

Temperature-Dependent Behavior of Confined Many-electron Systems in the Hartree-Fock Approximation

Travis Sjostrom

Quantum Theory Project
Physics, Chemistry - University of Florida

http://www.qtp.ufl.edu/ofdft sjostrom@qtp.ufl.edu

53rd Annual Meeting of the APS Division of Plasma Physics Nov. 14-18, 2011

Collaborators (Orbital-free KE & FE functionals):

Sam Trickey (Univ. Florida)

Jim Dufty (Univ. Florida)

Frank Harris (Univ. Utah and Univ. Florida)

Keith Runge (Univ. Florida and BWD Associates)

Tamás Gál (Univ. Florida)

Valentin Karasiev (Univ. Florida)

Vivek Kapila (Univ. Florida)

Funding Acknowledgments: U.S. DoE DE-SC 0002139

Background and Challenge

- Motivation: Simulation of the Physics of Warm Dense Matter
- * Reminder: Finite-temperature, Orbital-free Free Energy Density Functionals
 - Objectives:

Practical - drive molecular dynamics

Conceptual – realize fundamental content of DFT

- Kohn-Sham kinetic energy contribution
- Kohn-Sham entropy contribution
- Exchange-correlation free energy
- Implicit T dependence of ground-state functionals
- **...** Challenge: Scarcity of data for finite-temperature, <u>in</u>homogeneous, manyelectron systems.
- * Response: Thermal Hartree-Fock calculations on confined, many- electron systems (= this talk).

Thermal Hartree-Fock Theory

Mermin [Ann. Phys. (NY) <u>21</u>, 99 (1963)] proved that the Finite Temperature Hartree-Fock approximation is the "obvious" generalization of ground-state Hartree-Fock theory. Basic equations (Hartree atomic units) are:

$$\mathcal{F}_{HF}\left[\left\{\phi\right\}\right] = \Omega_{HF}(\beta \mid \left\{\phi\right\}) + \int d\mathbf{r} \left[\mu - v_{ion}(\mathbf{r})\right] n(\mathbf{r})$$

$$\Omega_{HF}(\beta \mid \left\{\phi\right\}) = -\beta^{-1} \ln \sum_{N=0}^{\infty} \mathrm{Tr}^{(N,SD)} e^{-\beta(\hat{H}_{ee} - \int d\mathbf{r} \left[\mu - v_{ion}(\mathbf{r})\right] n(\mathbf{r})})$$

$$\mathcal{F}_{HF}\left[\left\{\phi\right\}\right] = \mathcal{T}\left[\left\{\phi\right\}\right] - T\mathcal{S} \qquad \mathcal{F}_{ee}\left[\left\{\phi\right\}\right] + E_{ex}\left[\left\{\phi\right\}\right] + E_{ion}\left[n\right]$$

$$\mathcal{T}\left[\left\{\phi\right\}\right] := \frac{1}{2} \sum_{j} f_{j} \int d\mathbf{r} \left|\nabla \varphi_{j}\left(\mathbf{r}\right)\right|^{2} \quad ; \quad \mathcal{S} \qquad -k_{B} \sum_{j} \left[f_{j} \ln f_{j} + (1 - f_{j}) \ln(1 - f_{j})\right]$$

$$E_{ee}\left[\left\{\phi\right\}\right] = \frac{1}{2} \sum_{ij} f_{i} f_{j} \int d\mathbf{r}_{1} d\mathbf{r}_{2} \frac{\phi_{i}(\mathbf{r}_{1})\phi_{j}(\mathbf{r}_{2})\phi_{i}^{*}(\mathbf{r}_{1})\phi_{j}^{*}(\mathbf{r}_{2})}{|\mathbf{r}_{1} - \mathbf{r}_{2}|}$$

$$E_{ex}\left[\left\{\phi\right\}\right] = -\frac{1}{2} \sum_{ij} f_{i} f_{j} \delta_{\sigma_{i}\sigma_{j}} \int d\mathbf{r}_{1} d\mathbf{r}_{2} \frac{\phi_{i}(\mathbf{r}_{1})\phi_{j}(\mathbf{r}_{1})\phi_{i}^{*}(\mathbf{r}_{2})\phi_{j}^{*}(\mathbf{r}_{2})}{|\mathbf{r}_{1} - \mathbf{r}_{2}|}$$

$$f_{j} := \left(1 + \exp\left\{\beta\left(\varepsilon_{j} - \mu\right)\right\}\right)^{-1} \quad ; \quad \beta := 1/k_{B}T$$

The trace "N,SD" is over all N-electron Slater determinants.

Thermal Hartree-Fock Theory - continued

Variational minimization leads to the obvious generalization of the ground-state HF equation:

$$\varepsilon_{i}\phi_{i}(\mathbf{r}) = \left(-\frac{1}{2}\nabla^{2} + v_{ion}(\mathbf{r})\right)\phi_{i}(\mathbf{r}) + \sum_{j} f_{j} \int d\mathbf{r}_{2} \frac{\phi_{j}(\mathbf{r}_{2})\phi_{j}^{*}(\mathbf{r}_{2})}{|\mathbf{r} - \mathbf{r}_{2}|}\phi_{i}(\mathbf{r})$$
$$-\sum_{j} f_{j} \delta_{\sigma_{i}\sigma_{j}} \int d\mathbf{r}_{2} \frac{\phi_{i}(\mathbf{r}_{2})\phi_{j}^{*}(\mathbf{r}_{2})}{|\mathbf{r} - \mathbf{r}_{2}|}\phi_{j}(\mathbf{r})$$

Confined System

- The model problem is a hard-walled rectangular parallelepiped containing a few (1-8) hydrogen atoms.
- Initial exploration with cubic box, edge-length L.
- A few fixed atomic positions are sampled.
- Box size is from 1 au³ (L = 1 au) to free-system limit
 (L → ∞).
- Temperature range: $0 \le T \le 300,000 \text{ K}$.

Basis Set

Requirements:

- Match boundary conditions.
- Represent ground state and sufficient number of excited states at different box sizes.
- Allow for efficient calculation of 2-electron integrals.

Basis:

Cartesian Gaussians Coefficients a_0 , a_L set by requiring each basis function to be continuous.

Cartesian Gaussians truncated to match BCs.
$$g_{box}^{n}(x) \coloneqq \begin{cases} a_{0} \left[g^{n}(x) - g^{n}(0) \right] & 0 \le x \le x_{c} \\ a_{L} \left[g^{n}(x) - g^{n}(L_{x}) \right] & x_{c} \le x \le L_{x} \end{cases}$$

$$g^{n}(x) = (x - x_{c})^{n} e^{-\alpha(x - x_{c})^{2}}$$

 x_{c} is nucleus position.

Basis Set - continued

Technical issues and resolution:

- Continuity of first derivative at matching point and corrections to piecewise evaluation of KE matrix elements – works with a non-zero piece-wise correction for p-type functions
- Efficient calculation of 2- electron integrals finite-range integrals of Gaussians and error functions done analytically as much as possible, rest via Gauss-Legendre quadrature.
- Test cases completed H and H2 at free limit and compressed.

Distance:

Atom to near walls = L/4Atom to nearest atom = L/2

Initial ion configuration. Each ion is at the center of its own octant. Relative geometry is constrained as *L* is scaled.

Total energy as a function of *L* for zero and finite *T*. The ion configuration has each ion at the center of its own octant.

8 Atom Array of Cubical Symmetry in a Cubical Box - continued

Free energy as a function of *L* for zero and finite *T*. The ion configuration has each ion at the center of its own octant.

Total energy and free energy as functions of T for four L values.

 $E_{electron-nuclear}$ and $E_{electron-electron}$ as functions of T for four L values.

$$\nabla \nabla \nabla \nabla \nabla \nabla L = 6 \text{ bohr}$$

 $\times \times \times \times \times L = 10 \text{ bohr}$

KE and -TS as functions of T for four L values.

8 Atom Cubical Array – What are those low-T plateaus?

Fermi distribution for a <u>single spin</u> for four temperatures at L = 6 bohr. Note that the T=0 K occupied orbitals induced by cubic symmetry are a single a1g and a triply degenerate t1u.

8 Atom Cubical Array – What are those plateaus?

Orbital eigenvalue difference $\varepsilon_5 - \varepsilon_4$

Fermi occupation number for orbital 5

Temperature-induced population causes reduction in self-repulsion of orbitals that are unoccupied (virtual) in the ground state. \Rightarrow Challenge for builders of orbital-free density functionals.

Comparison of Exchange Functionals

 E_x from finite-temperature Hartree-Fock (FTHF)

 E_x from ground state LDA with FTHF density $E_x(T) = \left(-3\sqrt[3]{3\pi^2} / 4\pi\right) \int d\mathbf{r} n^{4/3}(\mathbf{r}, T)$ E_x from temperature-dependent LDA (Perrot & Dharma-Wardana 1984 parameterization) with FTHF density.

All for 8 atoms, cubic symmetry, in cubic box, L = 6 bohr

Orbital-free KE - Thomas-Fermi and von Weizsäcker Functionals

$$T_{FTTF\lambda W}[n] := T_{FTTF} + \lambda_W T_W , \qquad 0 \le \lambda_W \le 1$$

$$T_{FTTF}[n] := \frac{\sqrt{2}}{\pi^2 \beta^{5/2}} I_{3/2} (\beta \mu) , \qquad I_n(y) = \int_0^\infty \frac{x^n}{1 + e^{(x-y)}} dx$$

$$T_W[n] := \frac{1}{8} \int d\mathbf{r} \frac{|\nabla n(\mathbf{r})|^2}{n(\mathbf{r})}$$

Comparison of Kinetic Energy Functionals

 E_{kin} from finite-temperature Hartree-Fock (FTHF).

 E_{kin} from finite-temperature Thomas-Fermi FTTF density.

 E_{kin} from FTTF + temperature-independent von-Weizsacker gradient correction.

 E_{kin} from FTTF + temperature-independent second gradient correction.

All for 8 atoms, cubic symmetry, in cubic box, L = 6 bohr.

Summary -

☐ Testing and construction of finite-temperature functionals needs
constraints and fiduciary data from well-defined model systems.
☐ We have developed and implemented a scheme for first-principles
calculations in a well-defined approximation (Thermal Hartree-Fock)
applied to a simple warm dense matter system.
☐ Contributions to the free energy are smooth in <i>T</i> once the ground
state virtual orbitals are populated enough to move them down
(reduce artificial self-repulsion of virtuals in HF).
☐ A simple non-self-consistent comparison shows that FTHF
$E_x[n,T]$ is not well-modeled by ground-state LDA but is at least
roughly reproduced by T -dependent LDA exchange. $E_{kin}[n,T]$
approximations do not fare as well.
☐ Application to more complicated ion arrangements is underway.
☐ Resulting data will be used to test both existing free energy
density functionals and those we are constructing.

http://www.qtp.ufl.edu/ofdft

