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 Challenge: Scarcity of data for finite-temperature, inhomogeneous, many-

electron systems.  

 Response: Thermal Hartree-Fock calculations on confined,  many- electron 

systems ( = this talk).  

Background and Challenge 
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 Motivation: Simulation of the Physics of Warm Dense Matter 

 Reminder: Finite-temperature, Orbital-free Free Energy Density Functionals 

 Objectives:  
  Practical - drive molecular dynamics 
  Conceptual – realize fundamental content of DFT  

 Kohn-Sham kinetic energy contribution 

 Kohn-Sham entropy contribution 

 Exchange-correlation free energy 

 Implicit T dependence of ground-state functionals 
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Thermal Hartree-Fock Theory   

The trace “N,SD” is over all N-electron Slater determinants.  
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Mermin [Ann. Phys. (NY) 21, 99  (1963)] proved that the Finite Temperature 
Hartree-Fock  approximation is the “obvious” generalization of ground-state 
Hartree-Fock theory.  Basic equations (Hartree atomic units) are: 
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Thermal Hartree-Fock Theory - continued   
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Variational minimization leads to the obvious generalization 
of the ground-state HF equation: 



• The model problem is a hard-walled rectangular 
parallelepiped containing a few (1-8) hydrogen atoms. 

• Initial exploration with cubic box, edge-length L. 

• A few fixed atomic positions are sampled.   

• Box size is from 1 au3 (L = 1 au) to free-system  limit  

      (L → ∞). 

• Temperature range:  0 ≤ T ≤ 300,000 K. 
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Confined System 



Requirements: 

• Match boundary conditions. 

• Represent ground state and sufficient number of excited 
states at different box sizes. 

• Allow for efficient calculation of 2-electron integrals. 

Basis: 

Cartesian Gaussians  

truncated to match BCs. 

Coefficients  a0 ,  aL set by 
requiring each basis function 
to be continuous. 
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Basis Set 
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Technical issues and resolution: 

• Continuity of first derivative at matching point and 
corrections to piecewise evaluation of KE matrix elements – 
works with a non-zero piece-wise correction for p-type 
functions 

• Efficient calculation of 2- electron integrals – finite-range 
integrals of Gaussians and error functions done analytically 
as much as possible, rest via Gauss-Legendre quadrature. 

 

• Test cases completed – H and H2 at free limit and 
compressed. 
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Basis Set - continued 



Initial ion configuration.  Each ion is at the center of its own octant. 
Relative geometry is constrained as L is scaled.  

QTP

Results – 8 Atom Array of Cubical Symmetry in a Cubical Box  

L 

Distance: 
     Atom to near walls  =  L/4 
     Atom to nearest atom = L/2 



Total energy as a function of L for zero and finite T. The ion 
configuration has each ion at the center of its own octant. 
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Results – 8 Atom Array of Cubical Symmetry in a Cubical Box  



Free energy as a function of L for zero and finite T. The ion 
configuration has each ion at the center of its own octant. 
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8 Atom Array of Cubical Symmetry in a Cubical Box - continued  



Total energy and free energy as functions of T for four L values. 
 
              L =  5 bohr                 L =  6 bohr 

          L =  8 bohr                ⨯⨯⨯⨯⨯        L = 10 bohr 
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Results – 8 Atom Array of Cubical Symmetry in a Cubical Box  
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Results – 8 Atom Array of Cubical Symmetry in a Cubical Box  

Eelectron-nuclear  and Eelectron-electron as functions of T for four L values. 
 
            L =  5 bohr                    L =  6 bohr 

        L =  8 bohr                    ⨯⨯⨯⨯⨯        L = 10 bohr 
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Results – 8 Atom Array of Cubical Symmetry in a Cubical Box  

KE  and -TS as functions of T for four L values. 
 
           L =  5 bohr            L =  6 bohr 

    L =  8 bohr                    ⨯⨯⨯⨯⨯        L = 10 bohr 
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8 Atom Cubical Array – What are those low-T plateaus? 

Fermi distribution for a single spin for four temperatures at L = 6 bohr. 
Note that the T=0 K occupied orbitals induced by cubic symmetry are a 
single a1g and a triply degenerate t1u.   
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8 Atom Cubical Array – What are those plateaus? 

Orbital eigenvalue difference ε5 – ε4 

Fermi occupation number for orbital 5 
Temperature-induced population causes reduction in self-repulsion of 
orbitals that are unoccupied (virtual) in the ground state.  ⇒ Challenge for 
builders of orbital-free density functionals . 



Comparison of Exchange Functionals  
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Ex from finite-temperature Hartree-Fock (FTHF) 

Ex from ground state LDA with FTHF density   
Ex from temperature-dependent LDA (Perrot & Dharma-Wardana 1984 
parameterization) with FTHF density.  
All for 8 atoms, cubic symmetry, in cubic box, L = 6 bohr 

 3 2 4/3( ) 3 3 4 ( , )/xE T d n T    r r



Orbital-free KE – Thomas-Fermi and von Weizsäcker Functionals 
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Comparison of Kinetic Energy Functionals  
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Ekin from finite-temperature Hartree-Fock (FTHF). 

Ekin from finite-temperature Thomas-Fermi FTTF density.   
Ekin from FTTF + temperature-independent  von-Weizsacker gradient correction. 
 Ekin from FTTF + temperature-independent second gradient correction. 
All for 8 atoms, cubic symmetry, in cubic box, L = 6 bohr. 
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 Testing and construction of finite-temperature functionals needs 
constraints and fiduciary data from well-defined model systems. 
 We have developed and implemented a scheme for first-principles 
calculations in a well-defined approximation (Thermal Hartree-Fock) 
applied to a simple warm dense matter system. 
 Contributions to the free energy are smooth in T once the ground 
state virtual orbitals are populated enough to move them down 
(reduce artificial self-repulsion of virtuals in HF). 
 A simple non-self-consistent comparison shows that FTHF  
Ex[ n,T ] is not well-modeled by ground-state LDA but is at least 
roughly reproduced by T-dependent LDA exchange. Ekin[ n,T ] 
approximations do not fare as well.    
 Application to more complicated ion arrangements is underway. 
 Resulting data will be used to test both existing free energy 
density functionals and those we are constructing. 
 

Summary  - 
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