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I. eBc(rs, t) FIT

The gradient correction g
(2)
xc (n, T) that is the central

ingredient in Eq. (1) of the main paper was evaluated nu-
merically in Ref. [1] with use of a relation to the static lo-
cal field correction [2, 3] and quantum Monte-Carlo data
for the finite-T HEG [4]. Those data together with Eq.
(2) of the main paper, namely,

f (2)
xc (n,∇n, T) = C(2)

x εLDA
x (n)s2(n,∇n)B̃x(t)

+ C(2)
c n1/3s2(n,∇n)B̃c(n, t) , (S1)

allow numerical evaluation of B̃c(rs, t) (rs =
(3/4π)1/3n−1/3, t = T/TF ). The result is consis-
tent with the assumption that the correlation gradient
correction in Eq. (S1) reduces to the zero-T gradient

correction when T → 0, i.e., that limT→0 B̃c(rs, t) = 1.

An analytical form for B̃c(rs, t) then can be obtained
by a technique similar to that used earlier [5]. Specifi-
cally, we fitted a Padé approximant of order [4, 5] with
respect to the variable u = t13/4 and with rs-dependent
coefficients, to wit

B̃c(rs, t) =
1 +

∑4
i=1(ai + bir

1/2
s + cirs)u

i

1 +
∑5

i=1(di + eir
3/2
s + fir3

s )u
i
. (S2)

This form incorporates the correct zero-T limit and de-

creases for large T. During parametrization, B̃c(rs, t)
was checked for poles in the domain (rs, t) ∈
([0.01, 1000], [0, 1000]). If the denominator of Eq. (S2)
had a root, that parameter set was rejected. Proper pos-
itivity also was enforced. The final set of parameters is
given in Table S1. In addition to the reference data points
shown in the right-hand panel of Fig. 1 of the main paper,
we also used rs = 12 data with the same set of t values.
As to accuracy, the mean absolute relative deviation of
the fit calculated over 64 reference points is 5% and the
maximum relative error is 21% at (rs, t) = (0.5, 0.0625).
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TABLE S1: Parameters for the eBc(rs, t) fit, Eq. (S2).

i ai bi ci

1 0.30047773E+03 -0.11166044E+03 0.32175261E+02
2 -0.38706401E+03 -0.45327975E+02 0.61853048E+02
3 0.25112237E+04 -0.14507109E+04 0.33585054E+03
4 0.52243427E+03 -0.30665095E+02 0.12874241E+03

di ei fi

1 0.11077393E+03 0.12854960E+01 0.41006057E-02
2 0.32355494E+03 0.13482659E+02 0.18933118E-01
3 0.45509212E+03 0.23416018E+02 0.24295413E-04
4 0.10884352E+04 0.24480831E+02 0.18369776E-07
5 0.36112605E+00 0.32161372E-08 0.69274681E-10

The power of t used in the variable u arose from tests of
the resulting GGA functional on real systems. We found

that the low-t rate of increase of the fitted B̃c had to
be suppressed in comparison with the reference data to
avoid negative total entropy in those calculations. Such
an inconsistency of the reference data with the entropy
positivity constraint might be caused by inaccuracies in
the quantum Monte Carlo data at low-t or lack of finite-
size corrections for the electron-electron pair-distribution
function or both. At present there seems to be no way to
diagnose the cause. Nor does there seem to be a general
way to constrain a GGA C functional to deliver positive
total entropies unfailingly.

II. PBE CORRELATION FUNCTION H

The PBE ground-state correlation energy per particle
[6] in our notation is

εGGA
c (n,∇n) = εLDA

c (n) + H
(
εLDA
c , ζ = 0, q

)
, (S3)

where εLDA
c [n] is the LDA correlation energy per parti-

cle (PBE uses the Perdew-Wang parametrization [7]), ζ
is the spin-polarization fraction, and q is a dimension-
less density gradient (defined above Eq. (11) in the main
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paper). In our notation, the PBE H function is

H(εLDA
c ,ζ, q) = γφ3

× ln

{
1 +

βc

γ
q2

[
1 + APBEq2

1 + APBEq2 + A2
PBEq4

]}
(S4)

APBE =
βc

γ

[
exp {−εLDA

c /(γφ3)} − 1
]
−1

(S5)

φ(ζ) = 1
2 [(1 + ζ)2/3 + (1 − ζ)2/3] (S6)

with γ = (1 − ln 2)/π2. This H is used in Eq. (12)
of the main paper with the substitutions εLDA

c (n) →
fLDA
c (n, T) ≡ f corrKSDT

c (n, T), and q(n,∇n) →
qc(n,∇n, T).

III. CORRECTED KSDT PARAMETRIZATION

Recently it was found [8] that the original KSDT LDA
XC free-energy parametrization for the HEG gives a total
entropy that goes negative at large rs values and small
temperature (rs

>
∼ 10 and t <

∼ 0.1). Almost immediately
it was evident that the negative entropic contribution has
negligible magnitude and the total entropy stays positive
in practical calculations [9].

Ref. [10] demonstrated that the path integral Monte-
Carlo data [4] used as input for the KSDT parametriza-
tion have accuracy limitations at very high temperatures
(t ≥ 4). That reference also provided accurate quan-
tum Monte Carlo (QMC) data for the HEG potential
energy at finite T, fitted those data at fixed reduced
temperatures t following thermodynamic route B of Ref.
[11], and found “significant deviations” between fxc from
those fixed-t fits and the KSDT parametrization. Ref.
[10] data are for rs = 0.1, 0.3, 0.5, 1.0, 2.0, 4.0, 6.0, 8.0,
and 10.0, and t = 0.5, 1.0, 2.0, 4.0, and 8.0. KSDT was
parametrized on earlier HEG data [4] for rs = 1, 2, 4, 6,
8, 10, 40 and t = 0.0625, 0.125, 0.25, 0.5, 1.0, 2.0, 4.0,
8.0. The WDM density range is about 0.25 ≤ rs ≤ 10.

The deviations of KSDT from the Ref. [10] data oc-
cur for high-density, rs < 1, and comparatively high-
temperature, t ≥ 2. But for those conditions, the non-
interacting contribution, fs, of the total free energy per
particle f = fs + fxc is dominant, |fxc| << |f |. Conse-
quently, the relative differences with respect to the total
free-energy magnitude,

fRef.9
xc − fKSDT

xc

|fs + fRef.9
xc |

(S7)

for t = 2, 4, and 8 always are below 0.22%. The mean
absolute value of that quotient for all the available data
points over the range 2 ≤ t ≤ 8 and 0.1 ≤ rs ≤ 10.0 is
0.067%.

Somewhat similarly, Groth et al. [12] compared vari-
ous HEG fxc parametrizations with the QMC data. For
rs =1 and t =8, Ref. [12] states that KSDT “. . . exhibits
the largest deviations of all depicted parametrizations”
and that for t =4 the KSDT parametrization attains
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FIG. S1: Comparison between fxc from the original KSDT
and corrected (corrKSDT) parametrizations for the unpolar-
ized HEG at rs = 0.25, 0.5, 1, 2 and 4. Data from Ref. [10]
and the ground-state limit (T = 0, Ref. [13]) also are shown.

“. . . a maximum of ∆fxc/fxc ∼ 10% for rs = 0.1”. Again,
the comparison is misleading. The relative error in HEG
total free-energy is 0.017% for rs =1, t = 8 and 0.0045%
for rs =0.1, t =4. Both are completely inconsequential
for any DFT simulation (either LDA or GGA) of WDM.

Though these defects of the KSDT parametrization at
small rs and high t are inconsequential for DFT simula-
tion and mostly of an aesthetic character, we scrutinized
the entire KSDT fitting procedure. This uncovered a
procedural mistake, namely the use of the T=0K QMC
data from the analytical fit provided in Ref. [13] and not
the actual QMC data. Despite the differences being very
small (0.15% or less), the mistake introduced the HEG
negative entropy. A refit of the KSDT parameters that
control the zero-T limit to the correct T=0K QMC data
[13] was done. Simultaneously new QMC data for the
potential energy (V ) for t ≥ 0.5, from Table II of Ref.
[10], were combined with accurate data for V generated
from the original KSDT fit for t = 0.0625, 0.125, and
0.250 and rs = 0.1, 0.3, 0.5, 1.0, 2.0, 4.0, 6.0, 8.0, and
10.0. Accuracy of the original KSDT fit at low temper-
atures (t ≤ 0.5) was confirmed in Refs. [14] (see Figs. 5
and S1) and [10] (see Fig. 4). HEG entropy positivity
was enforced for all rs below the first HEG phase tran-
sition, spin polarization at rs = 75. (Enforcement of a
constraint across a phase boundary is unjustified, since
parametrization has no intrinsic validity across such a
boundary.) The full refit for the spin-unpolarized case
was performed using thermodynamic route B (Eq. (7))
of Ref. [11]. Table S2 provides parameters for the cor-
rected functional, corrKSDT.

Comparison between corrected and original
parametrizations at selected values of (rs, t) shows
that in most cases and especially at high temperature
(t ≥ 1.0), the differences are negligible, as expected
from the argument given above. The differences at low
t due to correction of the zero-T QMC data are small.
Most importantly, the negative entropy for the HEG in
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TABLE S2: Parameters for the corrected KSDT XC free-
energy functional (corrKSDT), defined by Eqs. (9)-(14) in

Ref. [11] for the unpolarized (ζ = 0) case. λ = (4/9π)1/3.

b1 0.342554
b2 9.141315
b3 0.448483
b4 18.553096

b5

p
3/2 λ−1b3 = 1.054151

c1 0.875130
c2 -0.256320
c4 0.953988
d1 0.725917
d2 2.237347
d3 0.280748
d4 4.185911
d5 0.692183
e1 0.255415
e2 0.931933
e3 0.115398
e4 17.234117
e5 0.451437

corrKSDT begins above rs = 75, far above the range
of data to which the parametrization was done and far
from any state conditions for a simulation. Figure S1
compares fxc from the corrKSDT and KSDT fits. The
accuracy of the corrKSDT parametrization is estimated
to be 0.3% for the full density and temperature ranges.

IV. corrKSDT VS. RECENT
RE-PARAMETRIZATION OF REF. [15]

Recently Groth et al. [15] reparametrized the
exchange-correlation free energy of the interacting elec-
tron gas using the KSDT functional form, constraints,
and thermodynamic analysis [11]. They used some
newer quantum Monte Carlo data, substantially im-
proved finite-size corrections, and assumed the Singwi-
Tosi-Land-Sjölander (STLS) approximation [16] for low-t
behavior. We denote that fit as KielLDA.

Comparison of the two shows that the mean absolute
relative deviation (MARD) for XC free-energy per par-
ticle (fxc) calculated over the 72 (rs,t)-data points used
for the corrKSDT parametrization (see previous Section)
is only 0.1%. The maximum relative deviation is 0.3%.
Thus the two fits practically are identical not only for
DFT applications, but also for study of the HEG itself.
Note that in the HEG, small changes (of order a few per-
cent in XC free-energy) may cause significant differences
in its calculated thermodynamic properties.

The closeness arises because of the replication, in Ref.
[15], of the procedure developed in Ref. [11]. In addition
to the thermodynamic route B (to obtain a fitted func-
tional fxc from QMC data for potential energy alone),
the KSDT analytical form was used for fxc. Within it,
the constraint relating coefficients b5 and b3 derived in
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FIG. S2: Aluminum total pressure along six isotherms (10,
15, 20, 30, 40, 60 kK) for finite-T KDT16 (dashed) and
ground-state PBE (dotted curves) XC functionals. Data for
both functionals from AIMD simulations driven by orbital-
free DFT [22–24] forces for 16 (circles), 32 (squares), or 64
(diamonds) atoms; 8500 to 16000 steps depending on T and
ρ; time-step 90-700 asec. Seemingly solid curves indicate both
16 and 32-atom data. Additional Kohn-Sham AIMD (Γ-point
only) results are shown for the same numbers of atoms.

[11] to incorporate the correct high-T limit (in both spin-
unpolarized and fully-polarized cases) was used and the
g1 = 2/3 parameter value in the spin-interpolation func-
tion was fixed from the high-density condition (see Eqs.
(18)-(19) in Ref. [11] and text below). The two fits also
use the same zero-T QMC data. However, KielLDA uses
the STLS approximation at low-t, whereas corrKSDT
avoids that extra assumption by recognizing the small-
ness of the error bars on original KSDT at low-t and
using it for extrapolation. Both fits use almost the same
set of QMC data for t ≥ 0.5.

V. IMPLEMENTATION DETAILS

The corrKSDT LDA functional (see also [11]) provides
an analytical expression for the XC free-energy per parti-
cle f corrKSDT

xc . The corresponding correlation free-energy
per particle f corrKSDT

c is calculated as

f corrKSDT
c = f corrKSDT

xc − fLDA
x , (S8)

where fLDA
x = εLDA

x Ãx(t) is the LDA exchange free-
energy per particle, εLDA

x = −(3/4π)(3π2n)1/3 is the
LDA ground-state exchange energy per particle, and

Ãx(t) is the t-dependent factor defined by Eq. (4) in the

main paper. An accurate analytical fit for Ãx(t) is given
by Eq. (39) of Ref. [5] with coefficient values listed in

Table 9 of that reference. For both the function Ãx(t)
and its derivatives, Ref. [5] provides a detailed accuracy
comparison between that representation and the Perrot-
Dharma-wardana (PDW84) fit [17] which was used as an
ingredient in the corrKSDT functional development. A

stand-alone subroutine to evaluate Ãx(t) as well as its
derivatives is available for download [18].
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We note that various computational implementations
of the KSDT and corrKSDT functionals are freely avail-
able [18, 19]. Implementation of the new KDT16 func-
tional is available by request to the authors and will be
made available for download shortly.

The GGA XC free-energy functional developed in
this paper currently is implemented in four variants
in a new version of the PROFESS@QUANTUM-

ESPRESSO interface [19, 20] as well as in a locally
modified ABINIT v8.4.2 package [21]. Those variants
are νx = 0.21951, 10/81, and 0.27583 corresponding to
the PBE, PBEsol, and PBEmol ground-state counter-
parts, plus νx = 8/81 (see the finite-T gradient expansion
Eq. (5) of the main paper). All are implemented with
matching βc values. To avoid ambiguity we denote the
νx = 0.21951, βc = 0.066725 variant as the KDT16 func-

tional. All the calculations reported in the main paper,
both Kohn-Sham and orbital-free, were performed with
the PROFESS@QUANTUM-ESPRESSO package.

VI. DIRECT COMPARISON OF KDT16 AND
PBE FOR LOW DENSITY AL

Fig. 4 of the main paper shows the shifts in pressures
for PBE (ground state approximation) relative to KDT16
results for low-density Al along six isotherms. Fig. S2
shows the pressures themselves and illustrates how direct
examination of the equation of state can conceal signifi-
cant differences.
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