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Approximate kinetic energy density functionals (KEDFs) are central to orbital-free density functional the-
ory. Limitations on the spatial derivative dependencies of KEDFs have been claimed from differential vir-
ial theorems. We identify a central defect in the argument: the relationships are not true for an arbitrary
density but hold only for the minimizing density and corresponding chemical potential. Contrary to the
claims therefore, the relationships are not constraints and provide no independent information about the
spatial derivative dependencies of approximate KEDFs. A simple argument also shows that validity for
arbitrary v-representable densities is not restored by appeal to the density-potential bijection.

� 2018 Elsevier B.V. All rights reserved.
1. Introduction

Unarguably the dominant contemporary form of many-electron
theory for computing the properties of complicated molecules,
clusters, and almost all extended systems is density functional the-
ory (DFT) in its Kohn-Sham (KS) form [1]. Conventionally the KS
scheme is used to render the DFT Euler equation in the form of a
mean-field orbital eigenvalue problem, the KS equations. Though
enormously successful, this approach has the standard computa-
tional cost barrier of any eigenvalue problem, namely cubic cost
scaling with the number of electrons (or equivalent, the number
of basis functions). That motivates long-standing interest in
orbital-free DFT (OF-DFT) [2,3], which in principle scales with sys-
tem size.

OF-DFT, however, introduces the challenge of approximating
the KS kinetic energy (KE) as an explicit density functional, e.g.,

Ts½n� :¼
Z

dr ts½nðrÞ�; ð1Þ

instead of the familiar orbital-dependent version

Ts½fuigNe
i¼1� :¼

1
2

XNe

i¼1

Z
dr jruiðrÞj2

�
Z

dr torbs ðrÞ ð2Þ

in Hartree atomic units. [Remark: In this form the integrand is man-
ifestly positive definite. Themore common Laplacian form is not. The
difference is a surface integralwhich ordinarily is zero.] HereNe is the
number of electrons and the ground state number density is

n0ðrÞ ¼
XNe

i

f i juiðrÞj2: ð3Þ

where the spin-orbital occupation numbers, f i, at zero temperature
are 0 or 1, except for the case of degeneracy at the Fermi level [4].

Orbital-free DFT aims to provide useful approximations to Ts½n�
without explicit use of the KS orbitals. If one restricts attention to
single-point approximations, tapproxs ½nðr�, a basic issue is the maxi-
mum order of spatial derivative dependence to be included. Gener-
alized gradient approximations [5] (GGA) and Laplacian-level
functionals [6–9] are the practical limits so far. Various dimension-
less spatial derivative combinations (reduced density derivatives)
have been proposed [10] but little is known about how to select
from among them. An exception would seem to be papers by Baltin
[11] and co-workers [12] and others [13,14]. Those use differential
virial theorems to derive constraints on the order of spatial deriva-
tive that can appear.

Here we show that those relationships are not constraints but
trivial identities of complicated form satisfied only by the equilib-
rium density (i.e. ground-state density) for a given external poten-
tial vext ¼ dEext=dn.

We begin the next section with the pertinent aspects of the KS
Euler equation. Then we rehearse the original arguments from Ref.
[11] using the one-dimensional (1D) case presented there. (The
three-dimensional case uses identical logic but is more cumber-
some, so we do not treat it explicitly.) In the subsequent section,
we discuss two related omissions in those arguments which signif-
icantly alter the claimed consequences to the point of triviality. We
illustrate by reconsidering two cases originally treated in Ref. [11].
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Brief consideration to show that a seemingly plausible Hohenberg-
Kohn bijectivity argument does not alter the result concludes the
presentation.

2. Differential virial constraint-1D

2.1. Euler equation

The KS decomposition of the universal ground-state total elec-
tronic energy density functional is [1]

E½n� ¼ Ts½n� þ Eext½n� þ EH½n� þ Exc½n�; ð4Þ
with Ts½n� the non-interacting kinetic energy functional as defined
above, Eext½n� the external field interaction energy, EH½n� the Hartree
energy (classical electron-electron repulsion), and Exc½n� the
exchange-correlation (XC) energy functional. (Remark: any external
system configurational energy, e.g., ion-ion repulsion, is omitted as
irrelevant here.) Minimization gives a single Euler equation,

dTs½n�
dnðrÞ þ vKSð½n�; rÞ ¼ l: ð5Þ

Here vKS ¼ dðEext þ EH þ ExcÞ=dn is the KS potential and l is the
chemical potential such that the minimizing density n0 yields the
correct Ne. Explicit use of the KS KE orbital dependence renders
the Euler equation as the familiar KS equation

�1
2
r2 þ vKSð½n�; rÞ

� �
uiðrÞ ¼ �iuiðrÞ: ð6Þ
2.2. Original differential virial argument

The original argument of Ref. [11] follows in our notation. Con-
sider a 1D system and its KS potential and states. For it the differ-
ential virial theorem (Eq. (13) of Ref. [15]) is

dtsðxÞ
dx

¼ 1
8
d3nðxÞ
dx3

� 1
2
nðxÞdvKS

dx
ð7Þ

or in primed notation as used in Ref. [11],

t0sðxÞ ¼
n000ðxÞ
8

� 1
2
nðxÞv 0

KSðxÞ: ð8Þ

(Remark: To get to the Euler equation equivalent to our Eq. (5),
Eq. (7) of Ref. [11] writes the supposed equivalent of our Eq. (4) in
1D as

E½n� ¼
Z 1

�1
dxtsðxÞ þ

Z 1

�1
dxnðxÞvKSðxÞ: ð9Þ

This is incorrect since vKS is not solely the external potential but
the error is inconsequential for the discussion at hand.)

Ref. [11] then considers a one-point approximation for ts that
depends on spatial derivatives of n through gth order:

tsðxÞ :¼ fðn;n0;n00;n000; . . .nðgÞÞ: ð10Þ
Straightforwardly one gets

t0sðxÞ ¼
Xg
m¼0

@f

@nðmÞ
dnðmÞ

dx
¼
Xg
m¼0

@f

@nðmÞ n
ðmþ1Þ ð11Þ

which is Eq. (11) in Ref. [11]. Alternatively, repeated integration by
parts gives Eq. (6) of that reference,

dTs

dn
¼
Xg
m¼0

ð�1Þm dm

dxm
@f

@nðmÞ

� �
: ð12Þ

Ref. [11] then rewrites the Euler equation (5) with (12) and
takes one spatial derivative to get
v 0
KSðxÞ ¼

Xg
m¼0

ð�1Þmþ1 dmþ1

dxmþ1

df
dnðmÞ

� �
: ð13Þ

Substitution of both this result and the result from (11) in Eq.
(8) then gives

Xg
m¼0

ð�1Þmn dmþ1

dxmþ1

@f

@nðmÞ

� �
� 2nðmþ1Þ @f

@nðmÞ

" #
¼ �1

4
n000: ð14Þ

Ref. [11] then says that ‘‘. . .this equation has to be looked upon
as a relation to be satisfied identically with respect to the variables
n;n0, . . .nð‘Þ occurring in it” and that the equation ‘‘is a condition to
be imposed on the dependence of f upon the variables n;n0, . . .nð‘Þ”.
There follows an examination of functions f which depend on nðgÞ

through g ¼ 2 with the conclusion that the only allowable form
consists of the full von Weizsäcker term [16] plus an arbitrarily
scaled Thomas-Fermi term [17,18].

2.3. Difficulty

There are two consequential flaws in the foregoing argument
that seem not to have been recognized heretofore. They have a
common stem. First, the differential virial relation from which
Eq. (8) is derived holds only for the exact eigenstates of the given
Hamiltonian. In the KS case with fixed external potential, that dif-
ferential virial relation therefore properly reads

t0sðn0ðxÞÞ ¼ n000
0 ðxÞ
8

� 1
2
n0ðxÞv 0

KSðn0ðxÞÞ: ð15Þ

The same error occurs in use of the Euler equation to get the
spatial derivative of the potential. The Euler equation is not a gen-
eral functional relation for arbitrary density n. Rather it is a rela-
tionship between the minimizing density n0 and the unique (up
to a constant) external potential which is paired with that n0. Thus
Eq. (13) must be replaced by

v 0
KSðn0ðxÞÞ ¼

Xg
m¼0

ð�1Þmþ1 dmþ1

dxmþ1

df
dnðmÞ

� �
n0

: ð16Þ

As a consequence, the purported constraint on functional
dependence becomes

Xg
m¼0

ð�1Þmn0
dmþ1

dxmþ1

@f

@nðmÞ

� �
n0

� 2nðmþ1Þ
0

@f

@nðmÞ

�����
n0

2
4

3
5 ¼ �1

4
n000
0 : ð17Þ

This is a requirement on the behavior of f at a single point n0 in
the space of one-body densities and paired with a specific vext.
Contrary to Ref. [11], Eq. (17) is not a condition on the dependence
of f upon the variables n;n0, . . .nð‘Þ for arbitrary density n given a
vext. Rather, given a dependence through order nð‘Þ, and a particular
vext, the requirement is to find the equilibrium density n0 that sat-
isfies (17).

3. 1D Examples

Just as with the original argument, early examples of the impli-
cations of the purported constraint were for 1D systems. We ana-
lyze two of those early 1D cases as particularly clear instances of
the trivial nature of the supposed constraint.

3.1. 1D homogeneous electron gas

For the 1D homogeneous electron gas (HEG), the Thomas-Fermi
functional, TTF

TTF ¼ cTF

Z
dxn3ðxÞ ð18Þ
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is exact. Secure in that knowledge, one can put it aside for a moment
and simply consider TTF as a candidate approximate KE functional.
The associated kinetic energy density and partial derivative are

tTF ¼ cTFn3 :¼ fðnÞ ð19Þ
@f

@n
¼ 3cTFn2: ð20Þ

Then Eq. (17) becomes

n0
d
dx

ð3cTFn2
0Þ � 2nð1Þ

0 ð3cTFn2
0Þ ¼ �1

4
nð3Þ
0 : ð21Þ

Its solution is

n0ðxÞ ¼ 1
2
ax2 þ bxþ c; ð22Þ

with coefficients to be determined. An appropriate boundary condi-
tion is periodic

n0ðxþ LÞ ¼ n0ðxÞ ð23Þ
where L is a suitable length. As a result

a ¼ b ¼ 0: ð24Þ
The constant c is set by imposition of the desired value of the

uniform density. The outcome of the supposed constraint is simply
to demonstrate that tTF is compatible with the HEG.

If, on the other hand, one imposes box boundary (BB) conditions

n0ð0Þ ¼ n0ðLÞ ¼ 0 ð25Þ
one has c ¼ 0 and

n0;BBðxÞ ¼ 6Ne

L3
xðL� xÞ: ð26Þ

This density, however is unacceptable, since it violates Lieb’s
condition [19] for the finitude of the KE:Z L

0
dx

d/
dx

� �2

< 1 ð27Þ

/ðxÞ :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0;BBðxÞ

q
ð28Þ

Alternatively, one may see the problem with n0;BB by attempting
direct inversion of the Schrödinger equation for / in the Ne ¼ 1
case to recover the one-body potential. Up to a constant, the pur-
ported potential is negative definite with poles at x ¼ 0; L:

(�L2=½8x2ðL� xÞ2�), i.e., n0;BB is not v�representable. There is noth-
ing special about Ne ¼ 1 to rescue the case.

Thus, all that Eq. (17) yields in the TTF case is confirmation that
TTF is indeed correct for the 1D HEG. One also learns that Eq. (17)
has solutions which upon detailed inspection do not correspond
to any potential, but that says nothing about limits on the validity
of TTF as an approximate functional. For cases in which vext does
exist, Eq. (17) has no information about it and provides no informa-
tion on the accuracy of the approximation ts � tTF . Thus, contrary to
Ref. [11], no general requirement on the dependence of Ts½n� upon
spatial derivative order is obtained from Eq. (17) when TTF is put
to the test.

3.2. One electron in 1D

For a 1-electron system, the von Weizsäcker functional TW

Ts ¼ TW ¼
Z

dxtWðxÞ ð29Þ

is exact. Its kinetic energy density is

tW ¼ ½n0ðxÞ�2
8nðxÞ :¼ fWðn;n0Þ: ð30Þ
For convenience, the relevant partial derivatives for use of Eq.
(17) are

@fW
@n

¼ �ðn0Þ2
8n2

@fW
@n0 ¼

n0

4n

Substitution of these results in the left-hand side of Eq. (17)
gives

n0
d
dx

�ðn0
0Þ2

8n2
0

� 2n0
0
�ðn0

0Þ2
8n2

0

 !
þ �n0

d2

dx2
n0
0

4n0
� 2n00

0
n0
0

4n0

 !

¼ �n0
0n

00
0

4n0
þ ðn0

0Þ3
4n2

0

þ ðn0
0Þ3

4n2
0

 !

þ �1
4
nð3Þ
0 þ 3n0

0n
00
0

4n0
� ðn0

0Þ3
2n2

0

� n0
0n

00
0

2n0

 !
¼ �1

4
nð3Þ
0

This is the same as the right hand side of Eq. (17) so that equa-
tion reduces to a trivial identity for all equilibrium densities asso-
ciated with the combination TW , some Exc, and some Eext. Therefore,
no information is provided by the differential virial constraint, Eq.
(17), about the functional dependence of Ts upon spatial deriva-
tives except that tW is a valid form. Note also that unlike the 1D
HEG or box-bounded tTF cases considered above, there are infi-
nitely many densities that lead to the trivial identity because there
are infinitely many single-electron external potentials. Thus, there
is no access to a unique solution n0 provided by the purported
constraint.
4. Discussion and conclusions

Examination of the 3D version of the differential virial con-
straint argument as summarized, for example, in Ref. [14], shows
that the same critical mis-use of the Euler equation occurs in 3D
as in 1D. The preceding analysis therefore holds unchanged.

It might seem that Hohenberg-Kohn bijectivity between vext

and n0 could rescue the argument by making the Euler equation
true for an arbitrary v-representable density. Note that even if that
were the case, the differential virial theorem part of the argument
itself still would hold only for the extremalizing density. But HK
bijectivity does not remove the Euler equation restriction either.
Bijectivity is true for an arbitrary density precisely and only in
the case that the arbitrarily chosen density is paired with the
unique external potential for which it is the minimizing density
n0. Bijectivity is irrelevant for the case of interest, namely a fixed
vext and arbitrary nðrÞ. The required pairing of density and potential
is missing. Thus, though the Euler equation holds for arbitrary n0

with the associated vext½n0� and corresponding l½n0�, the flaw iden-
tified above persists. Spatial differentiation of the Euler equation to
replace v 0

KS (recall Eq. (13)) in the differential virial relation still
ties the result to equilibrium densities n0, not arbitrary ones.

It is worth noting that the non-uniqueness of KE densities [20]
(indeed, any energy density) should raise suspicions about the
validity of any supposed constraint on the spatial derivative
dependence of an approximation for ts. The well-known vanishing
of r2n terms is an example. In fact, it is the counterexample to the
Ref. [11] argument (just after Eq. (48) of that reference) that the
approximate KE density must obey tapproxs P 0. That constraint is
highly valuable but it is a choice of gauge. The issue is discussed
in detail in Refs. [21,22]. A related issues is that it is not self-
evident that a function having up through gth order derivatives,
Eq. (11), necessarily is itself differentiable for arbitrary densities.
Nor is it always true that one can do the repeated integration by
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parts, Eq. (12) with vanishing surface terms; see Ref. [23] for
counterexamples.

The present analysis resolves at least one other peculiar finding
in Refs. [11,12]. Those claim to show that through second-order
spatial derivatives the only KE density form consistent with the
supposed differential virial constraint is tapproxs ¼ ktTF þ tW with k
an undetermined constant. This restriction is suspect on its face
because of the Lieb conjecture [24] that Ts 6 TTF þ TW . That conjec-
ture is consistent with the Ne ! 1 limit of the bound found by
Gázquez and Robles [25]. (See also Acharya et al. [26] for a heuris-
tic formulation with number dependence that has the Lieb bound
as the Ne ! 1 limit.) For finite systems, the only straightforward
way to make the peculiar result consistent with the Gázquez-
Robles expression would be for k to be number-dependent, thereby
raising an obvious problem of size-consistency. There is no obvious
simple way to make the result consistent with the Lieb bound in
the thermodynamic limit. The analysis presented here removes
that problem by showing that all the supposed constraint really
does is to confirm that for a specific n0 one always can find a k
which makes the claim true. Just pick

k½n0� ¼ Ts½n0� � TW ½n0�
TTF ½n0� : ð31Þ

While true, it is essentially tautological, hence useless.
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