A LETTERS JOURNAL EXPLORING
THE FRONTIERS OF PHysics

June 2013

EPL, 102 (2013) 67005
doi: 10.1209/0295-5075/102/67005

www.epljournal.org

Uniform electron gas at warm, dense matter conditions

SANDIPAN DUTTA and JAMES DUFTY

Department of Physics, University of Florida - Gainesville, FL 32611, USA

received 7 April 2013; accepted in final form 4 June 2013

published online 4 July 2013

PACS 71.10.Ca — Electron gas, Fermi gas
PACS 05.70.-a — Thermodynamics
PACS 67.10.Fj — Quantum statistical theory

Abstract — A simple, practical model for computing the equilibrium thermodynamics and
structure of the uniform electron gas (jellium) by classical strong-coupling methods is proposed.
Conditions addressed are those of interest for recent studies of warm dense matter: solid densities
and temperatures from zero to plasma states. An effective pair potential and coupling constant
are introduced, incorporating the ideal gas, low density, and weak-coupling quantum limits. The
resulting parameter-free, analytic model is illustrated by the calculation of the pair correlation
function via strong-coupling classical liquid state theory. The results compare favorably with the
first finite-temperature restricted path integral Monte Carlo simulations reported recently.

Copyright © EPLA, 2013

Introduction. — The prototypical test bed for
strong Coulomb coupling effects in materials sciences
and plasma physics, both classical and quantum, is
the uniform electron gas (referred to classically as the
one-component plasma or quantum mechanically as
jellium). In the classical limit its thermodynamics is
completely characterized by the Coulomb pair potential
and a dimensionless coupling constant I' = 3¢?/rq. Here
B=1/kpT is the inverse temperature, ¢ is the particle
charge, and rg is the average distance between particles
defined in terms of the density (see below). In spite of its
intense attention over the past fifty years at zero and high
temperatures, the intermediate domain of solid densities
and temperatures comparable to the Fermi temperature
has remained beyond the limits of both theory and
simulation. Renewed interest in this domain has been
prompted by recent studies of “warm, dense matter”.
These include terrestrial experiments and extra-terrestrial
observations of exoplanets [1]. The present standard for
the theoretical study of this domain is ab initio molecular
dynamics driven by the Kohn-Sham calculations using
the finite-temperature extension [2] of standard density
functional theory (DFT) [3]. Examples include refs. [4-§]
and references therein. Almost always such simulations
use ground-state approximate exchange-correlation func-
tionals [9]. Full exploitation of finite-temperature DFT for
warm, dense matter conditions, however, requires knowl-
edge of the thermodynamic properties of uniform jellium
to formulate appropriate finite-temperature functionals,
at least at the level of the local density approximation (or

preserving that limit) [10,11]. In response to these new
developments, the first path integral Monte Carlo simu-
lations for these conditions have now been reported [12].
The objective here is to report a corresponding practical
theoretical description and demonstrate its substantial
agreement with the new simulations.

The limitations of many-body theories for strongly
coupled quantum systems at finite temperatures have
led to attempts to adapt corresponding methods known
to be effective for classical systems [13]. Among these
are the classical molecular-dynamics (MD) simulation
method, classical Monte Carlo integration, and liquid state
theory [14], modified with effective potentials that incor-
porate essential quantum effects such as diffraction and
degeneracy. Early approaches were based on a classical
form for the two particle density matrix in coordinate
representation to identify the effective pair potential incor-
porating diffraction effects [15]. For additional references
see [16,17]. Exchange effects were incorporated in a simi-
lar way using the pair correlation function for an ideal
gas [10,18]. More recently, such classical systems have been
defined with an effective temperature as well as pair poten-
tial [10,19]. A formalism for construction of a classical
system with thermodynamics and structure correspond-
ing to a given quantum system is described in ref. [20].

Here, an effective classical system representing the ther-
modynamics of jellium is provided, using an effective
pair potential and an effective coupling constant. Simple
analytic expressions are given, based on the more complete
but complex results of ref. [21]. Application of this model
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is illustrated using the hypernetted chain (HNC) inte-
gral equation of classical liquid state theory to calculate
the pair correlation function. Comparison of these calcu-
lations with the first finite-temperature restricted path
integral Monte Carlo (PIMC) simulation results reported
recently [12] show good agreement over a wide range
of densities and temperatures relevant for warm, dense
matter.

Effective classical system. — The system of interest
is a collection of N charges with Coulomb pair inter-
actions ¢(r) in a uniform neutralizing background, at
equilibrium [22]. The thermodynamic variables are the
temperature and density, T'=1/kp and n. A corre-
sponding effective classical system is considered with pair
interactions ¢.(r) in a uniform neutralizing background,
at equilibrium with temperature and density T, and n..
The correspondence of the classical and quantum systems
is established by defining ¢.(r),T.,n. as functions or
functionals of ¢(r),T,n in such a way as to assure the
equivalence of selected equilibrium properties. Three such
conditions are chosen [20]. The first two are equivalence
of the densities and pair correlation functions

gc(ﬁﬁc,nc|¢c)=g(7’7ﬂyn|¢)- (1)

The remaining condition fixing T, is replaced here by a
corresponding condition for an effective coupling constant,
as discussed below.

To be useful, the condition equating pair correlation
functions must be invertible, ¢, (r)=g;(r, B, nc | g),
which entails solution to the classical many-body problem
(this inversion does not need to be unique; see final
comments below). In the special case of the ideal-gas
limit the result is known as the Pauli potential, arising
from the Pauli exchange principle, denoted by ¢§0) (r).
Even in this case the inversion cannot be accomplished
exactly, but good approximations are known [18,20]. The
relevant dimensionless thermodynamic parameters for
the quantum system are the temperature relative to the
Fermi temperature ¢t =1/fep and r; =7r¢/ap, the mean
distance between particles ro (defined by 4mnrd/3=1)
relative to the Bohr radius ap. Hence the dimensionless
effective potential ¢ (z,t,75) = Bebe(r, B,n|p) is written
in the form

Ne="n,

$i(w,t,rs) = 00" (2, 8) + A" (,1,75) )

where x =r/rg. It has been recognized that the Pauli
potential depends only on t.

Two exact limits for A* (z,,7s) are important for the
discussion here. The first is the weak-coupling limit

3)

where c.(z,t,75) is the direct correlation function. It is
related to the pair correlation function g.(z,t,7s) by the
exact Ornstein-Zernicke equation [14]. Using the corre-
spondence conditions (1) the Ornstein-Zernicke equation

oi(x,t,rs) = —ce(z, t,7s),

defines the direct correlation function in terms of the quan-
tum pair correlation function

o) =g(0) 1 - [ axec(x-x])lola) - 1. ()

A sufficient condition for weak coupling is large z, for
which the behavior of c.(z,t,75) is determined from the
perfect screening sum rule for g(x,t,ry) [23]

/dxaﬁ2 (9(x)—1)= _%ﬁh;dp coth (ﬂh;},,) .

()

)1/ ® is the plasma frequency (or,

equivalently, Bhw, =4 (2\/§7r*2) s r;/2/3t). This gives

for the large-z behavior

Here w, = (4mng?/m

A* (z,t,m5) = T (t,rs) a ™t

(6)

This is the same form as for the classical one-component
plasma, except with the classical Coulomb coupling

constant I' = 3¢%/ro =4 (2/37r2) 1/3 rs/3t replaced by the
effective coupling constant
 Bhw, coth (Bhw,/2)

e (t,7s) (7
At low temperatures and fixed density I'" becomes diver-
gent whereas the effective coupling constant remains finite
I (0,75) ~1.155 ri/?. At high temperatures T, (t,rs) —
T ~0.543r,/t.

The second exact limit is that for low density and
weak coupling. The condition of low density means that
g(z,,t,7s) is determined by the two electron Slater sum.
The weak coupling A* (z,t,rs) in that case is known as
the Kelbg potential [15-17]

A* (z,t,7¢) — Tzt (1 —exp(— (az)?)

++/7(az)erfe(az)) , (8)
where a=(ry/T)"/? and erfc(z) is the complementary
error function. This weak-coupling result at low density
can be improved by imposing the exact behavior of
the two particle Slater sum at x =0, to include some
strong-coupling effects due to contributions from non-
linear dependence of the Slater sum on the Coulomb
potential [16,17,24,25]. The modified form is

At (z,T,rg) = g (1 —exp(— (az)?) +\/E%erfc('yam)>
with /
_ (aTry)'?
v (Lrs) = —m (9)

where S(I'r;) is the two electron relative coordinate Slater
sum at x =0

S(T'ry) = —4 (alr,) "/ / dyev’ Y (10)

0 1—er(Tr)?/y’
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Fig. 1: (Colour on-line) Pair correlation function g(z) at (a) t=8 and (b) t=1 for rs =1, 6, 10,40. Also shown are the results

of PIMC.

The proposal here is to further extend this Kelbg
form to apply broadly across a wide range of values
t,rs by imposing the exact asymptotic limit (6). This is
accomplished by replacing I" with the effective coupling
constant ', given by (7). The approximate effective pair
potential is thus

o (x,t, 1) ~ 0O (2, 1) + Al (z, T, 75) . (11)

Since A% (z,Ic,75) is an analytic, parameter-free form
this potential is suitable for practical applications in classi-
cal many-body theory, classical Monte Carlo calculations,
and molecular-dynamics simulations.

Pair correlation function. — To illustrate the utility
of this model potential the pair correlation function
g(x,t,rs) for jellium is calculated here using the classical
liquid state HNC integral equation [14]. The first step

is a determination of ¢go)*(w,t) for the ideal Fermi gas.
Since the pair correlation function g(o)(m,t,rs) is known
exactly, the HNC equations can be inverted to determine

EO)*(:r,t). These equations are solved numerically using

the method of Ng [26]. Next, with ¢£0)*(;1:,t) known the
pair correlation function for jellium can be determined
from the HNC equations using (11).

Very recently restricted path integral Monte Carlo
(PIMC) simulations have been reported for the pair
correlation function spanning conditions ranging from
extreme quantum to semi-classical [12]. These results
provide important benchmarks for existing quantum
many-body methods, as well as the approach proposed
here. Consider first the relatively high temperature
t =8. Figure 1(a) shows good agreement with PIMC for
all densities, 1< rs<40. Figure 1(b) shows the same
comparison for ¢ = 1. Again the agreement is good, except
at the extreme condition r; =40. In this case a strong
correlation peak has formed that is badly underestimated

by the theory, although its location is adequately
described. The origin of this discrepancy is not clear at
present. It could be a failure of the HNC implementation
of this potential, or it could be a failure of the potential
to contain sufficient information about quantum strong
coupling.

Generally, it is found for £ < 1 the theory is quite good
for 1 <r; <10. This is illustrated in fig. 2(a) and (b) at
t=0.5 and 0.0625 (the latter is essentially the same as
t =0, as confirmed by a comparison with diffusion Monte
Carlo simulations at ¢t =0 [27]). Some trends are evident
even from this limited data. For example, the temperature
dependence for ¢t < 0.5 is quite weak for r4 > 1. However,
for r¢ =1 a significant temperature dependence is seen
for 0.5 <t<8. In summary, the model potential (11)
provides a practical form for the analysis of jellium using
classical methods under conditions that are difficult to
access by existing quantum methods (e.g., rs>1 and
t <10).

The thermodynamic properties of jellium can be calcu-
lated from the pair correlation function. For example, the
pressure can be obtained from a coupling constant inte-
gration. Let p(t,7s,q) be the exact quantum pressure and
g (r,t,rs,q) the exact quantum pair correlation function
where now the dependence on the charge ¢ has been made
explicit. Then

q
p(t7rqu) - p(t, 7"5,0) +87T/ dyy
0

« / T arr?o(r) (g (roturey) — 1) (12)

Here ¢(r) is the Coulomb pair potential. Therefore,
approximating g (r,t,7s,y) by the corresponding classical
result obtained using the model potential (11) determines
the pressure for arbitrary t,7s. A more direct approach
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Fig. 2: (Colour on-line) Pair correlation function g(x) at (a) t = 0.5 and (b) ¢t = 0.0625 for rs =1, 6, 10. Also shown are the results

of PIMC.

would be classical Monte Carlo integration of the Gibbs
distribution for the free energy

F:—ﬁ_llnrév/dxl...de exp (—®*), (13)
o =1 O (25, 1) + Ak (x5, T 14
D) Z de " (@ij, t) + Ak (ij, e, 7s) (14)

ij

Discussion. — As noted in the introduction, the idea of
an effective classical pair potential with an effective clas-
sical temperature was already introduced more than ten
years ago by Perrot and Dharma-wardana [10]. Instead of
the Kelbg potential they chose the Deutsch potential [28],
originally introduced as a simpler representation of the
Kelbg potential. The PDW effective classical potential is
similar to (11), but with A% (z,T¢,7s) replaced by

Abpw (2,Tppw,rs) =Lppwa™" (1 —exp(—bz)). (15)

)1/2

Here, b= (nrs/Tppw and the effective coupling

constant is
—1/2
T\ 2
Tepw = (l-l- <?0) ) T.

This follows from their phenomenological form for the
classical temperature interpolating between the real
temperature 7" and a finite value Ty at T'=0. The single
parameter Ty/7T is determined by fitting the classical
correlation energy calculated with this potential to the
quantum exchange/correlation energy determined from
PIMC at T'=0. It is given as an explicit fitting function of
rs in ref. [10]. Although the dependence of I'ppw on t, rg
is quite different from that derived here, and the shape of
the resulting effective pair potential can be quite different,

(16)

nevertheless the HNC pair correlation function calculated
from the PDW potential has a similar accuracy to that
reported here. This indicates that an effective pair poten-
tial has no inherent physical interpretation, but rather
is a non-unique tool for generating physical properties of
interest through classical many-body methods. Here that
potential has been constructed by imposing three exact
constraints: the ideal-gas limit, low-density limit, and
large-distance limit. Consequently no fitting parameters
are required. The result provides theoretical support for
the ideas of ref. [10] and provides insight into the relevant
physical mechanisms. For example, the exact screening
sum rule that determines the form of I'. here appears
to incorporate quantum effects as significant as those of
Ippw imposed by empirical T'=0 exchange/correlation
energy data.

The Kelbg functional form used here is the exact weak-
coupling form determined from the two particle pair
correlation function. It is modified here first by a factor ~
chosen to preserve the exact two-particle pair correlation
function at = =0. Independently, it is possible to show
that the Kelbg potential satisfies the cusp condition [29]
relating the two-particle pair correlation function to its
derivative at z=0. An improvement over the present
procedure would be to determine the parameter a in (8)
self-consistently to satisfy the cusp condition for the actual
pair correlation function, rather than only its two particle
limit. In this way, the small- and large-z limits for the
potential would be “pinned” by three exact conditions.

As noted above, the analysis of the uniform electron
gas at finite temperatures is particularly important for
applications of density functional theory to problems of
warm, dense matter. The density dependence of the free
energy can be fit at each temperature of interest. A
corresponding local free energy can then be defined by
replacing the uniform density by a chosen local density.
In this way a local density functional (LDA) for the
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exchange/correlation free-energy density is determined. In
practice, more general functionals including the effects
of density gradients are required —generalized gradi-
ent approximations (GGA). While their construction is
phenomenological an important constraint is that they
should have an accurate uniform limit. Hence a finite-
temperature LDA is the first step in the construction of
finite-temperature GGA. The work of [10,11] is a first
step in this direction. This practice has been in use for
thirty years as the basis for zero-temperature DFT. The
new PIMC and its extension by the method proposed
here and that of PDW provide the means for construc-
tion of a reliable, benchmarked local density functional
at finite temperature. A detailed comparison of free ener-
gies from various theories and simulation will be reported
elsewhere.

The use of a modified Kelbg potential for the uniform
electron gas can be extended to more realistic systems. Of
particular interest are charge neutral electron-ion systems.
Presently, for strong-coupling quantum conditions these
are described by a classical molecular-dynamics (MD)
simulation of the ions, using a DFT calculation for the
electron density at each time step. This computationally
intensive approach can be complemented by an exten-
sion of the classical effective potential/coupling constant
method described here to two-component systems. The
construction of the potentials (electron-electron, electron-
ion, ion-ion) can be accomplished in the same way. The
corresponding Kelbg forms for the two particle density
matrices, and their parametrization to give correct values
at =0 are known [17]. Determination of the three
effective coupling constants is more complex since the
corresponding perfect screening sum rule [30] provides
only one constraint among them all. However, additional
constraints are available such as the compressibility sum
rule and the cusp conditions [29]. With the effective poten-
tials determined, the two-component HNC equations can
be solved efficiently for all pair correlations and ther-
modynamics. Furthermore, the HNC approximation can
be avoided by direct classical Monte Carlo evaluation of
the free energy. These approaches are under investigation.
There are recent finite-temperature PIMC simulations for
this case now (carbon and water) [31], to benchmark such
analysis as is done in the case of jellium here.
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