸=ϵn

f (ϵn)
|⟨m|p̂α|n⟩|2

(ϵm − ϵn)
= 2

∞∑
n=1

f (ϵn) = Ne, (39)

where Ne is the total number of electrons. The left-hand side can be written as the sum of two terms that are identical except for exchange
of the summation indices in one of them:

2
∞∑

m=1

∞∑
n=1

(n̸=m)
ϵm ̸=ϵn

f (ϵn)
|⟨m|p̂α|n⟩|2

(ϵm − ϵn)
+ 2

∞∑
n=1

∞∑
m=1
(m̸=n)
ϵn ̸=ϵm

f (ϵm)
|⟨n|p̂α|m⟩|

2

(ϵn − ϵm)
= meNe. (40)

Thus one has the sum rule in terms of all the occupation numbers and states,

Sf =
2

3meNe

3∑
α=1

∞∑
m=1

∞∑
n=1

(n̸=m)
ϵn ̸=ϵm

(f (ϵn) − f (ϵm))
|⟨m|p̂α|n⟩|2

(ϵm − ϵn)
= 1. (41)

2.3.4. Sum rule for the conductivity
By introduction of a Dirac δ-function, Eq. (41) can be rewritten as

S =
2

3meNe

∫
∞

−∞

dω
3∑

α=1

∞∑
m=1

∞∑
n=1
n̸=m

ϵn ̸=ϵm

(f (ϵn) − f (ϵm))|⟨m|p̂α|n⟩|2
δ(ϵm − ϵn − h̄ω)

ω
= 1. (42)

This is the frequency sum rule. In terms of the trace of the conductivity tensor (Eq. (9)), it translates to

Sω =
2meV
3πe2Ne

∫
∞

0
dω Tr(σ1(ω)) = 1, (43)

after taking into account that σ1 is even.
However there is a problem. The derivation of Eq. (42) specifically excludes contributions from states with the same labels and

from degenerate states (Section 2.3.1). But we have also shown that σ1(ω) has both intra-band and degenerate-state contributions
(Section 2.2.1). Therefore, Eq. (43) is valid only if the intra-band and degenerate-state contributions are negligible. If they are not, then
they always give a positive contribution to the integral in Eq. (43). Therefore the general condition in the limit δ → 0 is

Sω =
2meV
3πe2Ne

∫
∞

0
dω Tr(σ1(ω)) ≥ 1. (44)

The larger the difference of Sω from one, the larger will be the intra-band and degenerate-state contributions to the conductivity.
Finally, to get the sum rules for solids, do all the following in the sum rule of interest: replace

∑
mm′ by

∑
kwk

∑
nn′ , replace the spatial

volume V by the unit cell volume Ω , and take Ne to be the number of electrons per unit cell.
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Fig. 1. Behavior of Eq. (46) as a function of xm for a fixed negative value of xn , (xn = −5) and for −xn . Note that those two plots are magnified by a factor of 4 for clarity. The
Fermi–Dirac distribution f (xm) as a function of the scaled variable xm also is shown.

2.4. Sum rules for finite number of states

The assumption of a complete set of states was instrumental to the sum rule derivations. For a finite set of states those rules break
down, as can be seen just by evaluating the left-hand side of Eq. (38) at the highest energy state in a finite set. The resulting sum is strictly
negative, hence cannot be equal to unity.

The problem appears as an incomplete sum for Eq. (41). To assist in the analysis, introduce the dimensionless variable x ≡ β(ϵ − ϵF )
with ϵF as the Fermi energy, and make the corresponding F–D occupation definition

f (ϵm; β) = 1/[exp(β(ϵm − ϵF )) + 1] → f̃ (x) := 1/[exp(x) + 1]. (45)

Then the relevant ratio becomes

f (ϵn; β) − f (ϵm; β)
(ϵm − ϵn)

= β
f̃ (xn) − f̃ (xm)
(xm − xn)

= β
∆f̃
∆x

(xm, xn), (46)

and Sf in terms of dimensionless variables is

Sf =
2β

3meNe

3∑
α=1

∞∑
m=1

∞∑
n=1

(n̸=m)
xn ̸=xm

∆f̃
∆x

(xm, xn)|⟨m|p̂α|n⟩|2 = 1. (47)

Fig. 1 shows the behavior of Eq. (46), divided by β , as a function of xm for a fixed negative value of xn and for the symmetric case
−xn. We use xn = −5. (Note the magnification in the figure.) Observe that negative (positive) xm represent states with energies below
(above) ϵF . The graph also depicts the Fermi–Dirac distribution as a function of the scaled variable xm. From it one sees that xm = 10
(f̃ (10) = 4.54 × 10−5) is a reasonable maximum value for purposes of analysis. But, as also shown in Fig. 1, Eq. (46) evaluated at negative
xn has a significant contribution to the sums in (47) for xm > 10. Therefore if the sums were to be truncated at xm = xn = 10, Sf would be
incomplete and consequently less than unity.

In addition, the contributions of intra-band transitions and degenerate states make Sw differ from unity. Only in the limits of large
numbers of k-points, bands and a large frequency interval will Sw → 1, if there are only non-degenerate inter-band contributions. If
there are also intra-band or degenerate contributions, it will go to some value greater than one. However, the conductivity may reach
convergence over the entire frequency interval of interest long before Sw reaches convergence. Conversely, the value of Sw could be around
one or greater, depending on the afore-mentioned contributions, for a particular set of k-points and number of bands, but that does not
mean that Sw is converged and therefore that the conductivity is as well.

In consequence, convergence analysis with respect to the number of k-points and bands of the calculated conductivity itself over the
frequency interval of interest is unavoidable.

3. Projector augmented wave method

Ordinarily the KS equations are solved by expanding the KS orbitals in a basis. A PW basis commonly is used both because the orbitals
of simple metals resemble PWs and, more critically, because they are not centered on nuclear sites. Site-independence simplifies the use
of KS DFT to drive ab initio molecular dynamics [14–16].

However, reproduction of the rapid oscillation of the KS orbitals near a nucleus would require an impracticably large PW basis.
Conventionally that difficulty was alleviated by use of pseudo-potentials, but it was really solved, at least in principle, by the introduction
of the PAW method [4]. Another significant advantage is that, distinct from pseudopotentials, the PAW approach allows for a significant
simplification of the matrix elements of the operators while retaining the effect of core electrons.
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The PAW method is based on the construction of a linear transformation which connects each KS orbital |Ψ ⟩ with a corresponding,
much smoother pseudo-orbital |Ψ̃ ⟩, that is

|Ψ ⟩ = |Ψ̃ ⟩ +

∑
i

[
|φi⟩ − |φ̃i⟩

]
⟨p̃i|Ψ̃ ⟩. (48)

The set {|φ⟩} is an orthonormal basis, while the sets {|φ̃⟩} and {|p̃⟩} form a dual basis. That is, besides the orthonormality and completeness
conditions for the set |φ⟩s, one also has the duality conditions of completeness∑

i

|φ̃i⟩⟨p̃i| = 1 (49)

and orthonormality

⟨p̃i|φ̃j⟩ = δij, (50)

between the other two sets. Physically, the set {|φ̃⟩} is to be smoothed relative to the set {|φ⟩}, hence amenable to efficient plane-wave
expansion.

The transformation connecting |Ψ ⟩ and |Ψ̃ ⟩ is unitary and therefore any operator A can be transformed to its smoothed version Ã
according to

Ã = A +

∑
ij

|p̃i⟩(⟨φi|A|φj⟩ − ⟨φ̃i|A|φ̃j⟩)⟨p̃j|. (51)

In practice the |φi⟩s are taken as ground state atomic orbitals of a chemical element augmented with other eigenfunctions of the same
Hamiltonian operator. The |φ̃i⟩s are pseudized forms of the corresponding |φi⟩s. The |p̃i⟩s are defined as zero outside a sphere centered
at the atom (augmentation sphere) and constructed to be the dual basis to the pseudized set inside the augmentation sphere. On the
assumption that there is no overlap between augmentation spheres, the sum in Eq. (51) reduces from pairwise to a single atom. That is
the so-called one-center approximation. It requires computational care to ensure negligible overlap of augmentation spheres in practice.

3.1. The ⟨Ψnk|∇|Ψn′k⟩ matrix elements

Matrix elements of the velocity operator in the PAW representation follow from Eq. (51) as

⟨Ψnk|∇|Ψn′k⟩ =⟨Ψ̃nk|∇|Ψ̃n′k⟩

+

∑
i

∑
ℓm

∑
ℓ′m′

⟨Ψ̃nk|p̃iℓm⟩ [⟨ϕiℓm|∇|ϕiℓ′m′⟩ − ⟨ϕ̃iℓm|∇|ϕ̃iℓ′m′⟩] ⟨p̃iℓ′m′ |Ψ̃n′k⟩, (52)

with the atomic orbitals |ϕiℓm⟩, pseudo-orbitals |ϕ̃iℓm⟩, and projectors |p̃iℓm⟩ of atom i (and associated augmentation region). Those are
defined in terms of products of radial functions and spherical harmonics Yℓm(θ, φ) (see Appendix A) as

ϕiℓm(r − Ri) = Riℓ(|r − Ri|)Yℓm(θ, φ), (53)

ϕ̃ilm(r − Ri) = R̃iℓ(|r − Ri|)Yℓm(θ, φ), (54)
p̃iℓm(r − Ri) = p̃iℓ(|r − Ri|)Yℓm(θ, φ). (55)

The one oddity (anticipating the practice in Quantum Espresso [3]) is that the principal quantum number is suppressed. One may think of
the atom index i as being a compound of site and principal quantum number. In compressed notation

∇̃
k
nn′ ≡ ⟨Ψ̃nk|∇|Ψ̃n′k⟩, (56)

γ
†
ilmnk ≡ ⟨Ψ̃nk|p̃ilm⟩, (57)

∇ilml′m′ ≡ ⟨ϕilm|∇|ϕil′m′⟩, (58)

∇̃ilml′m′ ≡ ⟨ϕ̃ilm|∇|ϕ̃il′m′⟩, (59)

Eq. (52) becomes

∇
k
nn′ ≡ ⟨Ψnk|∇|Ψn′k⟩ = ∇̃

k
nn′ +

∑
i

∑
lm

∑
l′m′

γ
†
ilmnk

[
∇ilml′m′ − ∇̃ilml′m′

]
γil′m′n′k. (60)

The task is to find expressions for all the foregoing matrix elements.
It is straightforward to prove that

∇̃
k
nn′ = i

∑
G

C∗

nkG Cn′kG (k + G). (61)

For ∇iℓmℓ′m′ we have

∇ilml′m′ =

∫
d3r ϕ∗

ilm(r − Ri)∇ϕil′m′ (r − Ri)

=

∫
d3r ϕ∗

ilm(r)∇ϕil′m′ (r) (62)
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where

∇ϕil′m′ (r) =
dRl′ (r)
dr

Yl′m′ (θ, ϕ)êr (θ, ϕ) +
Rl′ (r)
r

[
∂Yl′m′ (θ, ϕ)

∂θ
êθ (θ, ϕ)

+
1

sin θ

∂Yl′m′ (θ, ϕ)
∂ϕ

êϕ(θ, ϕ)
]

. (63)

Therefore,

∇ilml′m′ =

∫
∞

0
r2drR∗

l (r)
dRl′ (r)
dr  

R(d)
ll′

∫ π

0
sin(θ )dθ

∫ 2π

0
dϕY ∗

lm(θ, ϕ)Yl′m′ (θ, ϕ)êr (θ, ϕ)  
=I(r)

lml′m′

+

∫
∞

0
rdrR∗

l (r)Rl′ (r)  
Rll′

[∫ π

0
sin(θ )dθ

∫ 2π

0
dϕY ∗

lm(θ, ϕ)
∂Yl′m′ (θ, ϕ)

∂θ
êθ (θ, ϕ)  

=I(θ )
lml′m′

+

∫ π

0
dθ

∫ 2π

0
dϕY ∗

lm(θ, ϕ)
∂Yl′m′ (θ, ϕ)

∂ϕ
êϕ(θ, ϕ)  

=I(ϕ)
lml′m

]
, (64)

or

∇ilml′m′ = R(d)
ll′ I

(r)
lml′m′ + Rll′

[
I(θ )lml′m + I(ϕ)lml′m′

]
. (65)

The matrices Rd and R are calculated numerically while the vector matrices I are reduced to analytical forms (Appendix B):

I (r)lml′m′,x̂ = P (1)
lml′m′A

(c)
mm′ , (66)

I (r)lml′m′,ŷ = P (1)
lml′m′A

(s)
mm′ , (67)

I (r)lml′m′,ẑ = P (2)
lml′m′δmm′ , (68)

I (θ )lml′m′,x̂ = P (3)
lml′m′A

(c)
mm′ , (69)

I (θ )lml′m′,ŷ = P (3)
lml′m′A

(s)
mm′ , (70)

I (θ )lml′m′,ẑ = P (4)
lml′m′δmm′ , (71)

I (ϕ)lml′m′,x̂ = −im′P (5)
lml′m′A

(s)
mm′ , (72)

I (ϕ)lml′m′,ŷ = im′P (5)
lml′m′A

(c)
mm′ (73)

and

I (ϕ)lml′m′,ẑ = 0. (74)

The matrices P (i)(i = 1...5) are developed in Appendix C, while A(c) and A(s) are provided in Appendix D.
Similarly for ∇̃ilml′m′ we have

∇̃ilml′m′ =

∫
∞

0
r2drR̃∗

l (r)
dR̃l′ (r)
dr  

R̃(d)
ll′

∫ π

0
sin(θ )dθ

∫ 2π

0
dϕY ∗

lm(θ, ϕ)Yl′m′ (θ, ϕ)êr (θ, ϕ)  
=I(r)

lml′m′

+

∫
∞

0
rdrR̃∗

l (r)R̃l′ (r)  
R̃ll′

[∫ π

0
sin(θ )dθ

∫ 2π

0
dϕY ∗

lm(θ, ϕ)
∂Yl′m′ (θ, ϕ)

∂θ
êθ (θ, ϕ)  

=I(θ )
lml′m′

+

∫ π

0
dθ

∫ 2π

0
dϕY ∗

lm(θ, ϕ)
∂Yl′m′ (θ, ϕ)

∂ϕ
êϕ(θ, ϕ)  

=I(ϕ)
lml′m′

]
, (75)
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Table 1
MPI communicators and each process rank for a parallelization over 8 processes, two for k points, two for bands, and
two for plane waves.

MPI communicator MPI ranks Parallelization

world_comm 0 1 2 3 4 5 6 7
inter_pool_comm 0 0 0 0 1 1 1 1 over k-points
inter_bgrp_comm 0 0 1 1 0 0 1 1 over bands
intra_bgrp_comm 0 1 0 1 0 1 0 1 over plane waves

or

∇̃ilml′m′ = R̃(d)
ll′ I

(r)
lml′m′ + R̃ll′

[
I(θ )lml′m′ + I(ϕ)lml′m′

]
. (76)

The formulae for the I integrals in terms of real spherical harmonics (Appendix A) are given in Appendix E (see also Appendix D). The
P matrices are the same as for the complex spherical harmonics.

4. The KGEC code

4.1. Overview

On the foundations just laid, the KGEC code implements calculation of the full complex Kubo–Greenwood electrical conductivity tensor
using the KS orbitals calculated by QEwith either PAW datasets or norm-conserving pseudopotentials. (Note, however, that the latter case
is without the non-local corrections.) KGEC is a post-processing tool for QE programmed in Fortran 90. It is modular and MPI-parallelized
over k-points, bands, and plane waves. Details of parallelization are discussed below.

KGEC work flow is presented in Fig. 2. It presumes an ordinary QE calculation has been done which provides the KS orbitals, orbital
energies, occupation numbers, temperature, and other relevant data via storage in the usual outdir directory. All that data is made
accessible to KGEC by the QEVARS and QE_P_PSI modules.

KGEC starts by reading an input file which provides the computational conditions for the conductivity calculation and the location
of the QE data to use. It then verifies that the conditions for which the code was designed are met. If they are not, KGEC stops with a
message about the problem and possible solutions, if discernible. Conversely, if the condition checks are satisfactory, the code proceeds
to renormalize the PAW wave-functions (if PAWs are used) to avoid small errors in the normalization introduced by the construction of
the PAW orbitals. Subsequently, if requested by the user, the code checks orthonormality and duality conditions for the pseudo-atomic
orbitals and projectors (for PAWs).

Next comes calculation of the gradient matrix elements, via the KGEGRADIENT module, for pseudo-orbitals provided from QE and,
if PAW datasets are utilized, a calculation of the PAW corrections is done via the APAWGM module of KGEC. Once the gradient matrix
elements are completed, the sum rule without a delta function or frequency dependence (Eq. (41)) is calculated.

If selected by the user input, there follows the optional analysis of the effect of four different choices for numerical evaluation of the
delta function (recall Eq. (7)), namely calculation of the average trace of the conductivity tensor done for a Lorentzian, a Gaussian, the sum
of two Lorentzians, and the sum of two Gaussians (to eliminate problems at the origin).

Continuing, the code then proceeds to calculate either the full electrical conductivity tensor (including the average trace and the dc
components), the average trace only (including the dc components), or the dc components only; all with or without decomposition. Those
implementations are contained in the KGECSIGMA1 and KGECSIGMA2 modules. The sum rule for integration of the conductivity over
frequencies (Eq. (43)) is calculated next.

Lastly, KGEC writes some additional information to the standard output and to the corresponding files.

4.2. MPI parallelization

In general KGEC is MPI-parallelized over k-points, bands, and plane waves via its PARALLEL module. That hierarchical order is the
same as in QE. Parallelization over plane waves primarily is useful for gradient matrix element calculations. Once those matrix elements
are done, the plane-wave-based parallelization is needless. However, the number of plane-waves greatly exceeds the number of bands.
Usually that disparity is reflected in a larger number of processes used for plane waves than for bands. KGEC thus has the capacity to
recover the MPI processes used for plane wave parallelization after gradient matrix element completion and add the recovered processes
to the band parallelization processes.

More specifically KGEC is parallelized over k-points using the QE MPI communicator inter_pool_comm with nk processes, over bands
using the inter_bgrp_comm with nb processes and over plane-waves using intra_bgrp_comm with np processes. So, the total number of
MPI processes is nk×nb×np. An example for 8 MPI processes is given in Table 1, with 2 processes dedicated to k-point parallelization, for
each of them 2 dedicated to band parallelization, and for each of these 2 for plane-wave parallelization. Fig. 3 shows all the MPI processes
and communicators in block form.With this scheme, the code canmake those processes in the same communicator, i.e. those lying on the
same blue rectangle in the figure, exchange information just by referencing their communicator. That allows for more efficient collective
operations (scatter, gather, reduce), as well as code simplicity.

Another key point is that the gradient matrix is distributed by the number of bands processes. Exact copies of those will end up stored
in all the plane wave processes associated with the same band process. In other words, each process in an intra_bgrp_comm has exactly
the same copy of a fragment of the gradient matrix that corresponds to the band process to which they are subordinated. In the specific
case of Table 1, the gradient matrix is divided in halves, each of them residing on processes belonging to an inter_bgrp_comm value and
replicated in the corresponding intra_bgrp_comm processes. That means that for the 0–0 branch of the k-point parallelization the same
copy of the first half of the gradient matrix would be stored in the 0–0 and 1–1 processes, and the copy of the other half would be in the
processes 2–0 and 3–1. A similar situation holds for the branch 4–1 of the k-point parallelization.
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Fig. 2. KGEC general work flow.

Fig. 3. Block diagram of 8 MPI processes with two of them dedicated to k-point parallelization, two dedicated to band parallelization for each k-point process, and the other
two dedicated for plane wave parallelization for each band process. A process is represented by a yellow rectangle, a communicator by a light-blue rectangle, the black lines
connect the related processes in the parallel work flow, and the green rectangles represent the distribution of the gradient matrix. The first number in each process is its
rank in the world_comm and the second is its rank in the communicator it belongs to or lies on. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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Table 2
MPI communicators and each process rank for a parallelization over 8 processes after recovery of the plane waves
processes.

MPI communicator MPI ranks Parallelization

world_comm 0 1 2 3 4 5 6 7
inter_pool_comm 0 0 0 0 1 1 1 1 over k-points
inter_bgrp_comm 0 1 2 3 0 1 2 3 over bands
intra_bgrp_comm – – – – – – – – over plane waves

Fig. 4. Block diagram of 8 MPI processes after recovery of the plane waves processes to be used for bands parallelization. There still are two processes dedicated to k-point
parallelization, but four (instead of two as before) dedicated to band parallelization for each k-point process. A process is represented by a yellow rectangle, a communicator
by a light-blue rectangle and the lines connect the related processes in the parallel work flow. The first number in each process is its rank in the world_comm and the second
is its rank in the communicator it belongs to or lies on. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

This structure is exploited for recovery of the plane wave processes that otherwise would be idle, hence wasted, after the calculation
of gradient matrix elements, without any further communication.

Therefore, if the option to recover the plane wave processes is set to true (npwrecovery=.true.) then once the gradient matrix elements
have been calculated, KGEC redefines the MPI communicators to use the plane wave processes for band parallelization. So, it goes from nb
band processes per k-point process to nb × np bands processes per k-point process, the gradient matrix elements being redistributed in
place (without communication) between the nb× np bands processes. Coming back to the example of 8 MPI processes, the corresponding
re-definition of the inter_bgrp_comm is given in Table 2 and the block diagram in Fig. 4. One sees that the band processes have expanded
from 0 to 1 for each k-point process to 0, 1, 2, 3. The half of the gradient matrix residing previously in each intra_bgrp_comm processes is
divided by 2 and each bands process uses its own half from that point on. The rank 0 process in the previous intra_bgrp_comm keeps the
first half and destroys the second one, while the rank 1 does the opposite. The final distribution is then one-quarter of the total columns
of the gradient matrix per each process in the new inter_bgrp_comm.

4.3. Prerequisites

The prerequisites for KGEC installation are:

• MPI for parallel compilation.
• Fortran 90 compiler (Makefiles for Intel Linux Fortran provided ).
• Quantum Espresso 5.1.2, 5.2.1, 5.4.0, 6.0 or 6.1 installed for either serial or mpi-parallel execution or QE 5.2.1 compiled for use with

Profess@QE [8].

(Remark: all of our installations have been in Linux with the Bourne-again shell.)
Both a README file and a more detailed User Guide are provided with the source code at download. They give installation instructions,

along with instructions on how to do a simple example calculation. Input and reference output files for that calculation are provided. The
example is fcc Aluminum with four atoms per unit cell at bulk density ρ = 2.7 g/cm3 and temperature of 0.05 Rydberg (approximately
7894 K). Note that if the example calculation (or any other for that matter) is run on more than one core, there will be differences with
respect to the results from a serial calculation for the same input data. Such differences are the consequence of floating point arithmetic
differences. However, as the number of k-points and bands are increased, the serial and parallel results should converge to the same values.

5. KGEC tests

5.1. Comparison with Abinit

Wehave calculated the average trace of the electrical conductivity using the approximated formulawith twoGaussians (enforcing even
parity of the conductivity) for Al fcc at bulk density ρ = 2.7 g/cm3, temperature T = 1 eV and a plane-wave cuttoff of 500 eV for various
numbers of k-points using KGEC and, for comparison, using Abinit [9,17,18]. The results are in very good agreement as Fig. 5 shows.

However, for a more disordered system the results are sensitive to the k-point grid density. An example is for the ionic configuration
from an arbitrarily selected molecular dynamics step of a 16 atom/cell Al system at ρ = 0.2 g/cm3, 10 kK (about 0.86 eV and a plane-wave
cuttoff of 500 eV). Results for the two codes differ for a 4 × 4 × 4 k-point grid; see (Fig. 6). But comparison in Fig. 7 shows that the KGEC
results are already converged at that grid density while those from Abinit are not.
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Fig. 5. Comparison of KGEC and Abinit for different k-points in an ordered system; 4 atom/cell fcc Al at a density of 2.70 g/cm3 .

Fig. 6. Comparison of KGEC and Abinit for different k-point grid densities in a disordered system: 16 atom/cell Al at an arbitrarily chosen MD step.
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Fig. 7. Convergence of KGEC (on the right) vs Abinit (on the left).

Fig. 8. Convergence of KGEC for bcc Al with 2 and 16 atoms per unit cell at ρ = 0.2 g/cm3 and T = 10 kK.

5.2. Consistency test

A consistency test also was performed by calculating the average of the conductivity for bcc Al with 2 and 16 atoms per unit cell at
ρ = 0.2 g/cm3 and T = 10 kK. This low-density regime is of intrinsic physical interest [7]. Convergence with k-point grid density was
reached for both systems at the 8 ×8 ×8 grid, as can be seen in Fig. 8.

However, comparison of the calculations for both systems performed with the 8 ×8 ×8 mesh (Fig. 9) reveals that there are some
discrepancies in the intensities of the highest peak and in the smaller peaks around 15 eV in frequency. The changes are related to
temperature and unit cell size effects. Notice however the very good agreement at low frequencies.

6. Difficulties

6.1. Representation of the Dirac delta function

It is frequent practice to use what we have called the ‘‘approximated expression’’, Eq. (9), with a Gaussian representation for the Dirac
delta function. Eq. (9) also can be written as

σ1(ω) =
2πe2h̄2

m2
eV

∑
m

∑
m′

∆fm′m

∆ϵmm′

⟨m|∇|m′
⟩⟨m′

|∇|m⟩δ(∆ϵmm′ − h̄ω), (77)

denoted the as ‘‘Dirac-delta form’’ in the opening discussion. Observe that the main distinction between Eqs. (9) and (77) is that the ∆ϵmm′

in Eq. (77) is replaced by ω in Eq. (9).
We need to find the limits of Eqs. (77) and (5) for ω going to zero in the cases in which a Lorentzian or a Gaussian (Appendix F) is used

to represent the Dirac delta function. The issue reduces to evaluating four limits, to wit

lim
ω→0
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1
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σ 2
g
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∆f
∆ϵ

1
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√
π
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(

−
(∆ϵ)2

σ 2
g

)
(79)
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Fig. 9. Comparison of the converged results for Al bcc 2 and 16 atoms per unit cell at ρ = 0.2 g/cm3 and T = 10 kK.

lim
ω→0

f (a)L (ω) = lim
ω→0

∆f
πω

δ/2
(∆ϵ − h̄ω)2 + δ2/4

= ±∞, (80)

and

lim
ω→0
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=

{
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(81)

First notice that the approximated expressions, f (a)L (ω) and f (a)G (ω), do not have the same limit as the corresponding D-d expressions,
f (D−d)
L (ω) and f (D−d)

G (ω). Instead, the approximated expressions are singular at ω = 0. Further, the two D-d versions f (D−d)
L (ω) and f (D−d)

G (ω)
do not have the same limit, though they should be the same in the limit of the delta-width of the Lorentzian and the Gaussian going to
zero.

The singularity of the approximated expressions can be lifted by using the even parity of σ1(ω). In that case the limits are
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and
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But these limits are not the same as those in Eqs. (78) and (79) either.
Just for completeness let us calculate the limit of the D-d expressions for the f s also taking into account the even parity of σ1. For those

we have

lim
ω→0

f (D−d)
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and
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results which are identical with Eqs. (78) and (79).
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Fig. 10. Tr(σ1)/3 calculated with approximations for the Dirac delta function for Al fcc with four atoms per unit cell, density = 2.7 g/cm3 and temperature = 31.6 kK. The
left column shows two figures for δ = 0.01 eV: the upper one shows results for the same FWHM for the Lorentzian and Gaussian representations, while the lower one is for
the samemaximum heights. The right column shows the same comparison for the case δ = 0.1 eV. In all panels the curves labeled ‘‘D-d formula ...’’ show Tr(σ1)/3 calculated
with Eq. (77) and curves labeled ‘‘Appr. formula ...’’ show Tr(σ1)/3 calculated with Eq. (9).

The dc expressions then are

σ
D−d,L
dc =

2e2h̄3
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∑
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∆ϵmm′
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, (86)
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⟩⟨m′

|∇|m⟩ exp
(

−
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and
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. (89)

This simple analysis shows that in general the approximated σ1 expressions Eq. (9) do not have correct low-frequency behavior, nor
does the D-d form when evaluated with a Gaussian. Only the D-d expression with the Lorentzian recovers the exact limit of σ1 for any
value of the delta-width.

Numerical examples of the behavior of the σ1 conductivity expressions are provided in two sets of figures. The first set (Fig. 10) shows
results from calculations performed for fcc Al with four atoms per unit cell at a density of 2.7 g/cm3 and a temperature of 31.6 kK. To
compare the effect of the Lorentzian versus Gaussian we did a set of calculations matching their full width at half-maximum (FWHM), and
another matching their maximum heights.

As anticipated analytically, in general the approximated formulae lead to incorrect dc values, and also distort the spectra (peak shapes
are changed) at low frequencies. The D-d formula with matched maximum heights for the Lorentzian and Gaussian leads to similar dc
values, albeit with more distortion of the peak shape introduced by the Gaussian. Matching of the FWHM yields incorrect dc values but
improves the line shapes for the Gaussian.

The second set of figures (Fig. 11) shows calculations done for the ionic configuration from a molecular dynamics step of Al with 16
atoms per unit cell at 0.1 g/cm3 and a temperature of 30 kK for 8 k-points and 3096 bands. The panels are ordered the same way as in the
preceding figure. In contrast with Fig. 10, they show that there are cases for which the delta function representations and width values
are less important for the dc conductivity.
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Fig. 11. Tr(σ1)/3 calculated with different representations of the Dirac delta function for a molecular dynamics step of Al with 16 atoms per unit cell at a density of 0.1 g/cm3

and a temperature of 30 kK. Otherwise as in Fig. 10.

Another interesting aspect shown in Fig. 11 is that the smaller value of δ produces better convergence of all the delta function
representations in the case of the MD step even when the spectrum gets noisier than the one calculated with a larger value of δ.

Because of the relatively high temperature, in both cases the inter-band contributions dominate the dc conductivity and therefore the
conductivity is not of Drude nature although the graphs look Lorentzian-like close to zero.

To get an idea of why the results are so different, we compare the cases of the D-d formula with the Lorentzian and the corresponding
Gaussians with matching FWHM and maximum height. For that it will prove convenient to re-write the dc conductivity first in terms of
one sum over bands by reducing the pair ofmm′ labels to one i-label, that is

σdc =
2πe2h̄2

3m2
eΩ

∑
k

wk
∑

i

∆fik
∆ϵik

∑
α

|⟨Ψm(i)k|∇α|Ψm′(i)k⟩|
2δ(∆ϵik), (90)

and secondly by introducing N(∆ϵj) as the number of pairs of states with the same difference in energy ∆ϵj to get

σdc =
2πe2h̄2
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∑

i

δ∆ϵik∆ϵj

∆fik
∆ϵik

∑
α

|⟨Ψm(i)k|∇α|Ψm′(i)k⟩|
2

]
δ(∆ϵj). (91)

Plots of the three approximate representations of the Dirac delta function δ(∆ϵ) and N(∆ϵ) for inter-band contributions (top), as well
as their product (bottom), are given in Figs. 12 and 13 for the respective examples given in Figs. 10 and 11.

The sparsity of the N(∆ϵ) for fcc Al leads to functions with different areas when multiplied by the different delta function repre-
sentations. In contrast, for the example from the MD step, the disorder is reflected in an almost uniform N(∆ϵ) which in turn yields
distributions with almost the same area whenmultiplied with the approximate delta function representations. Therefore, it is the sparsity
of the distribution of differences in energies N(∆ϵ) that seems to determine the success of the different delta-function representations in
the dc conductivity calculation.

6.2. PAW quality

During development of KGEC, we noticed some problems with the numerical derivatives involved in the calculation of the gradient
matrix elements in the PAWapproach. Close inspection of the radial atomicwave functions and pseudo-wave functions revealed that there
seems to be a systematic problem in the generation of the augmented waves that is carried over to the corresponding pseudo-waves. The
situation is represented in Fig. 14 for the atomic wave functions and in Fig. 15 for the pseudo wave functions generated for Al with three
valence electrons and four projectors. Notice from Fig. 15 that the pseudo waves R̃1(r) and R̃3(r), generated from the 3s and 3p natural
atomic states respectively, are smooth but R̃2(r) and R̃4(r), which were generated from the corresponding augmented-pseudized waves
R̃1(r) and R̃3(r) respectively, are not.
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Fig. 12. Dirac delta-function representations and number of pairs of bands with the same inter-band energy difference (top), and their product (bottom) for Al fcc with
density of 2.7 g/cm3 at T = 31.6 kK.

Fig. 13. Dirac delta-function representations and number of pair of bands with the same inter-band energy difference (top), and their product (bottom) for a molecular
dynamics step of Al at 0.1 g/cm3 and T = 30 kK.

The problem can be traced to the augmentedwaves themselves as corroborated by Fig. 14.We found the problem in four different PAW
datasets generated with ATOMPAW [19] and LD1 [3]. This issue may need a bit more investigation, but it seems that the cancellation of
errors that occurs in ⟨R|dR/dr⟩ − ⟨R̃|dR̃/dr⟩ provides a way to get accurate results for properties calculated in the PAW scheme.

Another cancellation that occurs is in the product of the projectors and the pseudo-wave functions. That is given by the projectors being
strictly zero starting at the radii where discontinuities in the first derivative of the pseudo wave functions appear and extending all the
way to infinity. That should keep the dual orthogonality intact but it is not guaranteed, as illustrated by some tests described next.

6.3. PAW duality and wave functions orthogonality problems

Another difficulty observed during code development is related to the orthogonality required between pseudo-wavefunctions and
projectors. Depending on the PAWdataset, there could be failures with errors larger than 10−4. That led to inclusion of a check for the dual
orthogonality condition in KGEC.

There also are cases in which the reconstructed PAW all-electron orbitals are not orthogonal. This problem can be related to the dual
orthogonality problem just described, but it can also arise from an inadequate plane wave basis set. KGEC is able to check for that sort of
problem as well; it provides warnings and points the user to another output file for more information.

7. Remarks

From the perspective of a new computational implementation, we have reviewed the state of the art of electrical conductivity
calculations using the Kubo Greenwood (KG) approach and derived all the necessary analytical expressions for its implementation using
PAW datasets with a plane wave basis set. The analysis and derivations were done for both the original KG formula and its most popular
version, which we have found contains approximations that often do not lead to the same results as the original one.
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Fig. 14. Atomic 3s (R1 in the plot) and 3p (R3 in the plot) wave functions of Al and their corresponding augmented waves (R2 for 3s and R4 for 3p).

Fig. 15. Atomic 3s (R̃1 in the plot) and 3p (R̃3 in the plot) pseudized wave functions of Al and their corresponding pseudized-augmented waves (R̃2 for 3s and R̃4 for 3p).

The derived formulae were used to design a user-friendly algorithm with capabilities to face the challenges of simulations of matter
under extreme conditions. The algorithms have been coded inmodular Fortran 90 as a post-processing tool for Quantum Espresso. Named
KGEC, from the initials of ‘‘Kubo–Greenwood Electrical Conductivity’’, the code has the following special features:

• Calculates the full complex conductivity tensor, not just the average trace.
• Uses either the original KG formula or the more popular, although approximated one in terms of a Dirac delta function.
• Performs a decomposition into intra- and inter-band contributions as well as degenerate state contributions.
• Calculates the direct-current conductivity tensor directly.
• Provides both Gaussian and Lorentzian representations of the Dirac delta function.
• Provides MPI parallelization over k-points, bands and plane waves, with an option to recover the plane waves process for their use

in bands parallelization as well.
• Gives faster convergence with respect to k-point density than the implementation in the Abinit code.

KGEC is downloadable from http://www.qtp.ufl.edu/ofdft under GPL.

http://www.qtp.ufl.edu/ofdft
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These featuresmake the code versatile and innovative. There also are several underlying advances. An example is that the calculation of
the direct-current tensor using the most popular KG formula is based on the removal of the singularity at zero frequency, an approach not
reported before. That leads to analytical formulae, with the result that no fitting of a Drude term by the user is needed. Another example
is the analysis which undergirds the systematic inclusion of both intra-band and degenerate state contributions in KGEC. A third example
is the recovery of the plane waves MPI-processes on the fly, a procedure based on redefinition of the communicators and exploitation of
MPI Single-Program-Multi-Data (SPMD) characteristics.

The code should have wide, deep impact on the calculation of electrical conductivities of materials ranging from small to large systems
in normal to extreme environments. On one hand the possibility of doing full tensor calculations with no ballistic approximation should
make the code attractive for the simulation of electronic materials. On the other, its parallel capabilities are very useful to accelerate
simulations in general, but especially for large systems at high temperatures. For those, the plane wave cutoff energies and number of
bands are very large, its parallel capabilities, including the recovery on the fly of idle processes, should make of KGEC an essential tool.

In the near future, the next release of our group’s Profess@QuantumEspresso [8] will include our new finite-temperature generalized
gradient approximation (GGA) functional [20]. QE compiled for the Profess@QE suite is compatible with KGEC, so full free-energy DFT
electrical conductivity calculations at the GGA level of refinement will be possible. Farther out, work within the context of electrical
conductivity is likely to include incorporation of spin polarization, non-local corrections to the gradient matrix elements for systematic
use of conventional non-local pseudopotentials, and inclusion of spin–orbit corrections. More broadly, we are considering generalizing to
calculation of the thermal conductivity via general calculation of Onsager coefficients.
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Appendix A. Spherical harmonic definitions

The complex spherical harmonics are given by [21]

Ylm(θ, ϕ) =

√
2l + 1
4π

√
(l − m)!
(l + m)!

Pm
l (cos θ )eimϕ (A.1)

with the sign conventions and definitions of the associated Legendre polynomials Pm
l (x).

In the context of the PAWmethod it also is useful to use the real spherical harmonics, defined as

Slm(θ, ϕ) =

√
2l + 1
4π

√
(l − |m|)!
(l + |m|)!

P |m|

l (cos θ )

⎧⎨⎩
√
2 sin|m|θ, m < 0

1, m = 0
√
2 cosmθ, m > 0.

(A.2)

Appendix B. I integrals for complex spherical harmonics

In the usual Cartesian coordinate system, the unit vectors relative to the spherical coordinates are

êr = sin(θ ) cos(ϕ) êx + sin(θ ) sin(ϕ) êy + cos(ϕ) êz
êθ = cos(θ ) cos(ϕ) êx + cos(θ ) sin(ϕ) êy − sin(ϕ) êz
êφ = − sin(ϕ) êx + cos(ϕ) êy. (B.1)

For I(r)ll′mm′ we have

I(r)ll′mm′ =

∫ π

0
sin(θ )dθ

∫ 2π

0
dϕY ∗

lm(θ, ϕ)Yl′m′ (θ, ϕ)êr (θ, ϕ), (B.2)

which yields

I (r)ll′mm′,x̂ =

∫ π

0
sin(θ )dθ
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0
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where
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. (B.4)
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Then

I (r)ll′mm′,ŷ =

∫ π

0
sin(θ )dθ
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For I(θ )ll′mm′ we have
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sin(ϕ)ei(m

′
−m)ϕdϕ  

A(s)
mm′

= P (3)
lml′m′A

(s)
mm′; (B.9)

and

I (θ )ll′mm′,ẑ =

∫ π

0
sin(θ )dθ

∫ 2π

0
dϕY ∗

lm(θ, ϕ)
∂Yl′m′ (θ, ϕ)

∂θ
(− sin(θ ))

= 2πClmCl′m′δmm′

∫ π

0
sin(θ )Pm

l (cos(θ ))
∂Pm′

l′ (cos(θ ))
∂θ

(− sin(θ ))dθ

= −2πClmCl′m′

∫ 1

−1
(1 − x2)Pm

l (x)
dPm′

l′ (x)
dx

dx  
P(4)
lml′m′

δmm′

= P (4)
lml′m′δmm′ . (B.10)

For I(ϕ)ll′mm′ we have

I(ϕ)ll′mm′ =

∫ π

0
dθ

∫ 2π

0
dϕY ∗

lm(θ, ϕ)
∂Yl′m′ (θ, ϕ)

∂ϕ
êϕ(θ, ϕ) (B.11)
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which yields

I (ϕ)ll′mm′,x̂ =

∫ π

0
dθ

∫ 2π

0
dϕY ∗

lm(θ, ϕ)
∂Yl′m′ (θ, ϕ)

∂ϕ
(− sin(ϕ))

= 2πClmCl′m′

∫ π

0
Pm
l (cos(θ ))Pm′

l′ (cos(θ ))dθ
im′

2π

∫ 2π

0
(− sin(ϕ)ei(m

′
−m)ϕ)dϕ

= 2πClmCl′m′

∫ 1

−1

1
√
1 − x2

Pm
l (x)Pm′

l′ (x)dx  
P(5)
lml′m′

im′

2π

∫ 2π

0
(− sin(ϕ)ei(m

′
−m)ϕ)dϕ  

−im′A(s)
mm′

= − im′P (5)
lml′m′A

(s)
mm′ (B.12)

I (ϕ)ll′mm′,ŷ =

∫ π

0
dθ

∫ 2π

0
dϕY ∗

lm(θ, ϕ)
∂Yl′m′ (θ, ϕ)

∂ϕ
cos(ϕ)

= 2πClmCl′m′

∫ 1

−1

1
√
1 − x2

Pm
l (x)Pm′

l′ (x)dx  
P(5)
lml′m′

im′

2π

∫ 2π

0
cos(ϕ)ei(m

′
−m)ϕdϕ  

im′A(c)
mm′

=im′P (5)
lml′m′A

(c)
mm′; (B.13)

and

I (ϕ)ll′mm′,ẑ = 0. (B.14)

Appendix C. Calculation of P integrals

The P integral general form is

P (1)
lml′m′ = 2πClmCl′m′

∫ 1

−1

√
1 − x2Pm

l (x)Pm′

l′ (x)dx; (C.1)

P (2)
lml′m′ = 2πClmCl′m′

∫ 1

−1
xPm

l (x)Pm′

l′ (x)dx; (C.2)

P (3)
lml′m′ = 2πClmCl′m′

∫ 1

−1
x
√
1 − x2Pm

l (x)
Pm′

l′ (x)
dx

dx; (C.3)

P (4)
lml′m′ = −2πClmCl′m′

∫ 1

−1
(1 − x2)Pm

l (x)
dPm′

l′ (x)
dx

dx; (C.4)

and

P (5)
lml′m′ = 2πClmCl′m′

∫ 1

−1

1
√
1 − x2

Pm
l (x)Pm′

l′ (x)dx. (C.5)

Each of these five matrices has 16 by 16 elements for 0 ≤ l ≤ 3. They were calculated symbolically using Maple.

Appendix D. Calculation of A integrals

The A integrals for complex spherical harmonics are

A(c)
mm′ =

1
2π

∫ 2π

0
cos(ϕ)ei(m

′
−m)ϕdϕ

=
1
2
(δm+1,m′ + δm−1,m′ ), (D.1)

and

A(s)
mm′ =

1
2π

∫ 2π

0
sin(ϕ)ei(m

′
−m)ϕdϕ

=
i
2
(δm+1,m′ − δm−1,m′ ). (D.2)
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For real spherical harmonics we have

A(c)
mm′ =

1
2π

∫ 2π

0
cos(ϕ)Φm(ϕ)Φm′ (ϕ)dϕ; (D.3)

A(s)
mm′ =

1
2π

∫ 2π

0
sin(ϕ)Φm(ϕ)Φm′ (ϕ)dϕ; (D.4)

A(c,d)
mm′ =

1
2π

∫ 2π

0
cos(ϕ)Φm(ϕ)

∂Φm′ (ϕ)
∂ϕ

dϕ; (D.5)

and

A(s,d)
mm′ =

1
2π

∫ 2π

0
sin(ϕ)Φm(ϕ)

∂Φm′ (ϕ)
∂ϕ

dϕ. (D.6)

Appendix E. I integrals for real spherical harmonics

For I(r)ll′mm′ we have

I(r)ll′mm′ =

∫ π

0
sin(θ )dθ

∫ 2π

0
dϕSlm(θ, ϕ)Sl′m′ (θ, ϕ)êr (θ, ϕ), (E.1)

which yields

I (r)ll′mm′,x̂ =

∫ π

0
sin(θ )dθ

∫ 2π

0
dϕSlm(θ, ϕ)Sl′m′ (θ, ϕ) sin(θ ) cos(ϕ)

= ClmCl′m′

∫ π

0
sin2(θ )Pm

l (cos(θ ))Pm′

l′ (cos(θ ))dθ
∫ 2π

0
cos(ϕ)Φm(ϕ)Φm′ (ϕ)dϕ

= 2πClmCl′m′

∫ 1

−1

√
1 − x2Pm

l (x)Pm′

l′ (x)dx  
P(1)
lml′m′

1
2π

∫ 2π

0
cos(ϕ)Φm(ϕ)Φm′ (ϕ)dϕ  

A(c)
mm′

= P (1)
lml′m′A

(c)
mm′ , (E.2)

where we have used

Φm(ϕ) =

⎧⎨⎩
√
2 sin|m|θ, m < 0

1, m = 0
√
2 cosmθ, m > 0.

(E.3)

For the rest of the components of I(r)ll′mm′ we have

I (r)ll′mm′,ŷ =

∫ π

0
sin(θ )dθ

∫ 2π

0
dϕSlm(θ, ϕ)Sl′m′ (θ, ϕ) sin(θ ) sin(ϕ)

= 2πClmCl′m′

∫ 1

−1

√
1 − x2Pm

l (x)Pm′

l′ (x)dx  
P(1)
lml′m′

1
2π

∫ 2π

0
sin(ϕ)Φm(ϕ)Φm′ (ϕ)dϕ  

A(s)
mm′

= P (1)
lml′m′A

(s)
mm′; (E.4)

I (r)ll′mm′,ẑ =

∫ π

0
sin(θ )dθ

∫ 2π

0
dϕSlm(θ, ϕ)Sl′m′ (θ, ϕ) cos(θ )

=2πClmCl′m′δmm′

∫ π

0
sin(θ )Pm

l (cos(θ ))Pm′

l′ (cos(θ )) cos(θ )dθ

= 2πClmCl′m′

∫ 1

−1
xPm

l (x)Pm′

l′ (x)dx  
P(2)
lml′m′

δmm′

=P (2)
lml′m′δmm′ . (E.5)

For I(θ )ll′mm′ we have

I(θ )ll′mm′,x̂ =

∫ π

0
sin(θ )dθ

∫ 2π

0
dϕSlm(θ, ϕ)

∂Sl′m′ (θ, ϕ)
∂θ

êθ (θ, ϕ), (E.6)
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which yields

I (θ )ll′mm′,x̂ =

∫ π

0
sin(θ )dθ

∫ 2π

0
dϕSlm(θ, ϕ)

∂Sl′m′ (θ, ϕ)
∂θ

cos(θ ) cos(ϕ)

= 2πClmCl′m′

∫ π

0
sin(θ )Pm

l (cos(θ ))
∂Pl′ (cos(θ ))

∂θ
cos(θ )dθ

1
2π

∫ 2π

0
cos(ϕ)Φm(ϕ)Φm′ (ϕ)dϕ

= −2πClmCl′m′

∫ 1

−1
x
√
1 − x2Pm

l (x)
dPm′

l′ (x)
dx

dx  
P(3)
lml′m′

1
2π

∫ 2π

0
cos(ϕ)Φm(ϕ)Φm′ (ϕ)dϕ  

A(c)
mm′

= P (3)
lml′m′A

(c)
mm′; (E.7)

I (θ )ll′mm′,ŷ =

∫ π

0
sin(θ )dθ

∫ 2π

0
dϕSlm(θ, ϕ)

∂Sl′m′ (θ, ϕ)
∂θ

cos(θ ) sin(ϕ)

= −2πClmCl′m′

∫ 1

−1
x
√
1 − x2Pm

l (x)
dPm′

l′ (x)
dx

dx  
P(3)
lml′m′

1
2π

∫ 2π

0
sin(ϕ)Φm(ϕ)Φm′ (ϕ)dϕ  

A(s)
mm′

= P (3)
lml′m′A

(s)
mm′; (E.8)

and

I (θ )ll′mm′,ẑ =

∫ π

0
sin(θ )dθ

∫ 2π

0
dϕSlm(θ, ϕ)

∂Sl′m′ (θ, ϕ)
∂θ

(− sin(θ ))

=2πClmCl′m′δmm′

∫ π

0
sin(θ )Pm

l (cos(θ ))
∂Pm′

l′ (cos(θ ))
∂θ

(− sin(θ ))dθ

= −2πClmCl′m′

∫ 1

−1
(1 − x2)Pm

l (x)
dPm′

l′ (x)
dx

dx  
P(4)
lml′m′

δmm′

=P (4)
lml′m′δmm′ . (E.9)

For I(ϕ)ll′mm′ we have

I(ϕ)ll′mm′ =

∫ π

0
dθ

∫ 2π

0
dϕSlm(θ, ϕ)

∂Sl′m′ (θ, ϕ)
∂ϕ

êϕ(θ, ϕ) (E.10)

which yields

I (ϕ)ll′mm′,x̂ =

∫ π

0
dθ

∫ 2π

0
dϕSlm(θ, ϕ)

∂Sl′m′ (θ, ϕ)
∂ϕ

(− sin(ϕ))

=2πClmCl′m′

∫ π

0
Pm
l (cos(θ ))Pm′

l′ (cos(θ ))dθ
1
2π

∫ 2π

0
(− sin(ϕ))Φm(ϕ)

∂Φm′ (ϕ)
∂ϕ

dϕ

= 2πClmCl′m′

∫ 1

−1

1
√
1 − x2

Pm
l (x)Pm′

l′ (x)dx  
P(5)
lml′m′

1
2π

∫ 2π

0
(− sin(ϕ))Φm(ϕ)

∂Φm′ (ϕ)
∂ϕ

dϕ  
−A(s,d)

mm′

= − P (5)
lml′m′A

(s,d)
mm′ (E.11)

I (ϕ)ll′mm′,ŷ =

∫ π

0
dθ

∫ 2π

0
dϕSlm(θ, ϕ)

∂Sl′m′ (θ, ϕ)
∂ϕ

cos(ϕ)

= 2πClmCl′m′

∫ 1

−1

1
√
1 − x2

Pm
l (x)Pm′

l′ (x)dx  
P(5)
lml′m′

1
2π

∫ 2π

0
cos(ϕ)Φm(ϕ)

∂Φm′ (ϕ)
∂ϕ

dϕ  
A(c,d)
mm′

=P (5)
lml′m′A

(c,d)
mm′ ; (E.12)

and

I (ϕ)ll′mm′,ẑ = 0. (E.13)
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Appendix F. Lorentzian and Gaussian

The Lorentzian with a full width at half the maximum of δ has the expression

L(x) =
1
π

δ/2
x2 + δ2/4

(F.1)

which equals half of its maximum amplitude for x = ±δ/2.
The Gaussian with width σg is defined as

G(x) =
1

σg
√

π
exp

(
−

x2

σ 2
g

)
. (F.2)

Both functions are normalized to one. For the two to have the same height, the Gaussian width must be

σg =
δ

2
√

π
, (F.3)

while for equal FWHMs

σg =
δ

2
√
ln 2

. (F.4)
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