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a b s t r a c t

Implementation of orbital-free free-energy functionals in the Profess code and the coupling of Profess
with the Quantum Espresso code are described. The combination enables orbital-free DFT to drive ab
initio molecular dynamics simulations on the same footing (algorithms, thermostats, convergence pa-
rameters, etc.) as for Kohn–Sham (KS) DFT. All the non-interacting free-energy functionals implemented
are single-point: the local density approximation (LDA; also known as finite-T Thomas–Fermi, ftTF), the
second-order gradient approximation (SGA or finite-T gradient-corrected TF), and our recently intro-
duced finite-T generalized gradient approximations (ftGGA). Elimination of the KS orbital bottleneck via
orbital-free methodology enables high-T simulations on ordinary computers, whereas those simulations
would be costly or even prohibitively time-consuming for KS molecular dynamics (MD) on very high-
performance computer systems. Example MD simulations on H over a temperature range 2000 K ≤ T ≤

4,000,000 K are reported, with timings on small clusters (16–128 cores) and even laptops. With respect
to KS-driven calculations, the orbital-free calculations are between a few times through a few hundreds
of times faster.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Orbital-free density functional theory (OF-DFT) in principle pro-
vides an exact quantum-mechanical description of many-electron
systems, both in the ground-state and at non-zero temperature
T. Computationally, OF-DFT should be drastically less expensive
than conventional Kohn–Sham (KS) DFT [1] at all T. The reason is
well-known. Explicit use of the KS orbitals involves orthogonaliza-
tion, which causes a computational cost scaling no better than N3

b ,
with Nb the number of occupied KS energy levels. At T = 0 K, Nb
is proportional to the number of electrons in the system, hence
grows with system size and complexity. Non-zero T makes mat-
ters worse, as the Fermi-Dirac distribution increases the number
of computationally significant (compared to machine precision)
occupation numbers relative to the ground state. Thus, the use of
KS-DFT to drive ab initio molecular dynamics (AIMD) [2–6] is cir-
cumscribed by computer resource limits [7,8] because a KS-DFT
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calculation must be done at each MD step. This scaling behavior is
a notable challenge to detailed computational exploration of warm
densematter (WDM),which has temperatures of hundreds of kK at
material densities from near ambient to several-fold compression.
In contrast, the OF-DFT computational cost should scale essentially
linearly with system size, irrespective of T.

Nevertheless, the KS decomposition is the appropriate frame-
work for formulating OF-DFT as a useful computational tool for
several reasons. Both the exchange (X) energy and the kinetic en-
ergy (KE) contribution to the DFT correlation (C) energy are de-
fined in terms of the KS decomposition. And nearly 50 years of
development of effective approximate XC functionals has taken
place in that framework. The main ingredient, therefore, of
ground-state OF-DFT is the non-interacting (or KS) KE func-
tional. For non-zero T, the corresponding ingredient is the non-
interacting free-energy functional, with contributions from the
non-interacting KE and non-interacting entropy. Both ground-
state and finite-T also require an orbital-free XC functional, of
course.

Though the OF-DFT Euler equation can be cast quite easily into
the form of a one-orbital (proportional to the square root of the
density) KS equation with an extra potential, use of a standard
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KS code to solve that equation is not a viable strategy [9,10].
Direct minimization techniques are required [11–13]. Profess
[14,15] is the only widely distributed OF-DFT computational
package of which we are aware [16] which provides such
techniques for computation of the ground state energy, electron
density, inter-atomic electronic forces, and stress tensor with
both periodic and Dirichlet boundary conditions (PBCs and DBCs).
Profess may be used at a single ionic geometry (‘‘single-point
calculations’’), wherein the total energy is minimized with respect
to the electron density by one of the direct optimization methods
implemented in the code, such as nonlinear conjugate gradient
(CG) minimization and the truncated Newton (TN) method
(see [14] for details and references) or for geometry optimization
to find energetically optimal ion positions and cell vectors.

Profess is designed, however, as a ground-state OF-DFT code
for optimization of two-point KE functionals containing a non-local
part,

TNL[n] =


drdr′nλ(r)Ks[n(r), n(r′), r, r′]nγ (r′). (1)

Here n(r) is the electron number density, λ + γ = 8/3, and
the dimensionless kernel Ks[n(r), n(r′), r, r′] is a type of response
function. Commonly the non-local form Eq. (1) is used in conjunc-
tion with the Thomas–Fermi (TF) [17,18], and vonWeizsäcker [19]
functionals to give the approximate KS KE functional, Ts:

Ts ≈ TTF + TW + TNL (2)

TTF[n] =


drτ TF

0 (n) (3)

τ TF
0 (n) :=

3
10

(3π2)2/3n5/3
≡ cTFn5/3 (4)

TW[n] :=
1
8


dr

|∇n(r)|2

n(r)
≡


drtW0 ([n]; r). (5)

(We use Hartree a.u. unless explicitly noted to the contrary. 1EH =

27.2116 eV, 1 bohr= 0.529177 Å.) The literature of such two-point
approximations is accessible through Refs. [14,15] as well as the
earlier review article by Wang and Carter [20].

In the interest of computational speed for AIMD, our work has
emphasized one-point functionals. As distributed, the only one-
point functionals included in Profess are TTF and an empirically
parametrized linear combination,

TTFvW{λ,µ} = λTTF + µTW, (6)

with either the Thomas–Fermi (λ = 1, µ = 0) or the von
Weizsäcker (λ = 0, µ = 1) term taken as the starting point and
the other term assumed to be its correction.

Implementation of more refined one-point functionals in Pro-
fess, specifically our earlier T = 0 K generalized gradient approx-
imation (GGA) kinetic energy functionals [21,22], was reported
without detail by two of us [10]. In addition to those earlier T = 0 K
modifications, the enhanced version of Profess presented as ama-
jor part of this work includes our recently published GGA non-
interacting free-energy functionals [23,24] and a new explicitly
T-dependent XC functional [25] as well as two earlier ones [26,27].

All of these enhancements are in the context of coupling
the modified Profess code to a fully-featured, freely available
KS-AIMD code, Quantum Espresso [28]. The package of modifica-
tions and interfacing, called Profess@Q-Espresso, provides a new,
finite-TOF-DFT-AIMD capability useful from the ground state to far
into the WDM regime. Fig. 1 depicts the relationship between the
two codes and the flow of calculation enabled by the new interface
and associated modifications. Detailed commentary is below.

Motivation for the combination is straight-forward. Whether
the AIMD is KS-based or OF-DFT-based, the combination means
Fig. 1. Flow chart for AIMD simulationwith Profess@Q-Espresso package. Here dt
is the MD time step and tmax is the total simulation time.

that the same algorithms are used to execute the MD and to
thermostat it in the NVT ensemble. For functional development
work, this artifact-free uniformity of treatment is important. For
materials simulation research generally, the Profess@Q-Espresso
package makes up-to-date OF-DFT functionals and optimization
techniques available to those who presently run KS-AIMD calcula-
tions, again on a uniform, artifact-free basis [29]. Third, use of pack-
ages such as Profess andQuantumEspressowhichhavepublished
source code avoids wasteful duplication of software development
effort.

The remainder of the presentation is organized as follows.
Essentials (for this discussion) of finite-T OF-DFT are described in
Section 2. Section 3 gives expressions for the ground state KE and
finite-T non-interacting free-energy functionals implemented in
the code, along with their functional derivatives and stress tensor
components. Section 4 provides the corresponding information
for the XC functionals. Section 5 describes implementation issues,
including the local model potentials required in OF-DFT, the
patches needed, and the interface itself. Section 6 gives example
timings for OF-DFT static and AIMD calculations on Hydrogen.

2. Finite-T OF-DFT essentials

For fixed ionic positions {R}, the grand canonical potential
of a system with average electron number Ne at temperature T
and chemical potential µ may be expressed as the density func-
tional [30,31]

Ω[n] = F [n] +


drn(r) {vext(r) − µ} + Eion({R}), (7)
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where vext(r) is the external potential and Eion({R}) is the ion-
ion Coulomb repulsion energy. (For notational simplicity, explicit
T-dependence is suppressed except where necessary.) The univer-
sal free-energy functional F [n]

F [n] = Fs[n] + FH[n] + Fxc[n] (8)

has the conventional KS decomposition into the non-interacting
free energy Fs[n], which has both kinetic and entropic contribu-
tions,

Fs[n] = Ts[n] − TSs[n], (9)

the classical Coulomb (or Hartree) interaction energy,

FH[n] =
1
2

 
drdr′

n(r)n(r′)
|r − r′|

(10)

and the remainder, the exchange–correlation (XC) free energy
functional. It is the difference between the interacting and non-
interacting free-energy components (KE and entropy) plus the dif-
ference between the full quantum mechanical electron–electron
interaction energy, Uee[n], and its classical part, FH[n],

Fxc[n] ≡ (T [n] − Ts[n]) − T(S[n] − Ss[n])
+ (Uee[n] − FH[n]). (11)

By stipulation, the non-interacting (KS) systemmust deliver the
same density as the interacting system, whence one has the KS ef-
fective potential vKS and the system of coupled one-electron dif-
ferential equations for the KS orbitals,
−

1
2∇

2
+ vKS([n]; r)


ϕj(r) = εjφj(r) (12)

for the variational optimization. The KS potential is the sum of
the external, vext, Hartree, vH := δFH[n]/δn, and exchange–
correlation, vxc := δFxc[n]/δn contributions. In terms of the
KS orbitals and Fermi-Dirac occupation numbers, the exact non-
interacting KE and entropy are

Ts[n] =
1
2

∞
j=1

fj


dr | ∇ϕj(r) |

2 (13)

Ss[n] = −kB
∞
j=1

{fj ln fj + (1 − fj) ln(1 − fj)}. (14)

The Fermi-Dirac occupation numbers are

fj ≡ f (εj − µ) := 1/[1 + exp(β(εj − µ))], (15)

β := 1/kBT, the electron number density is

n(r) =

∞
j=1

fj|ϕj(r)|2, (16)

and the average number of electrons is Ne =

drn(r).

The orbital-free alternative has non-interacting free-energy and
entropy functionals,

Ts[n] =


dr τs[n] (17)

Ss[n] =


dr σs[n], (18)

which depend explicitly upon the electron density (and its gradi-
ents, Laplacians, etc.) without explicit reference to the KS orbital
manifold {ϕ}. Just as with the XC free energy functional, the exact
form of those two functionals is unknown in general, so approx-
imations must be constructed. Assuming that one has an orbital-
free XC approximation as well, minimization of the functional
Eq. (7) gives the single Euler equation

δFs

δn(r)
= µ − vKS([n]; r) ≡ µ([n]; r). (19)

The XC contribution appears in vKS .
As noted already, solution of the OF-DFT problem is by direct

minimization of the total electronic free energy

Ftot[n] = F [n] +


n(r)vext(r)dr, (20)

with the constraint that the integral of the density is constant.
We use the nonlinear conjugate gradient techniques implemented
in Profess. In contrast, the KS equation must be diagonalized in
some basis, plane waves in the case of Quantum Espresso. Even
with iterative diagonalization methods, the consequence is the
computational time scaling bottleneck discussed already.

Another difference is that in KS calculations orbital-angular-
momentum-dependent (usually called non-local) pseudopoten-
tials commonly are used to great benefit. In OF-DFT one obviously
cannot resort to such pseudopotentials; a local pseudopotential is
required. Relevant consequences are discussed in Section 5.

Whether by use of (12) or (19), once the variational minimum
is obtained and n is known for a specific ionic configuration, the
electronic forces on the ions are calculated. In KS-AIMD this is
done via the Hellmann–Feynman theorem [32]. In OF-DFT, the
calculation is done directly from [21]

FI = −∇RI


F [n] +


dr vext({R}; r)n(r) + Eion({R}]


= −


drn(r)∇RI vext({R}; r) − ∇RI Eion({R})

−


dr


δFs[n]
δn(r)

+ vKS([n]; r)


∇RIn(r). (21)

At electronic equilibrium for a given ionic configuration, Eq. (19) is
satisfied, so at constant volume the last integral becomes

µ


dr∇RIn(r) = µ∇RI


drn(r) = µ∇RINe = 0 (22)

which leaves

FI = −


drn(r)∇RI vext({R}; r) − ∇RI Eion({R}). (23)

The corresponding contributions to the stress tensor are

Σαβ =
1
V


ν

∂Ω[n]
∂hαν

hβν, (24)

where α, β and ν are coordinate indices, h is a matrix constructed
from the cell vectors, and V is the cell volume (see [14]). Immedi-
ately the pressure follows as

P = −
1
3
TrΣ . (25)

3. Non-interacting free energy functionals

Here we describe our modifications of Profess to implement
finite-T functionals, including GGA non-interacting and XC free-
energy functionals, their functional derivatives, and stress-tensor
contributions.
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3.1. Finite temperature Thomas–Fermi

The LDA non-interacting free-energy is the finite-T TF func-
tional [33]

F TF
s [n] =


drf TFs (n(r), T), (26)

where

f TFs (n, T) = τ TF
0 (n)κ(t). (27)

The zero-T TF kernel, τ TF
0 (n), was defined at Eq. (4). The factor

κ(t), which is a combination of Fermi-Dirac integrals [34], is a
dimensionless function of the reduced temperature

t = T/TF :=
2

β[3π2n(r)]2/3
. (28)

Details of the structure of κ and its behavior are in Ref. [23]
along with a high-precision fit to a computationally convenient
analytical form (see Appendix A of [23]). The associated TF
potential and stress tensor are

vTF
s ([n]; r) ≡

δF TF
s [n]

δn(r)

=
∂τ TF

0 (n)
∂n

κ(t) + τ TF
0 (n)κ ′(t)

∂t
∂n

, (29)

and

ΣTF
αβ =

δαβ

V


dr


f TFs (n(r), T) − n(r)vTF

s ([n]; r)

. (30)

Primes indicate derivatives with respect to the corresponding
arguments.

3.2. Finite-T SGA and GGA functionals

Well-behaved, non-interacting GGA free energy functionals
have distinct KE and entropic contributions of the form [23]

F GGA
s [n, T] =


drτ TF

0 (n)ξ(t)Fτ (sτ )

−


drτ TF

0 (n)ζ (t)Fσ (sσ ). (31)

Here

ξ(t) = κ(t) − t
∂κ(t)
∂t

ζ (t) = −t
∂κ(t)
∂t

. (32)

κ(t) is as before. Fτ and Fσ are the non-interacting KE and entropic
enhancement factors. They depend upon two distinct T-dependent
reduced density gradients, namely

sσ (n, ∇n, t) = s(n, ∇n)
 tdh̃(t)/dt

ζ (t)

1/2
,

sτ (n, ∇n, t) = s(n, ∇n)
 h̃(t) − tdh̃(t)/dt

ξ(t)

1/2
(33)

where

s(n, ∇n) =
1

2(3π2)1/3

|∇n|
n4/3

(34)

is the reduced density gradient familiar from T = 0 K GGA XC
functionals. The function h̃ in Eq. (33) is another combination of
Fermi-Dirac integrals for which an analytical fit is provided in
Appendix A of Ref. [23].

Functionals of the form of Eq. (31) which we have added in
Profess include:
(i) the purely non-empirical functional obtained via a new
constraint-based parametrization scheme [24]

FVT84F
τ (sτ ) = 1 −

µs2τ e
−αs2τ

1 + µs2τ
+ (1 − e−αsm/2

τ )(s−n/2
τ − 1) +

5
3
s2τ

FVT84F
σ (sσ ) = 2 − FVT84F

τ (sσ ), (35)

with m = 8, n = 4, µ = 2.778 and α = 1.2965;
(ii) the mildly empirical (from a small set of molecular data) two-

parameter (KST2) [23] functional

FKST2
τ (sτ ) = 1 +

C1s2τ
1 + a1s2τ

FKST2
σ (sσ ) = 2 − FKST2

τ (sσ ); (36)

with constants C1 = 2.03087, a1 = 0.29424;
(iii) the finite-T extension of the zero-T APBEK functional [35]

given by Eq. (36) with C1 = 0.23889 and a1 = C1/0.804 (see
Ref. [24]);

(iv) the finite-T extension of the Tran–Wesolowski [36] (TW)
ground state functional, given by Eq. (36) with C1 = 0.2319
and a1 = 0.2748 (again see Ref. [23]);

(v) the finite-T SGA, also known as the gradient-corrected TF
model [37],

F SGA
τ (sτ ) = 1 + µSGAs2τ

F SGA
σ (sσ ) = 2 − F SGA

τ (sσ ), (37)

with µSGA
= 5/27;

(vi) the empirical combination of the von Weizsäcker [19] func-
tional, Eq. (5), and the finite-T Thomas–Fermi (ftVWTF) func-
tional [23] given again by Eq. (37) but with µVWTF

= 5/3
instead of µSGA.

The potential in the Euler equation that arises from any of the
F GGA

s functionals can be evaluated using the generic equation for
the functional derivative of a functional dependent on n and ∇n:

vGGA
s ([n]; r) ≡

δF GGA
s [n]
δn(r)

=
∂τ TF

0 (n)
∂n

ξ(t)Fτ (sτ ) + τ TF
0 (n)ξ ′(t)

∂t
∂n

Fτ (sτ )

+ τ TF
0 (n)ξ(t)

∂Fτ (sτ )
∂s2τ

∂s2τ
∂n

+
∂s2τ
∂t

∂t
∂n


−

∂τ TF
0 (n)
∂n

ζ (t)Fσ (sσ ) + τ TF
0 (n)ζ ′(t)

∂t
∂n

Fσ (sσ )

+ τ TF
0 (n)ζ (t)

∂Fσ (sσ )

∂s2σ

∂s2σ
∂n

+
∂s2σ
∂t

∂t
∂n


− ∇ ·


τ TF
0 (n)ξ(t)

∂Fτ (sτ )
∂s2τ

∂s2τ
∂∇n

− τ TF
0 (n)ζ (t)

∂Fσ (sσ )

∂s2σ

∂s2σ
∂∇n


. (38)

Rather than writing a single complicated expression for vGGA
s

and evaluating it in Profess, we take advantage of the structural
commonality of all GGAs for the non-interacting free energy. The
RHSof Eq. (38) shows that there are only four factorswhichdepend
on a specific GGA, Fτ , Fσ , ∂Fτ/∂s2τ , and ∂Fσ /∂s2σ . All the other
contributions are generic for GGAs, e.g. ζ , ∂t/∂n, ∂s2τ/∂n, etc. The
code is constructed to evaluate both the four specific contributions
and all the generic ones individually, then assemble the result.
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The last line of (38) is calculated in reciprocal space, then inverse
Fourier transformed.

The ftGGA stress tensor components are

ΣGGA
αβ =

δαβ

V


dr


f GGAs ([n]; r) − n(r)vGGA

s ([n]; r)


−
1
V


dr


τ TF
0 (n)ξ(t)

∂Fτ (sτ )
∂s2τ

∂s2τ
∂|∇n|

− τ TF
0 (n)ζ (t)

∂Fσ (sσ )

∂s2σ

∂s2σ
∂|∇n|


∇αn(r)∇βn(r)

|∇n|


, (39)

where

f GGAs ([n]; r) = τ TF
0 (n)ξ(t)Fτ (sτ ) − τ TF

0 (n)ζ (t)Fσ (sσ ) (40)

and α and β are Cartesian coordinate indices.

4. Exchange–correlation free energy functionals

Both the Profess and Quantum Espresso packages have stan-
dard ground state LDA [38] and GGA [39] XC functionals im-
plemented. For T > 0 K, the explicit T-dependence of the XC
free-energymay be important. See discussions in Refs. [40,41]. Our
enhancements of Profess and Quantum Espresso, include three
explicitly T-dependent XC functionals, though with the recent ad-
vent of the first one [25], the other two may be mostly of value for
checking against earlier literature.

4.1. LDA parametrized from path-integral Monte Carlo data

Recently we and a co-author presented a finite-T local spin-
density approximation (LSDA) XC free-energy functional [25] ob-
tained via accurate parametrization of first principles restricted
path-integral Monte Carlo simulation data for the 3D homoge-
neous electron gas at finite T. The XC free-energy per particle is
givenby a function of (rs, t), with rs = (3/4πn)1/3, and t definedby
Eq. (28) for the spin-unpolarized case, and t = T/TpF ≡

2
β[6π2n(r)]2/3

for the fully spin-polarized case,

f u/pxc (rs, t) = −
1
rs

ωu/pa(t) + bu/p(t)r
1/2
s + cu/p(t)rs

1 + du/p(t)r
1/2
s + eu/p(t)rs

, (41)

whereωu = 1 andωp = 21/3 for the spin-unpolarized and fully po-
larized cases respectively. The functions a(t) and bu/p(t) . . . eu/p(t)
are given in [25]. In the small-rs limit, Eq. (41) reduces to the LSDA
finite-T exchange defined by exact scaling relations for X and fit-
ted in Ref. [26], f u/px (rs, t) = −ωu/pa(t)/rs. The corresponding XC
functional derivative is

vu/p
xc ([n]; r) ≡

δ


drnf u/pxc (rs, t)


δn(r)
= f u/pxc (rs, t)

+ n
∂ f u/pxc (rs, t)

∂rs

∂rs
∂n

+
∂ f u/pxc (rs, t)

∂t
∂t
∂n


, (42)

where ∂rs/∂n = −rs/3n and ∂t/∂n = −2t/3n independent of
spin-polarization.

The stress tensor for the XC free-energy is given by the standard
expression for an LDA XC functional

Σ
u/p
xc,αβ =

δαβ

V


dr


n(r)f u/pxc (rs, t) − n(r)vu/p

xc ([n]; r)

. (43)

Only the spin-unpolarized version of the functional given by
Eq. (41) is implemented in ourmodifications of the current version
of Profess and Quantum Espresso.
4.2. RPA functional

The functional developed by Perrot and Dharma-wardana
(PDW84) [26] for the fully unpolarized case combines finite-T
parametrized LDA exchange (in the form of the small rs limit of
Eq. (41)) with correlation treated via the random-phase approxi-
mation (RPA). The X free energy per electron in that functional is
defined as

f PDW84
x (rs, t) ≡ f ux (rs, t) = −

1
rs
a(t). (44)

Perrot and Dharma-wardana also used the form of Eq. (44) to
fit the corresponding exchange potential vx independently. Else-
where [42] we have shown that for a consistent pressure calcula-
tion, such an independent fit of vx should not be used. Rather, vx
should be calculated via direct evaluation of the functional deriva-
tive of the specified X functional via use of an equation that corre-
sponds to Eq. (42). The PDW84 correlation contribution is

f PDW84
c (rs, t) = ϵLDA

c (rs)(1 + c1t + c2t1/4) exp(−c3t)

− 0.425437 (t/rs)1/2

× tanh(1/t) exp(−c4/t), (45)

where the ci are explicit functions of rs and ϵLDA
c (n) is the zero-

T LDA correlation energy per electron given by the Vosko, Wilk,
and Nusair (VWN) parametrization [43] or by the re-parametrized
Hedin–Lunqvist (rHL) local form [44,45] (see Eqs. (3.7), (3.9)–(3.10)
of Ref. [26]). The correlation potential is the functional deriva-
tive given again by the analogue of Eq. (42). The stress tensor for
the PDW84 XC functional is given by the spin-unpolarized version
of Eq. (43).

4.3. Classical map functional

Ref. [27] presented an XC free-energy functional (hereafter
denoted PDW00) built by mapping between the quantum system
of interest and a more tractable classical system. We have
implemented that functional via the fits provided in Ref. [27] for
the XC free energy per electron. For completeness that fit is

f PDW00
xc (rs, T) = (εxc(rs, 0) − P1)/P2, (46)

P1 = (A2u1 + A3u2)T2 + A2u2T5/2, (47)

P2 = 1 + A1T2 + A3T5/2 + A2T3, (48)

where A1, A2, A3, u1, and u2 are functions of rs (see definitions in
Ref. [27]). In addition, εxc(rs, 0) is the zero-T XC LDA energy per
particle given by the PZ parametrization of QMC results [38]. Also
we have implemented the XC potential which follows from exact
differentiation of Eq. (46) as

vPDW00
xc (n(r), T) ≡

δ


drn f PDW00
xc (n, T)


δn(r)

= f PDW00
xc (n, T) + n

∂ f PDW00
xc (n, T)

∂n
. (49)

The stress tensor for the PDW00 functional again is given by the
spin-unpolarized version of Eq. (43).

5. Implementational aspects

5.1. Local pseudopotentials

Efficient use of Fourier-based numerical methods in OF-DFT
computation as well as alleviation of difficulties introduced by the
bare Coulomb nuclear–electron interaction make it desirable to
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Table 1
Description of new functions and subroutines implemented in the modified version of Profess vers. 2.0.

Keyword Calculates Function/subroutine

KINE MCPBE2 PBE2 zero-T KE [21,22] and functional derivative [10]. mcPBE2PotentialPlus
— — The associated stress tensor ΣPBE2

αβ . mcPBE2Stress

KINE PBETW TW zero-T KE [36] and functional derivative [10]. PBETWPotentialPlus
— — The associated stress tensor ΣTW

αβ . PBETWStress

— — The function f (y)a and derivatives, function h ≡ h̃/72 and derivatives [37]. FPERROT and FPERROT2

KINE TTF TF free energy, entropic contribution, and functional derivative. TTF1PotentialPlus
— — The associated stress tensor ΣTF

αβ . TTF1Stress

KINE VT84F VT84F [24] free energy, entropic contribution, and functional derivative. TVTPotentialPlus
VT84F stress tensor. TVTStress

KINE HVWTF & SGA and VWTF free energy, entropic contribution, and functional TPBE2PotentialPlus
PARA MU ’value’ derivative [23], with the second term in Eq. (37)

multiplied by the value of parameter µ.b
KINE KST2 KST2 [23] free energy, entropic contribution, and functional derivative.
KINE PBETWF TW free energy, entropic contribution, and functional derivative.
KINE APBEF APBEF [24] free energy, entropic contribution, and functional derivative.

SGA, VWTF, KST2,TW, and APBEF stress tensor. TPBE2Stress

EXCH KSDT LDA XC free-energy based on PIMC simulation data [25]. KSDTXCPotentialPlus
— — LDA XC internal energy based on PIMC simulation data. KSDT_EXC
— — Stress tensor corresponding to LDA XC free-energy. KSDTXCStress

EXCH PDWX+NONE PDW84 exchange free energy. PDWXPotentialPlus
EXCH...+PD84 PDW84 correlation free energy.c PD84CPotentialPlus
EXCH PDW00XC PDW00 exchange–correlation free energy. PD00XCPotentialPlus
— — PDW84 exchange contribution to the stress tensor. PDWXStress
— — PDW84 correlation contribution to the stress tensor. PDWCStress
— — PDW00 stress tensor. PD00XCStress
a κ(t) = (5/3)tf (y(t)), see also Refs. [23,37].
b SGA free energy Eq. (37) corresponds to µ = µSGA

= 5/27, and VWTF corresponds to µ = µVWTF
= 5/3.

c Use EXCH PDWX+PD84 for PDW84 exchange and correlation.
regularize the singular external potential vext. In the KS context,
regularization often is accomplished with non-local pseudopoten-
tials. The essential feature of such potentials, for this discussion, is
their explicit dependence upon atomic orbital angularmomentum,
which makes them intrinsically incompatible with OF-DFT. Local
pseudopotentials (LPPs) are required [46–50]. An early reference,
perhaps the first, to use of an LPP in a finite-T OFMD code is Lam-
bert et al. [12]. The LPPs in a reciprocal space representation used
by Profess are described in Refs. [14,15].

More recently, we have developed LPPs in both direct and
reciprocal space for Li as described in Ref. [10]. A hydrogen LPP
intended for finite-T WDM applications was developed and tested
in Ref. [23]. It has the reciprocal space formof theHeine-Abarenkov
model [47,49], namely

vHA(q) =
−4π
Vq2

[(Z − Arc) cos(qrc)

+ (A/q) sin(qrc)]fHA(q),

fHA(q) := exp(−(q/qc)6). (50)

The parameters for H are rc = 0.25 bohr, A = 6.18 hartree and
qc = 29.97 bohr−1. The parameters for the Al atom, developed
in Ref. [49], are rc = 1.15 bohr, A = 0.1107 hartree and qc =

3.5 bohr−1. All of these LPPs are available for download [51]. The
reciprocal space form is incorporated in Profess@Q-Espresso.

5.2. Modifications of Profess

All of the functionals described in the foregoing Sections are
implemented in our modification of the Profess code, version
2.0. A short description of the most important subroutines and
functions added to the modified version is given in Table 1. A new
keyword, TEMP {real}, defines TEMPerature in Kelvin. Also we
found it useful, especially for warm dense matter simulations, to
define a new input parameter, cellScale {real} at the end of
the first section of the geometry (.ion) file, as follows:

%BLOCK LATTICE_CART
...
...
...
cellScale

%END BLOCK LATTICE_CART

This parameter defines a scaling factor for all lattice vectors and for
all atomic coordinates. Its default value is 1.0.

5.3. New XC functionals implemented in Quantum Espresso

We have implemented the explicitly T-dependent XC func-
tionals described in the preceding Section in our modification of
Quantum Espresso vers. 5.0.3. Table 2 lists the added subrou-
tines and keywords. These functionals can be used in standard
KS calculations (static or AIMD) with Quantum Espresso. Note
that the exchange–correlation internal and entropic contributions
for the KSDT functional based on the PIMC simulation data [25],
(input_dft=’KSDT’ keyword) are calculated separately and the
energy contributions listed in the standard output are changed ac-
cordingly (see next Subsection for details).

5.4. Profess@Q-Espresso interface

The implementation of Profess@Quantum Espresso uses the
modified Profess compiled as an external library for Quantum
Espresso. Profess@Q-Espresso requires standard input files for
both the Quantum Espresso PWscf package and for Profess. In
addition, for each step (ionic configuration) of an OF-DFT AIMD
calculation, Profess is called from the Quantum Espresso PWscf
main program via the interface instead of executing the normal KS
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Table 2
Description of new functions and subroutines implemented in Quantum Espresso
vers. 5.0.3.

Keyword Calculates function/subroutine

input_dft=’KSDT’ LDA XC free-energy
based on PIMC
simulation data.

fxc_ksdt_0

LDA XC internal energy
based on PIMC
simulation data.

exc_ksdt_0

input_dft=’TXC0’ PDW00 XC free-energy. pdw00xc

input_dft=’PDWX+...’ PDW84 exchange free
energy.

pdwx_t

input_dft=’...+PD84’ PDW84 correlation free
energy.

pdw84

input_dft=’...+PDW0’ PDW00 correlation free
energy.

pdw00

procedure within PWscf. The first such call is special:

...
IF(useofdft) THEN

if(istep.eq.0) CALL create_ofdftgeom()
CALL ofdft_driver()

ENDIF
...

Here useofdft {logical} is a new keyword added in
Namelist: CONTROL with default value useofdft=.false.
The second if statement takes care of initialization of Profess
upon its first use. The interface creates the Profess geometry
input file, inp.ion, on the basis of input provided for Quantum
Espresso. That file includes the description of the cell vectors,
atom types, and intra-cell atom coordinates (see the subroutine
create_ofdftgeom). Required initializations of Profess with
data provided in the input file ofdft.inpt also are done at that
first call.

At all subsequent MD steps, data exchange between Quantum
Espresso and Profess via the interface is minimal. After each MD
step, the current ionic (nuclear) coordinates {R} (tau_ofdft)
and the number of atoms (nat) are passed to Profess from
Quantum Espresso via the interface. Prior to the next OF-DFT
AIMD step, the interface transmits the following items from
Profess to Quantum Espresso: the current contributions to the
total free energy (etot), electronic internal energy (einternel),
stress-tensor components (in principle; at present it returns only
the pressure pressure) and new Born–Oppenheimer forces {F}
(force_ofdft) for the next step. All of this is achieved from
ofdft_driver via

...
CALL profess(nat,tau_ofdft,force_ofdft, &

pressure,etot,einternel)
...

The flow of control was shown in Fig. 1. The ionic coordinates
measured as fractions of cell constants (and denoted as fractional
atomic coordinates) at each MD step are stored in the md.xyz file
for subsequent visualization. Note that Quantum Espresso uses
Rydberg atomic units, while Profess uses Hartree atomic units
internally and reports results in eV and Ångström. The interface
takes account of this unit system difference.

The modified version of Profess also may be compiled as a
stand-alone package from the same source files. Doing so enables
OF-DFT calculations for either single-point or static geometry op-
timization without need of the interface to Quantum Espresso.
The new subroutines in the modified version have the same par-
allelization, implemented through domain decomposition using
MPI, though it is a development version with some inefficiently
implemented parts.

Because the implementation includes XC functionals with
explicit temperature dependence, both the internal and entropic
contributions of the XC free-energy are calculated and the output is
changed correspondingly. Here is a sample of modified Quantum
Espresso output during OF-DFT MD simulation with the KSDT T-
dependent LSDA XC functional

...
OFDFT: (kbar) P= 7192.78778379771
OFDFT: (Ry) Fxc= -96.3275434867815
OFDFT: (Ry) Exc= -106.396016259169
...

kinetic energy (Ekin) = 156.27791852 Ry
temperature = 129523.89686036 K
Ekin + Etot (const) = -28.87878502 Ry
free energy Etot = -185.15670354 Ry
EinternEl(PR) = -30.86970711 Ry
Eint=Ekin + EinternEl(PR) = 125.40821141 Ry
smearing contrib.(-TS)(PR)= -154.28699643 Ry
...

Shown are values of the pressure P from the electronic structure
calculations (ideal gas ionic contribution is not included), XC free
energy Fxc, XC internal energy Exc, ionic kinetic energy Ekin,
ionic temperature, sum of ionic-kinetic and free-energy Ekin
+ Etot, free-energy Etot, internal energy EinternEl, sum of
ionic-kinetic and internal energy Eint=Ekin + EinternEl and
the entropic contribution corresponding to the non-interacting
term −TSs and XC contribution Fxc − Exc. The output for
Kohn–Sham MD with T-dependent XC has the same quantities in
slightly different order. Calculation of internal XC contributions
for the PDW84 and PDW00 T-dependent functionals is not
implemented at present, hence the partition of the free-energy
(Etot) into the internal (EinternEl) and entropic contributions
(-TS) is not correct for these functionals; only the free energies
Etot and Ekin + Etot have meaningful values.

5.5. User implementation

In addition to the added functions and subroutines already
described, the down-loadable material for user implementation of
these modifications includes a basic README file. It lists patches
which are required in the two codes, describes precisely how to
install them, and includes scripts to run a few example static,
OF-DFT AIMD and KS AIMD calculations as basic tests.

An important technical oddity is that Profess and Quantum
Espresso require distinct, incompatible versions of the Fourier
transform package fftw [52]. Thus, the downloads include fftw
version 2.1.5 modified specifically for use with Profess and to
avoid multiple definition problems caused by simultaneous use of
version 3.3 by Quantum Espresso.

6. Results and discussion

In this Section we illustrate use of these added capabilities with
two examples. First are timing and scaling comparisons for static
lattice aluminum in the face-centered cubic (fcc) phase. Second are
timing and scaling comparisons for AIMD simulations of hydrogen
with OF-DFT AIMD via Profess@Q-Espresso and KS AIMD with
Quantum Espresso at temperatures up to T = 4,000,000 K. All
parallelized benchmark calculations used the high-performance
computing cluster (2.4–2.8 GHz AMD Opteron) at the University
of Florida. Serial tests were on a single 3.2 GHz Intel i5 CPU.

Procedural context is helpful for interpreting the results. In or-
dinary practice,we do theOF-DFTAIMD simulations on 8–32 cores.
To complete 6000MDstepswith 128Hatoms in the simulation cell
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Fig. 2. Upper panel: execution time for OF-DFT static calculations with VT84F
non-interacting free-energy functional and PZ XC for fcc-Al at material density
ρAl = 2.70 g/cm3 and electronic temperature Tel = 100 K with 2048, 4000, 8788,
16383, 32000, and 62500 atoms in the supercell. Calculations used 1 node × 64
cores and 2 nodes × 64 cores of AMD Opteron 2.4 GHz CPUs. Lower panel: speedup
from 64 to 128 cores as a function of number of atoms.

on a 64 × 64 × 64 numerical grid typically takes between a few
hours and a few days depending on simulation details such as the
CPU speed, number of cores, thermodynamic conditions, and the
choice of functional. A KS AIMD simulation with the same num-
ber of steps on 32 cores for the same number of H atoms at mate-
rial density 0.983 g/cm3 on a 3 × 3 × 3 k-mesh at T = 30,000 K
takes about one month. For Γ point KS calculations at 125,000 K
and 180,000 K, the corresponding timings are about one and two
months respectively.

6.1. Static calculations—scaling

Static OF-DFT calculations for fcc-Al were done with between
2048 and 62500 atoms in a supercell. These used the modi-
fied Profess code alone; the interface to Quantum-Espresso and
Quantum-Espresso itself are un-needed. Fig. 2 shows the wall-
clock time as a function of number of atoms for the VT84F non-
interacting free energy functional and the PZ ground-state XC
functional. Calculations show O(N lnN) scaling with system
size [53]. The computational time on 128 cores for a single den-
sity optimization with 32,000 atoms is about 17 h. The lower panel
of that figure shows the speedup in going from 64 to 128 cores;
at 32,000 atoms the speedup is about 80% of optimal. The super-
linear speedup at 4000 atoms apparently is a consequence of being
able to keep the relatively small problem primarily in cache, some-
thing which is not possible at 64 cores.
Fig. 3. CPU time per MD step for OF-DFT calculations with VT84F, KST2, TF, and
TWnon-interacting free-energy functionals and KSDTXC (Eq. (41)) for H atmaterial
density ρH = 0.983 g/cm3 and T = 125,000 Kwith 32, 64, 128, 216, 512, 1000, and
2744 atoms in the simulation cell. Corresponding data for KS calculations with 64,
128 and 216 H atoms in the simulation cell (Γ -point) are shown for comparison. All
calculations used a single core of an Intel i5 3.2 GHz CPU.

A significant sidelight is that the non-empirical APBEK non-
interacting functional not only fails to predict physically mean-
ingful results (no binding at T = 0 K), it sometimes exhibits bad
numerical convergence, apparently because of improper large-s
behavior [24]. Our mildly empirical ground-state non-interacting
functional PBE2 [21] and its finite-T extension KST2 [23] do pre-
dict binding, but both also haveworse numerical convergence than
VT84F because of the same wrong large-s limit.

6.2. Ab initio molecular dynamics: scaling

We did OF-DFT AIMD and KS AIMD simulations for H again at
material density 0.983 g/cm3 (rs = 1.40 bohr) with 128 atoms in
the simulation cell using the NVT ensemble regulated by the An-
dersen thermostat. Maximum temperatures were 4,000,000 K and
181,000 K for OF-DFT and KS MD respectively. Some of the phys-
ical results (e.g. equation of state, pair-correlation functions, etc.)
have been published [24] and others will be published systemat-
ically elsewhere. Here the focus is on comparative computational
performance.

Fig. 3 compares OF-DFT and KS CPU time per MD step for
hydrogen at T = 125,000 K as a function of the number of atoms
N in the simulation cell. All the timings are on a single core so
as not to penalize the KS calculations for their serial overhead.
OF-DFTAIMDexhibitsO(N lnN) scalingwith systemsize [53],with
45 min of CPU time per MD step for N = 2744. KS AIMD exhibits
the expected approximately N3

b scaling, (Nb > Ne is the number of
thermally occupied one-electron states). In the university context,
that scaling makes such simulations prohibitively expensive for
N > 216 atoms at thermodynamic conditions corresponding to
the data of Fig. 3. Specifically for our group, the computing context
is dedicated access to 512 cores comprising 16 simultaneous
32-coreMPI jobs on a large high performance computing cluster of
4-socket compute nodes with 16-core 2.4 GHz AMD Opteron 6378
processors, 4 GB/core RAM.

CPU time as a function of temperature (still for N = 128 hy-
drogen atoms at material density 0.983 g/cm3) is shown in Fig. 4.
OF-DFT times vary slightly because of different convergence rates
at different temperatures. For extremely high T, the CPU time de-
creases as the system tends toward the classical high-T limit. The
KS CPU time per MD step in contrast increases drastically with
increasing T because of the involvement of a growing number of
partially occupied one-electron states Nb. Again, in the academic
context, this temperature scalingmakes KS AIMD for the givenma-
terial density prohibitively expensive for T > 200,000 K.
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Fig. 4. CPU time per MD step as a function of temperature for KS and OF-DFT
calculations with VT84F, KST2, TF, and TW non-interacting free-energy functionals
and KSDT XC (Eq. (41)) for H at material density ρH = 0.983 g/cm3 with 128 atoms
in the simulation cell. All calculations used a single core of an Intel i5 3.2 GHz CPU.

6.3. Recommended functionals

Detailed accuracy comparisons among different orbital-free
functionals and comparison between OF-DFT and reference KS re-
sults are outside the scope of the present work. Previous publica-
tions [21,22,10,23,24] provide relevant comparisons. For guidance
in using the new interface and coding presented here, the main
conclusions from those studies can be summarized as follows.
(1) The standard non-interacting GGA functionals, including the
empirical PBETW, and non-empirical APBEK ones, do not provide a
qualitatively correct treatment of binding in simple molecules and
in solids such as sc-H and fcc-Al. (2) In contrast, both the VT84F
and PBE2/KST2 non-interacting functionals provide at least semi-
quantitatively correct predictions at all temperatures and have
proper T = 0 K limits. (3) The temperature dependence of the XC
free energy becomes essential at elevated T. (4) The non-empirical
VT84F functional provides almost identical results with those from
the mildly empirical PBE2/KST2 and has the added benefit of bet-
ter SCF convergence because of its correct large-s behavior. On the
basis of these facts, our current recommendation for OF-DFT AIMD
calculations is to use theVT84Fnon-interacting free energy in com-
bination with the KSDT XC free energy.

7. Conclusions

We have described the essential ingredients and modifications
in our implementation of free energy functionals in the orbital-free
Profess code. And we have described the interfacing of that code
with the Quantum-Espresso code to provide a consistent suite
with which to do both OF-DFT AIMD and KS AIMD calculations at
all temperatures. Non-interacting free-energy one-point function-
als defined within the finite-T generalized gradient approximation
provide an adequate quantum statistical mechanical description of
the electrons, thereby reducing the computational cost of using the
non-local two-point (ground state) functionals in the original Pro-
fess code. Our Profess@Q-Espresso interface and all patches to
Profess 2.0 and Quantum Espresso 5.0.3 are available by down-
load from http://www.qtp.ufl.edu/ofdft and by request to the au-
thors.
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