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Abstract. Rapid calculation of Born–Oppenheimer (B–O) forces is essential for driving the so-called quan-
tum region of a multi-scale molecular dynamics simulation. The success of density functional theory (DFT)
with modern exchange-correlation approximations makes DFT an appealing choice for this role. But con-
ventional Kohn–Sham DFT, even with various linear-scaling implementations, really is not fast enough
to meet the challenge of complicated chemo-mechanical phenomena (e.g. stress-induced cracking in the
presence of a solvent). Moreover, those schemes involve approximations that are difficult to check practi-
cally or to validate formally. A popular alternative, Car-Parrinello dynamics, does not guarantee motion
on the B–O surface. Another approach, orbital-free DFT, is appealing but has proven difficult to imple-
ment because of the challenge of constructing reliable orbital-free (OF) approximations to the kinetic
energy (KE) functional. To be maximally useful for multi-scale simulations, an OF-KE functional must
be local (i.e. one-point). This requirement eliminates the two-point functionals designed to have proper
linear-response behavior in the weakly inhomogeneous limit. In the face of these difficulties, we demon-
strate that there is a way forward. By requiring only that the approximate functional deliver high-quality
forces, by exploiting the “conjointness” hypothesis of Lee, Lee, and Parr, by enforcing a basic positivity
constraint, and by parameterizing to a carefully selected, small set of molecules we are able to generate
a KE functional that does a good job of describing various HqSimOn clusters as well as CO (providing
encouraging evidence of transferability). In addition to that positive result, we discuss several major neg-
ative results. First is definitive proof that the conjointness hypothesis is not correct, but nevertheless is
useful. The second is the failure of a considerable variety of published KE functionals of the generalized
gradient approximation type. Those functionals yield no minimum on the energy surface and give com-
pletely incorrect forces. In all cases, the problem can be traced to incorrect behavior of the functionals
near the nuclei. Third, the seemingly obvious strategy of direct numerical fitting of OF-KE functional
parameters to reproduce the energy surface of selected molecules is unsuccessful. The functionals that
result are completely untransferable.
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1. Introduction

Incorporation of bonding and surface formation effects in a chemically realistic way
is an essential ingredient for any simulation of chemo-mechanical processes. As noted
in other places in this collection, our focus problem is tensile fracture of silica in
∗To whom correspondence should be addressed. E-mail: vkarasev@qtp.ufl.edu
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the presence of water. We adopt the contemporary multi-scale paradigm of nested
zones. In the innermost zone, the immediate fracture region, the minimal acceptable
quantum mechanical treatment is at the level of Born–Oppenheimer (B–O) forces as
input to an otherwise classical molecular dynamics (MD) procedure. That zone con-
ventionally is called, perhaps confusingly, the QM region. Forces between nuclei in
the enclosing zone are calculated from classical potentials. Their compatibility with
the QM forces is discussed elsewhere in this collection. This nested partitioning par-
adigm, called multi-scale simulation in the computational materials community, is
called QM/MM methodology in the computational biology community.

Computing the B–O potential via density functional theory (DFT) [1–15] is a popular,
promising route with well-advertised advantages and limitations. Because of the utility of
the Kohn–Sham (KS) variational procedure [16], DFT as generally implemented involves
more than strictly the electron number density. Operationally this means either the solu-
tion of a problem that scales asymptotically as N3 at best, with N proportional to the
total particle number, or pursuit of so-called order-N approximations, or acceptance of
an approximate B–O mechanics via the Car-Parrinello method [17].

Orbital-free DFT (OF-DFT), i.e., a strictly density-parameterized theory without
the KS equations, thus is an appealing potential alternative. But there are well-known
obstacles to its implementation. In the next section, we give a brief review of those
obstacles. There follows a summary of contemporary work with fairly complicated
orbital-free Kinetic energy (OF-KE) density functionals. The following section gives
a pedagogically motivated development of OF-KE density functionals based on the
gradient expansion and the generalized gradient approximation. Then we consider
constraints on OF-KE functionals and introduce the “conjointness” hypothesis. We
then discuss functional forms already in the literature, some of which are of “con-
joint” form and explore the deficiencies of the obvious strategy of fitting the param-
eters in those functionals so as to reproduce the B–O energy surfaces of selected
molecules. This leads to a modification of the conjoint functional that is designed
exclusively for the calculation of B–O forces in multi-scale MD simulations. For sim-
plicity and speed, we require the functional to be local, applicable beyond the set of
molecules used to determine its parameters, and capable of yielding accurate forces
on the nuclei. By matching a critically important positivity constraint and parameter-
izing to a small set of carefully selected molecules, we achieve significant success. We
illustrate with OF-KE functionals parameterized to the deformation of one, and of
three Si–O bonds (in different molecules) and applied to more general deformations
of several HqSimOn clusters and to CO. Qualitatively correct, quantitatively reason-
able forces are obtained for the clusters, and there is a reasonable degree of transfer-
ability to the less similar molecule CO.

2. Basics and historical barriers

Construction of an accurate approximation for the total KE, T = 〈�|T̂ |�〉, of
a many-electron system in state |�〉 as an explicit electronic density functional,
T =T [n� ], is an important unresolved task in DFT. A review of previous work on
KE functionals, with extensive references, is found in Ref. [18]. The KS procedure
identifies the kinetic energy Ts [n] of a model non-interacting Fermion system of the
same density n, and evaluates that KE in terms of the KS orbitals:
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Ts [{φi}Ni=1]=
N∑

i=1

∫
φ∗
i (r)

(
−1

2
∇2

)
φi(r)d3r ≡

∫
torb(r)d3r. (1)

(Hartree atomic units are used except where noted.) The remainder, T − Ts , is an
ingredient of the exchange-correlation functional Exc[n].

There are at least two reasons to focus effort on OF approximations to Ts [n]
rather than T [n]. First, essentially all successful Exc approximations assume the KS
decomposition of the KE. Second, the underlying definition of Ts is via constrained-
search [19]:

Ts [n]= min
ψ �→n

〈ψ |T̂ |ψ〉 . (2)

Immediately T [n]≥Ts [n]. By density scaling arguments [20], it follows that Ts [n] is the
best possible lower bound to T [n].

Given a Ts [n] expression, the total system energy (electronic plus inter-nuclear
repulsion) could be expressed as an orbital-free density functional

EOF-DFT[n]=Ts [n]+Ene[n]+EH [n]+Exc[n]+Eion (3)

with Ene[n], EH [n], Exc[n], and Eion the usual nuclear-electron attraction, Hartree
(or classical Coulomb) electron repulsion, electron exchange-correlation functionals,
and nuclear-nuclear repulsion (or ion–ion repulsion in the case of pseudopotentials),
respectively. For multi-scale simulations the appeal of Eq. (3) is virtually self-evident.
The B–O force on nucleus I is simply the negative of the gradient with respect to the
nuclear position RI of EOF-DFT[n], so

FI ≡−∇RI
EOF-DFT[n]

=−∇RI
Eion −

∫
∂vext(r)
∂RI

n(r) d3r −
∫ [

δTs [n]
δn(r)

+vKS([n]; r)
]
∂n(r)
∂RI

d3r, (4)

where vext is the external potential (of the nuclei or ions) and vKS is the effective poten-
tial corresponding to the sum of the functional derivatives (with respect to density)
of the second through fourth terms of Eq. (3). Moreover, instead of a KS self-con-
sistent field problem for N KS orbitals, the variational minimization yields a single
“hydrodynamic” Euler equation:

δTs [n]
δn(r)

+vKS([n]; r)=µ. (5)

Here µ is the Lagrange multiplier that enforces density normalization,
∫
n(r)dr =N .

In terms of the density obtained as the solution of Eq. (5), the B–O force, Eq. (4),
reduces to

FI =−∇RI
Eion −

∫
∂vext(r)
∂RI

n(r) d3r −µ
∫
∂n(r)
∂RI

d3r . (6)

Ordinarily the simulation volume at any given step is fixed, hence the order of inte-
gration and differentiation in the last term of this equation can be interchanged to
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give the gradient of the total electron number, which is zero. Thus the usual working
version of Eq. (6) is

FI =−∇RI
Eion −

∫
∂vext(r)
∂RI

n(r) d3r. (7)

Because the KE is an order of magnitude larger then Exc, Eq. (4) shows that the big-
gest error in the calculated force arises from the gradient of the approximate Ts [n]
functional.

We are far, of course, from being the first workers to find an OF-DFT approach
to simulations appealing. In fact, the earliest antecedent of DFT was OF, namely the
venerable Thomas–Fermi (T–F) model [21–23]. The T–F theory illustrates both the
appeal and the elusiveness of a realistic OF-DFT. Specifically, Teller’s non-binding
theorem [24] shows that the T–F model does not include molecular species. This is
hardly promising for multi-scale simulation of bond breaking! But all is not bleak.
The parameterized Thomas–Fermi–von Weizsäcker (TFW) [25] model

TTFW[n]=TTF[n]+λTW [n]

TTF[n]= c0

∫
n5/3(r)dr (8)

TW[n]= 1
8

∫ |∇n(r)|2
n(r)

dr

(with λ a parameter 0≤λ≤1) when combined with Ene[n]+Eee[n]+Exc[n], does give
a model that binds neutral systems and negative ions [23]. While the results are quali-
tatively correct in that sense, they are nowhere nearly realistic enough for our agenda.
For use in what follows, the value of the constant c0 in Eq. (8) makes TTF exact for
the homogeneous electron gas: c0 = 3

10(3π
2)2/3. Conversely, TW is a form appropriate

to the strongly inhomogeneous limit.

3. Two-point functionals

For several years, Carter and co-workers have been strong proponents of OF-KE
functionals for materials simulations. A helpful review of their work is Ref. [26]. To
move beyond the limits of TFW theory, they adopt a strategy of focusing on the
physical reality of the density that an OF-KE approximate functional generates. The
strategy dates to Wang and Teter [27] and can be traced all the way back to the orig-
inal Hohenberg–Kohn DFT paper [1]. Broadly speaking that strategy has been pur-
sued by several others as well, notably Madden and co-workers [28] and Chacón and
co-workers [29] and, more recently, Choly and Kaxiras [30]. To illustrate the main
points, we sketch the argument advanced in the Wang–Carter review article just cited.

Their criterion for accuracy is the density-potential linear response function
χ(r − r′) generated by the candidate functional. This criterion arises from requiring
that the approximate functionals generate realistic atomic and molecular electronic
shell structure and corresponding Friedel oscillations in solids. Carter et al. identify
correct linear response as being key to generating such density oscillations. In slightly
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sloppy notation for Fourier transforms, a sketch of their approach is as follows. The
real- and reciprocal-space density-potential response are

δn (r)= ∫
dr′χ(r − r′)δvKS(r′)

δn (q)=χ (q)δvKS(q) ,
(9)

where vKS is the total KS potential. A chain-rule manipulation

δ(r − r′)=
∫
dr′′ δn(r)

δvKS(r′′)
δvKS(r′′)
δn(r′)

and the variational minimum condition combine to give

δ(q −q′)=χ (q)δvKS

δn
(q, q′)=−χ (q) δ

2TS

δnδn
(q, q′), (10)

where χ (q) is known in the weakly inhomogeneous limit; it is the Lindhard function.
Because Carter and co-workers start from the physics contained in a direct-space

two-point object, χ(r − r′), it is, perhaps, unsurprising that their approach leads to
emphasis on various non-local density approximations. Again see Ref. [26]. Wang
recently has made what appears to be significant progress relative to those results
[31]. However another recent result is the proof by Blanc and Cancès [32] that the
so-called “density-independent” version of these two-point functionals is unstable.
Specifically, for relatively modest electron densities in an inhomogeneous system sub-
ject to periodic boundary conditions, the use of such OF-KE functionals in Eq. (3)
gives an energy that is unbounded below. One might argue that this is unsurprising,
since these two-point OF-KE models are calibrated to correct linear-response in the
limit of the weakly inhomeogeneous electron gas. But that argument is not as obvi-
ous as it might seem at first blush when one considers the immense success of Exc
from the homogeneous electron gas, namely the LDA.

Irrespective of these difficulties, there is a pragmatic obstacle to following the
response-function calibration route. Non-locality is a computationally burdensome
complication. For optimum utility in multi-scale MD, the approximate OF-KE func-
tionals should be local (i.e. one-point). Clearly, this locality requirement makes our
task harder.

4. Gradient expansion functionals

Hodges [33] introduced a gradient expansion for Ts [n],

Ts [n]=T0[n]+T2[n]+higher order terms, (11)

where T0[n] = TTF[n] and T2[n] = 1
9TW [n]. The second-order gradient approximation

(SGA) to Ts [n] corresponds to dropping the higher-order terms in Eq. (11):

T SGA
s [n]=T0[n]+T2[n] . (12)

A related class of KE functionals can be written in the form of the generalized
gradient approximation (GGA) [34] that has been highly successful in Exc models:

T GGA
s [n]= c0

∫
n5/3(r)Ft (s(r))d3r . (13)
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Here Ft is called the “enhancement factor” and the reduced density gradient is
s≡|∇n|/(2nkF ), with kF = (3π2n)1/3.

A more productive form for our purposes is to write Ts [n] as the Weizsäcker
energy TW, plus a remainder, Tθ , known as the Pauli term (see, e.g. Refs. [35–37]):

Ts [n]=TW[n]+Tθ [n] . (14)

Tθ , which has been shown to be non-negative, has an exact expression in terms of
KS orbitals. One can write

Tθ [n]≡
∫
tθ ([n]; r)d3r , (15)

where tθ is positive for all r [37]. Then it follows that

tθ ([n]; r)≡ torb(r)−
√
n(r)(−1

2
∇2)

√
n(r)

= torb(r)− tW ([n]; r)+ 1
4
∇2n(r)≥0. (16)

Here tW ([n]; r) = |∇n(r)|2/8n(r) torb was defined in Eq. (1), and, consistently with
Eq. (8),

TW[n]=
∫
tW ([n], r) dr . (17)

If we write TW in a form parallel with that of the GGA in Eq. (13),

TW[n]= c0

∫
n5/3(r)

5
3
s2(r)d3r (18)

and introduce (see [18]) a modified enhancement factor F̃t

F̃t (s)=Ft(s)− 5
3
s2 (19)

the GGA KE functional can be written in the form

T GGA
s [n]=TW[n]+ c0

∫
n5/3(r)F̃t (s(r))d3r. (20)

The second term of Eq. (20) thus is an approximation to the Pauli term Tθ .
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The kinetic energy in the local-scaling version of DFT has the same form as Eq.
(14) (see Ref. [38]):

Ts [n]=TW[n]+ 1
2

∫
n5/3(r)AN([n]; r)d3r, (21)

where the modulating factor AN is an implicit functional of the density. It is positive
and can be expressed in terms of KS orbitals similarly to Eq. (16):

AN([n]; r)=
∑N

i=1 ∇φ∗
i (r)∇φi(r)− 1

4
(∇n(r))2
n(r)

n5/3(r)
. (22)

From Eqs. (14), (15), (20), and (21) we obtain a relationship, for the GGA approxi-
mation, among tθ , AN , and F̃t :

tGGA
θ ([n]; r)= 1

2
n5/3(r)AGGA

N ([n]; r)= c0n
5/3(r)F̃t (s(r)). (23)

5. Constraints on the Behavior of OF-KE Approximations

A major sub-genre of the DFT literature is devoted to scaling and other constraints
on approximate functionals. Because of the importance of Exc, the majority of that
work focuses on Exc: scaling constraints have played a major role in improving
non-empirical Exc approximations. With that successful example, it is only reasonable
to ask what constraints are important for Ts .

With TW explicitly separated in the KE functional as in Eq. (14), the Euler equa-
tion, Eq. (5), can be brought to Schrödinger-like form, to wit

(
−1

2
∇2 +vθ([n]; r)+vKS([n]; r)

)√
n(r)=µ

√
n(r) . (24)

Here the “Pauli potential” is

vθ([n]; r)≡ δTθ [n]/δn(r) . (25)

It can be shown [37, 39, 40] that for all r

vθ([n]; r)≥0 . (26)

As we discuss in detail below, a central result of our research is that enforcement
of Eq. (26) upon any approximation for vθ([n]; r) is a crucial requirement.

In addition to requiring the positiveness of vθ([n]; r), we next consider a few other
constraints that so far have proved relevant.

In the weakly-inhomogeneous case (s≈ 0), the approximate KE functional should
recover the SGA, Eq. (12), hence, the enhancement factor Ft should have the expansion

Ft(s) =
s→0

1+ 1
9

· 5
3
s2 =1+ 5

27
s2 . (27)

Then Eq. (19) gives

F̃t (s) =
s→0

1− 40
27
s2. (28)
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For rapidly varying density s → ∞, the opposite asymptotic case, it is gener-
ally thought that the von Weizsäcker term is correct [4]. Therefore, some functionals
incorporate that limit for Ft in the form

Ft(s) =
s→∞

5
3
s2, (29)

which is equivalent to

F̃t (s) =
s→∞ 0 . (30)

Both Eqs. (28) and (30) provide additional constraints on any approximate
OF-KE functional. There are other constraints, some of which will be satisfied auto-
matically by the type of functional form (“modified conjoint”) we eventually adopt;
see below. But it also is important to get rid of one supposed constraint that is not,
in fact, correct. Gál and Nagy [41] claim to show that if Ts is a functional only of
the density and its gradient, then Ts must have a “generalized Weizsäcker form” and,
by implication therefore, so must Tθ . But their argument is based on a supposed
homogeneity-of-degree-one relationship [42] that is known to be incorrect [20]. More
recently Gál [43] attempted to validate the Gál–Nagy result via a functional that is
homogeneous of degree one for any integer particle number but is not otherwise. It
appears to us that his argument is also incorrect, since the Gál–Nagy criteria derive
from an argument that must be true for arbitrary densities. Thus we have seen no
reason to attempt to impose the Gál–Nagy constraints.

6. Conjointness

Several authors have explored the concept of “conjointness” that was conjectured
by Lee, Lee, and Parr (LLP) [44] to construct kinetic energy functionals. Examples
include Refs. [45–49]. The LLP conjointness conjecture is that KE functionals may
be constructed in the form of Eq. (13) using the same analytical function for the
enhancement factor Ft(s) as the function Fx(s) used in the GGA exchange energy
functionals

EGGA
x [n]=−cx

∫
n4/3(r)Fx(s(r))d3r. (31)

We have found this idea very suggestive but not correct in general. Details follow.

7. Comparison of existing local functionals

As a first step, we compare the behavior of six local KE functionals proposed by oth-
ers. These are:
1. The PW91 KE functional constructed by Lacks and Gordon [45]. It depends upon

conjointness in that it starts from the Perdew–Wang 91 exchange functional;
2. The Tran–Wesolowski functional [49] (PBE-TW), which includes an enhancement

factor defined by a simple function first used for Ex by Becke [50] and later by
Perdew et al. [51]:

F PBE-TW
t (s)=1+ C1s

2

1+a1s2
(32)
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with C1 =0.2319 and a1 =0.2748. The two parameters in the PBE-TW functional
were adjusted to reproduce exactly the KE of the He and Xe atoms. Because the
enhancement factor is not precisly the same as in the underlying Ex approxima-
tion, the PBE-TW functional is not strictly a conjoint functional, but it is close
enough to be considered such. It is claimed to be among the most accurate GGA
KE functionals;

3. A GGA functional proposed by Perdew [34] (GGA-Perdew);
4. A functional due to DePristo and Kress (DPK) [52] constructed in the form of a

Padé approximant and satisfying the limiting conditions of Eqs. (27) and (29);
5. A functional introduced by Thakkar [53] with parameters fitted to the KEs of 77

molecules. This functional also is claimed to be one of the most accurate function-
als of the GGA form;

6. The SGA functional, Eq. (12).
We assessed the functionals by comparing their numerical results with the results

of conventional KS calculations in the local density approximation (LDA), using
standard methods as found in Refs. [54–61]. The reference KS calculations were done
in a triple-zeta basis with polarization functions [62–64]. All integrals were calcu-
lated by numerical quadrature that follows Becke’s use of weight functions localized
near each center to represent the multicenter integrals exactly as a sum of (distorted)
atomic integrals [65]. Radial integration of the resulting single-center forms was
via a Gauss-Legendre procedure, while integration over the angular variables used
high-order quadrature formulas developed by Lebedev and Laikov [66]. The actual
routines were downloaded from Ref. [67]. These computations were performed using
routines developed by Salvador and Mayer [68] and included in their code fuzzy.
With the KS density for a particular system, we then evaluated the total energy
EOF-DFT from Eq. (3) and the interatomic forces from Eq. (4) for each OF-KE func-
tional under study.

Because of our focus on brittle fracture, our first assessment step for these func-
tionals was to examine the B–O forces they predict for SiO as a function of bond
length. Despite the fact that the conventional KS LDA Etot curve gives a proper, sta-
ble SiO bond at a reasonable bond length, none of the six OF-KE functionals pre-
dicts an energy minimum. By implication, the forces from these OF-KE functionals
and parameters will be completely incorrect in the important region at and beyond
the equilibrium bond length, where attractive interatomic forces should dominate. This
deficiency is shown clearly in Figure 1, which displays the gradients of the total energy.
We have therefore a key finding: with published parameters and a correct KS density
as input, none of the approximate functionals predicts stability for this molecule.

A first step in analysis of this behavior is to rewrite these KE functionals in forms
that expose their enhancement factors Ft and F̃t (either implicit or explicit) for the
small and large-s limits. Table 1 shows that none of the approximate functionals
behaves strictly properly at s=∞, though DPK is off only by a constant; compare
Eqs. (29) and (30). But this asymptote is of little importance in real materials and
molecules, so it is doubtful that this misbehavior is the source of such bad results. In
particular, we note that all the approximate KE functionals, except Thakkar’s, have
formally correct or almost correct behavior at small s as defined by Eq. (27) for Ft
and Eq. (28) for F̃t .
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Figure 1. Gradients of the total energy of the SiO molecule as a function of the bond length, based
on the LDA for Exc and using the six OF-KE functionals described in Section 7. The “Exact” energy
corresponds to Ts calculated directly from the KS orbitals in the conventional way; recall Eq. (1).

Table 1. Limiting behavior of Ft and F̃t enhancement factors as a function of the reduced density
gradient s defined just after Eq. (13). All the data except for line are for the existing OF-KE func-
tionals discussed in Section 7; PBE2 is a functional we have proposed

Functional Ft as s→0 Ft as s→∞ F̃t as s→0 F̃t as s→∞
SGA 1+0.1852s2 0.1852s2 +1 1−1.4815s2 −1.4815s2 +1
GGA-
Perdew 1+0.1852s2 +O(s4) 0.1856s2 +1+O(1/s2) 1−1.4815s2 +O(s4) −1.4811s2 +1+O(1/s2)

PW91 1+0.1235s2 +O(s4) O(1/s2) 1−1.5432s2 +O(s4) −1.6667s2 +O(1/s2)

DPK 1+0.1852s2 +O(s4) 1.6667s2 −37.0035+ 1−1.4815s2 +O(s4) −37.0035+O(1/s2)

O(1/s2)

Thakkar 1−0.5613s +O(s2) O(s/ ln(s)) 1−0.5613s +O(s2) −1.6667s2 +O(s/ ln(s))
PBE-TW 1+0.2319s2 +O(s4) 1.8438+O(1/s2) 1−1.4348s2 +O(s4) −1.6667s2 +1.8438+

O(1/s2)

PBE2 1+2.0309s2 +O(s4) 7.9020+O(1/s2) 1+0.3642s2 +O(s4) −1.6667s2 +7.9020+
O(1/s2)

In fact, the KE of finite molecular systems is almost totally determined by the
behavior of F̃t over a relatively small range of s, not the asymptotic regions. For
example, in SiO at R= 1.926 Å, the range 0.25 ≤ s≤ 1.25 accounts for 99.7% of the
total value of the PBE-TW functional. Therefore, in Figure 2 we show the various
enhancement factors F̃t as functions of s2 on the interval [0,2]. We did not expect
to find that the SGA, GGA-Perdew, PW91, DPK, Thakkar, and PBE-TW enhance-
ment factors (shown by the same long-dashed line) are indistinguishable on the scale
of the figure for s2<1. Their functional form over this entire range is quite close to
that of the SGA: F̃t (s)=1− (40/27)s2.
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Figure 2. Enhancement factors F̃t of kinetic energy functionals as functions of s2, where s is the
reduced density gradient defined just after Eq. (13). The first six functionals in the legend are those
previously proposed and discussed in Section 7; the remaining four are proposed in the present work.

For SiO at internuclear separation R=1.926 Å, the s values at the Si and O nuclei
are 0.376 and 0.383, respectively, i.e. s2 ≈0.14.. . (Virtually the same values occur for
the isolated Si and O atoms.) Inspection of Figure 2 shows that for this value of s2

all the approximate functionals have F̃t values that are of the small-s form, rather
close to F̃t = 1 − 1.5s2, or F̃t ≈ 0.8. In contrast, exact calculations of the modulating
factor AN for selected atoms [18, 69] show that AN([n]; r)→0 as r→0. This means
that the Weizsäcker term gives a correct description of the kinetic energy density in
the region close to the nucleus, equivalent to the statement that an optimum value of
F̃t at the nucleus should be close to zero.

The poor behavior of F̃t near the nuclei has important consequences for the forces
it generates. This fact follows by first rewriting Eq. (4) as

FI =−∇RI
Eion −

∫
∂vext(r)
∂RI

n(r) d3r −
∫ (δTW [n]

δn(r)
+vθ([n]; r)+vKS([n]; r)

)∂n(r)
∂RI

dr .

(33)

Thus, errors in the computed FI arise from the replacement of the exact vθ by its
GGA approximation involving F̃t . Next, from Eq. (23) combined with the definition
of vθ , it follows [70] that

vGGA
θ (r)= 5

3
c0n

2/3(r)F̃t (s(r))+ c0n
5/3(r)

∂F̃t (s)

∂s
×

( ∂s(r)
∂n(r)

−∇ ∂s(r)
∂∇n(r)

)
. (34)

We may estimate vGGA
θ near a nucleus (r= 0), where it is most important, from the

nuclear-cusp behavior

n(r)∼ exp(−2Zr). (35)
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Taking F̃t (s)=1+as2, we find that

vGGA
θ (r)∼ a

r
, (36)

which shows that the sign of vGGA
θ is the same as that of a. Since a < 0 for all

six published functionals, it follows that near the nuclei vGGA
θ < 0, which is wrong:

vθ must be non-negative for all r. The fact that vGGA
θ is of the wrong sign in the

most important part of its range inevitably leads to qualitatively incorrect force com-
putations. It also means that the conjointness hypothesis cannot be strictly correct,
another key result.

8. Modified conjoint KE functionals

Conjointness turns out to be useful nevertheless, as we shall show shortly. First, how-
ever, the central role of the total energy in QM makes it almost a reflex to attempt an
OF-KE parameterization by searching for fits to total energies from direct KS com-
putations. We considered, therefore, an exchange energy enhancement factor of the
PBE form, given in Eq. (32). Its parameters were optimized for the molecule SiO by
minimizing the error function

ωE =
m∑

i=1

|EKS
i −EOF-DFT

i |2, (37)

where i indexes particular nuclear configurations used for the fit and EOF-DFT
i was

evaluated using the KS density for that configuration.
This parameterization scheme failed. If the SiO bond lengths of the fitting set were

distributed uniformly over both the attractive and repulsive regions of the KS poten-
tial curve, the resulting parameter set did not produce a minimum in the OF-DFT
potential. Restriction of the fitting set to the attractive region of the KS curve did
give an OF-DFT minimum, but the full curve exhibited oscillations and other non-
physical properties. Attempts to use more complicated analytical forms for Ft (moti-
vated by other exchange approximations) in combination with Eq. (37) also failed.

Since total-energy parameterization fails at least for these simple functional forms,
we are compelled to refocus on the original objective: an OF-KE functional param-
eterization solely for reproducing the KS forces, irrespective of the resulting total
energy. We proceeded by determining functional parameters through minimization of
the error function

ω�E =
∑

M,i

∣∣�EKS
M,i −�EOF-DFT

M,i

∣∣2
, (38)

where for nuclear configuration i of molecule M, �E=EM,i −EM,e, with EM,e the
energy associated with the equilibrium nuclear configuration as predicted from KS
computations. Clearly this error function is a finite difference approximation to the
B–O forces. It optimizes only the shape of the computed potential surface and is
totally indifferent as to any uniform energy displacement from the KS surface.

We applied this parameterization scheme with two different training sets of mol-
ecules: (1) a single SiO diatomic, and (2) a three-molecule set consisting of SiO,
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H4SiO4, and H6Si2O7, but with nuclear configurations restricted to those reached by
a single bond stretch (for H4SiO4 one of the Si–O bonds, for H6Si2O7 one of the cen-
tral Si–O bonds). It proved sufficient to use between 5 and 10 bond lengths distrib-
uted over the range [Re/2,2Re], where Re is the equilibrium bond length as predicted
by the KS-LDA calculations. Functionals found by using the form given in Eq. (32),
but with parameter sets determined as described here, are designated PBE2.

In addition to the parametric form of Eq. (32), we examined the three- and
four-parameter exchange energy enhancement factors introduced by Adamo and Ba-
rone [71]

F PBE3
t (s)=1+ C1s

2

1+a1s2
+ C2s

4

(1+a1s2)2

F PBE4
t (s)=1+

3∑

i=1

Ci

[ s2

1+a1s2

]i
. (39)

We also considered a form for Ft with somewhat different behavior at intermediate
values of s:

F
exp4
t (s)=C1(1− e−a1s

2
)+C2(1− e−a2s

4
). (40)

Our emphasis was exploration of simple Ft forms suggested by conjointness and
compatible with multi-scale MD simulations of complex systems. The choices should
not be construed as optimal in any other sense than that.

The first test was parameterization of a PBE2 functional by minimization of ω�E
for six SiO bond lengths Ri ={1.126,1.326,1.526,1.826,2.126,2.726}Å ; for it the KS
equilibrium bond length is Re = 1.526 Å. The resulting parameter values are shown
in Table 2. The behavior of the corresponding Ft and F̃t in the limits s → 0 and
s→∞ is presented in the last line of Table 1 (designated PBE2). Note that, in con-
trast to the PBE-TW functional (which has the same form but different parameters),
the small-s quadratic term of F̃t for the PBE2 functional has the positive sign nec-
essary to cause the potential vθ to have its required positive value near the nuclei. It
is because of this that we designate such a functional as “modified conjoint”.

Figure 3 compares the PBE-TW potential and its modified conjoint counter-
part, PBE2. Observe that while both potentials deviate maximally from zero near
the nuclei (identified from the maxima in the electron density), it is precisely in
that region that the two approximate potentials differ most drastically, with vPBE-TW

θ

diverging toward −∞ at the nuclear positions.

Table 2. Parameters of approximate OF-KE functionals fitted to energy differences. PBE2 is fitted to
one molecule, the others to three; see text

Functional C1 a1 C2 a2 C3

PBE2 2.0309 0.2942 – – –
PBE3 −3.7425 4.1355 50.258 – –
PBE4 −7.2333 1.7107 61.645 – −93.683
exp4 0.8524 199.81 1.2264 4.3476 –
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Figure 3. Two approximate kinetic energy functional derivatives vθ = δTθ [n]/δn(r) corresponding to
the PBE-TW kinetic energy functional and to the �E fit of the same functional form (PBE2 func-
tional) for the SiO molecule at the stretched bond length R=1.926 Å, evaluated at points z along the
internuclear axis on which the Si and O nuclei are close to −1 and +1 angstrom respectively. For
comparison we also show the electron density and the “exact” vθ that results from conventional KS
computations.

In Section 7, we showed that GGA KE functionals in general have values of vθ
that are singular at the nuclei; vPBE2

θ is consistent with that. At least, vPBE2
θ ≥0 for all

r, with the result that it gives qualitatively reasonable forces. The exact vθ is not only
positive everywhere but also finite at the nuclei, so it is not surprising that the PBE2
functional overestimates the kinetic energy. Insight can be gained from the virial rela-
tion [37]

Tθ [n]= 1
2

∫
vθ([n]; r)(3+ r ·∇)n(r)d3r. (41)

For a more thorough exploration, we treated the three-molecule training set. For
SiO, we used the six bond lengths listed earlier in this section, for H4SiO4 we fixed
three Si–O bonds at the KS Re = 1.637Å and varied the remaining Si–O bond over
the set Ri={1.237,1.437,1.637,1.937,2.237,2.837}Å. For H6Si2O7, the corresponding
procedure was to hold one of the central Si–O bonds at the KS equilibrium value
Re = 1.61 Å and vary the other over the set Ri = {1.21,1.41,1.61,1.91,2.21,2.81} Å.
Table 2 shows parameters for all the conjoint forms listed above (except PBE2) as
obtained from minimization of ω�E over this training set.

The accuracy with which the forces are fitted for one of the molecules is shown
in Figure 4. All the functionals describe the attractive region quite accurately while
giving rather good results for the lower-energy part of the repulsive region. Only at
R values shorter than about Re−0.25 Å are there major differences either among the
approximate functionals or between them and the exact KS forces.

A more severe test of the new parameterizations is their ability to yield forces on
molecules to which they were not fitted explicitly. A simple set of convenient cases
involves bond deformations of the training-set molecules that were not used in the fit-
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Figure 4. Exact and approximate values of dE/dR for the deformation of one of the central Si–O
bonds in H6Si2O7, calculated from fitted OF-KE functionals. “Exact” values are those given by con-
ventional KS computation for the same Exc approximation.
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Figure 5. “Exact” KS and fitted OF-KE functional values of dE/dR for H4SiO4, with R the length
of two of the four Si–O bonds; the other two Si–O bonds are kept at the equilibrium value. “Exact”
values are those given by conventional KS computation for the same Exc approximation.

ting. Figure 5 shows forces for the H4SiO4 molecule as two Si–O bonds are changed
simultaneously by the same amount while the other two are held at Re. Figure 6 is
similar, but for the simultaneous change of three Si–O bonds with the fourth kept
at Re. All the new functionals except PBE2 predict the equilibrium distance (posi-
tion where F = 0) well. Moreover, except for PBE2, the forces are quite good in the
attractive region and for short excursions into the repulsive region. We do note that
the PBE2 functional becomes better than the other approximate functionals when far
into the repulsive region. The other functionals diverge significantly from the exact
curve in the region R<1.24 Å.
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Figure 6. Values of dE/dR for SiO4H4, exact and calculated using fitted KE density functionals, where
R is the length of three of the four Si–O bonds; the fourth Si–O bond is kept at the equilibrium value.
“Exact” values are those given by conventional KS computation for the same Exc approximation.

An even tougher test is the application of the new OF-KE functionals to a system
outside the training set. We picked the CO diatomic molecule. The energy gradient
predicted by each functional is shown in Figure 7. Given that the functionals had
no information about carbon, there is a reasonable degree of transferability exhib-
ited. In particular, the energy gradients in the longer-distance attractive region are
very close to those from the reference KS calculation. However, the repulsive force is
substantially too large, which results in a significant overestimate of the equilibrium
bond length. Nevertheless, even for this relatively difficult test, a stable molecule is
predicted by all the new approximate functionals.

Preliminary exploration of other training sets suggest that the parameters are to
some extent sensitive to training set choice. At this stage of exploration we are
unconcerned by that sensitivity, since we likely will follow a training strategy akin to
that discussed by Mallik et al. in this collection.

9. Key findings

Our key findings are:
• The conjointness hypothesis per se is not valid;
• Conjointness is a useful, suggestive guide for initial construction of an OF-KE

functional;
• It is essential to enforce (or at least achieve) positivity of vθ ;
• Parameterization to KS forces, not total energies, is key to making progress with

a simple local OF-KE functional;
• A simple local OF-KE functional trained on one small set of molecules can give

at least semi-quantitative results for an entirely different molecule
The explorations reported here suggest strongly that the combined use of the con-

jointness conjecture, vθ positivity, and parameterization to forces alone is a prom-
ising route to an OF-KE functional useful in MD simulations. The next step is to
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Figure 7. Exact and approximate gradients of the total energy for the CO molecule as a function of
the bond length, calculated using fitted KE density functionals. “Exact” values are those given by
conventional KS computation for the same Exc approximation.

find computationally efficient refinements of the form of F̃t that will improve the fit-
ted force curves. An obvious improvement is to eliminate the spurious singularity at
the nuclei. Application of additional constraints (e.g. from uniform scaling) is another
form of improvement that has seen great success in Exc approximations and may be
helpful for OF-KE approximations.

Once we have reasonable OF-KE functionals, a closely related task is to model
the density n(r) and its relaxation in response to nuclear motion, so that the model
density works well with the approximate OF functional. We are exploring that issue.
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