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The direct random phase approximation (RPA) and RPA with second-order screened exchange

(SOSEX) have been implemented with complex orbitals as a basis for treating open-shell atoms. Both

RPA and RPA+SOSEX are natural implicit current density functionals because the paramagnetic

current density implicitly is included through the use of complex orbitals. We confirm that inclusion

of the SOSEX correction improves the total energy accuracy substantially compared to RPA, espe-

cially for smaller-Z atoms. Computational complexity makes post self-consistent-field (post-SCF)

evaluation of RPA-type expressions commonplace, so orbital basis origins and properties become

important. Sizable differences are found in correlation energies, total atomic energies, and ioniza-

tion energies for RPA-type functionals evaluated in the post-SCF fashion with orbital sets obtained

from different schemes. Reference orbitals from Kohn-Sham calculations with semi-local functionals

are more suitable for RPA+SOSEX to generate accurate total energies, but reference orbitals from

exact exchange (non-local) yield essentially energetically degenerate open-shell atom ground states.

RPA+SOSEX correlation combined with exact exchange calculated from a hybrid reference orbital

set (half the exchange calculated from exact-exchange orbitals, the other half of the exchange from

orbitals optimized for the Perdew-Burke-Ernzerhof (PBE) exchange functional) gives the best overall

performance. Numerical results show that the RPA-like functional with SOSEXcorrection can be used

as a practical implicit current density functional when current effects should be included. Published

by AIP Publishing. [http://dx.doi.org/10.1063/1.4971377]

I. INTRODUCTION

The random phase approximation (RPA)1 long has been

valuable for the development of approximate density func-

tionals. Early on, the RPA correlation energy of the homoge-

neous electron gas was used in fitting analytical forms of local

density approximations (LDAs) for exchange and correlation

(XC).2–4 RPA expressions also were used to determine the

density gradient dependence and shape of correlation holes.5,6

RPA and related functionals utilize both occupied and unoc-

cupied orbitals, hence stand on the fifth rung of the Jacob’s

ladder of approximate functional complexity.7 Fully compat-

ible with exact-exchange, they show promise to solve several

long-standing difficulties with less sophisticated C approxi-

mations, hence have attracted much attention in recent years.

As RPA overestimates short-range correlation,8 it also has

been used in conjunction with short-ranged local or semi-

local density functionals, thereby combining the strengths of

both.9–13 Recently, many RPA variants and so-called beyond-

RPA methods have been devised. Successful applications to

atoms,molecules, surfaces, and solids have been reported.14–18

Some recent reviews on RPA are given in Refs. 19–21.

a)Authors to whom correspondence should be addressed. Electronic
addresses: zhuwm@hznu.edu.cn and trickey@qtp.ufl.edu

In the broader context of XC functional development,

there is a common limitation. Most conventional approximate

XC functionals fail to yield a properly degenerate ground state

energy for current-carrying and zero-current states of open-

shell atoms.22,23 Ayers and Levy have given constraints on XC

functionals for delivering such degenerate states and observed

that it is very difficult to imagine a semi-local functional (e.g.,

generalized gradient approximation, GGA and meta-GGA,

mGGA) which would be able to meet those constraints.24 But

even exact exchange treated approximately (occupied orbitals

only in the optimized effective potential) fails to give proper

degeneracy in the spin-unrestricted case.25,26 The usual diag-

nosis attributes the failure to the lack of paramagnetic current

density dependence in the approximate functionals. Multiple

remedies have been proposed27–30 based upon modification

of existing functionals, either by introducing explicit current

dependence or doing so implicitly through complex orbitals.

The form of explicit current-dependent modifications is

ambiguous: there is no plain prescription for how a current

density should be added to those functionals. Guidance might

be sought from the more general case of an applied external

magnetic field. In principle, that requires invocation of current

density functional theory (CDFT).31 Vignale andRasolt gave a

gauge-invariance argument that CDFT XC functionals should

depend upon the so-called vorticity,
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�(r) ≡ ∇ ×
jp(r)

n(r)
. (1)

Here jp(r) is the paramagnetic current density and n(r) is the

electron number density. Vignale, Rasolt, and Geldart pro-

posed a local approximation for the current contribution to

the XC energy denoted as VRG.31,32 Unfortunately, our previ-

ous studies on bothHooke’s atom and real atoms showed that �

is a difficult computational variable, VRG can be qualitatively

wrong, and inclusion of �-dependence did not lead to sys-

tematic improvement33,34 in the quality of computed results.

Orestes et al.35,36 side-stepped this problem by using perturba-

tiveCDFTexpressions for the orbital susceptibility to calculate

ionization energies. While they found current-induced lower-

ing of states, they did not find resolution of the degeneracy

breaking. Roughly concurrently, Tao and Perdew extended the

vorticity-dependent correction to GGA and mGGA XC func-

tionals29 directly. Though the result for degeneracy breaking

was substantial improvement for both types of approximate

functional, full degeneracy was not restored. The nature of the

problem subsequently was illustrated by explicit construction

of a non-spherical potential which was constrained to recover

the required degeneracy.37

The great majority of density functional theory (DFT)

calculations use the Kohn-Sham (KS) decomposition to pro-

duce KS orbitals via self-consistent field (SCF) iterations. In

the case of so-called lower-rung functionals, the orbitals are

used only in generating n(r), its density gradient (for use in

GGA XC functionals), and the kinetic energy density (for

use in mGGAs). An implicit common assumption is that jp
contributions are small, hence are ignorable. When they are

non-negligible, CDFT requires that the auxiliary KS system

must generate the same n(r) and jp as for the real system.31

For non-zero jp, complex KS orbitals therefore are essential;

real orbitals always yield vanishing current. Thus, for example,

Ref. 28 remarks on the use of complex linear combinations in

the PBE functional.

As noted, there has been recent progress on higher-

rung, orbital-dependent functionals, with accuracy and per-

formance gains in many situations38 relative to the GGA and

mGGA functionals. Use of complex orbitals in an orbital-

dependent functional naturally defines an implicit CDFT func-

tional, because of implicit dependence upon both n(r) and jp.

This observation seems to have originated with Pittalis et al.,

who treated only occupied orbitals in their Krieger-Li-Iafrate

(KLI) approximation26 treatment of degeneracy breaking in

exact exchange.25 Subsequently they also considered orbital-

dependence in the Colle-Salvetti C functional as evaluated

from those exact-exchange (KLI approximation) orbitals.30

Again this is an occupied-orbital case. The spurious split-

tings were reduced but not eliminated. A perhaps questionable

aspect is that the Colle-Salvetti functional is extracted from a

non-N-representable model density matrix.39

RPA-like functionals are, at present, the most elaborate

orbital-dependent functional class. Though not specifically

designed for including current effects, their successes19–21

make it worthwhile to investigate whether they become effec-

tive CDFT functionals to describe systems with non-vanishing

jp simply via evaluation with complex orbitals. In view of

the fundamental importance of the degeneracy-breaking issue,

here we use free atoms, including those with open shells, to

examine RPA-like functionals and their capabilities for pre-

dicting accurate atomic total energies, and ionization energies

(IP), as well as describing degenerate ground states.

Essential formulations are given in Sec. II, including basis

sets andnumericalmethods, followedby results anddiscussion

in Section III, and a concluding summary in Section IV.

II. METHODOLOGY

As in the case of other rather complicated XC function-

als, in this study the RPA-like functionals were implemented

in post-SCF fashion, that is, with a set of reference orbitals

obtained from a local or semi-local XC approximation or from

a Hartree-Fock (HF) calculation. We comment briefly on this

procedure in Sec. IV.

A. Basics

The single-particle orbitals of an atom at the origin are

expanded in Gaussian-type basis functions contracted from

primitives χj expressed in cylindrical coordinates (ρ, z, φ),

χj(ρ, z, φ) = Nj ρ
n�j z

nzj e−αjρ
2−βj z

2

eimjφ , j = 1, 2, 3, � � � , (2)

where Nj is the normalization coefficient, nρj = �mj � � 2kj,

kj = 0, 1, � � �, with magnetic quantum number mj = � � � ,−2,

−1, 0, 1, 2, � � �, and nzj = πzj � 2lj, lj = 0, 1, � � �, with z−parity

πzj = 0, 1. This type of basis functions has the flexibility to

describe the effects of an external magnetic field on an atom

by the use of different transverse and longitudinal exponents

αj and βj.
34 The present study, however, considered only free

atoms without an external field, so we used αj = βj. Both con-

traction coefficients and basis exponents were obtained from

the correlation-consistent basis sets of Dunning.40 As an aside,

note that the use of real spherical harmonics would not yield

KS states that are eigenfunctions of L̂z.

Upon numerical convergence of the SCF KS calcu-

lation, the non-interacting KS kinetic energy Ts, Hartree

energy J (classical electron-electron repulsion), and nuclear-

electron potential energy Ene are available, along with occu-

pied and unoccupied KS spin orbitals, in shorthand nota-

tion p= φp(r,σ), and corresponding eigenvalues �p. As usual,

indices i, j, � � � denote occupied orbitals, a, b, � � � denote vir-

tual orbitals, and p, q, � � � denote any orbitals. r and σ = ↑,↓

are space and spin coordinates. A HF calculation yields the

analogous HF quantities, so in the ensuing discussion we refer

only to KS unless necessary.

When KS orbitals are expanded in complex basis func-

tions centered at the origin, Eq. (2), all the two-electron inte-

grals are real, since each orbital p has a definite magnetic

quantum number mp,

�pq�rs� = δsp,sr δsq ,ssδmp�mq ,mr�ms
δmod(πzp�πzq�πzr�πzs ,2),0

� �
φ∗p(r)φ

∗
q(r
�)φr(r)φs(r

�)

�r − r� �
drdr� . (3)
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Thus �pq�rs� = �qp�sr� = �rs�pq� = �sr �qp�, but note that

�pq�rs� � �ps�rq�, unlike the case for real orbitals. Only

required, non-zero electron integrals are stored and trans-

formed in our implementation. From the occupied KS orbitals,

jp is

jp(r,σ) =
1

2i

occ�

i

�
φ∗i (r,σ)∇φi(r,σ) − φi(r,σ)∇φ

∗
i (r,σ)

�
.

(4)

Exact-exchange in DFT is defined as the Fock integral

evaluated with occupied KS orbitals,

EXX
x = −

1

2

occ�

i, j

�ij � ji�. (5)

A combination of exact-exchange EXX
x with TPSS corre-

lation,41 which yields good performance for atoms over a

large range of magnetic field strengths,34 also is included for

comparison,

EHGGA
xc = EXX

x � E
TPSS
c . (6)

Since EXX
x is fully non-local, this combination corresponds

to the fourth rung of the XC Jacob’s ladder or hyper-

GGA (HGGA).7 Cautions regarding this combination were

mentioned earlier.34

B. RPA details

Here we give essential details of construction of the RPA

correlation energy in the case of complex orbitals, a more or

less straightforward generalization of the real-orbital case.13,42

The RPA correlation energy is expressed in spin-orbitals via a

coupling-constant integral as

ERPA
c =

1

2

� 1

0

dλ
�

ia, jb

�


�ib�aj�

�

n

�
(Xn,λ)

∗
ia(Xn,λ)jb

� (Yn,λ)
∗
ia(Yn,λ)jb − δijδab

�

� �ij �ab�
�

n

�
(Xn,λ)

∗
ia(Yn,λ)jb � (Yn,λ)

∗
ia(Xn,λ)jb

�


,

(7)

with the same orbital indexing convention as used before. λ is

the coupling constant introduced in the adiabatic connection

formula.
�
Xn,λ,Yn,λ

�
are the solutions of the linear-response

non-Hermitian eigenvalue equation,
�

Aλ Bλ
B∗
λ

A∗λ

� �
Xn,λ

Yn,λ

�

= ωn,λ

�
1 �

� −1

� �
Xn,λ

Yn,λ

�

. (8)

The eigenvector normalization is chosen as X
†

n,λ
Xm,λ

− Y
†

n,λ
Ym,λ = δnm. The so-called orbital rotation Hessians Aλ

and Bλ have the matrix elements,

(Aλ)ia, jb = (�a − � i)δijδab � λ�ib�aj�, (9a)

(Bλ)ia, jb = λ�ab�ij�, (9b)

where � i and �a are the KS orbital eigenvalues.

For real orbitals, the foregoing expressions can be sim-

plified further by using �ib�aj�= �ij �ab�,13,42 but here we must

evaluate Eq. (7) with complex KS spin orbitals. Since all the

two-electron integrals are real, A∗λ = Aλ and B∗
λ
= Bλ. The

combinations Aλ ± Bλ appear throughout the development.

(Aλ−Bλ) is positive definite on grounds of the Aufbau prinzip,

while (Aλ � Bλ) is a positive-definite Coulomb integral at

all proper coupling strengths.42 The supermatrix equation (8)

reduces to

(Aλ ± Bλ)
�
Xn,λ ± Yn,λ

�
= ωn,λ

�
Xn,λ ∓ Yn,λ

�
. (10)

Upon introduction of the one-component vectors,

Z±,n,λ = ω
1�2

n,λ
(Aλ ∓ Bλ)

−1�2 �Xn,λ ± Yn,λ

�
, (11)

the non-Hermitian eigenvalue equation (10) is transformed to

two half-sized eigenvalue equations, namely,

M±,λZ±,n,λ = ω
2
n,λZ±,n,λ . (12)

Here M±,λ = (Aλ ∓ Bλ)
1�2 (Aλ ± Bλ) (Aλ ∓ Bλ)

1�2. The spec-

tral decomposition M
−1�2

±,λ
=

�
n ω
−1
n,λ

Z±,n,λZ
T
±,n,λ

, then enables

the RPA C energy to be expressed as

ERPA
c =

1

4

� 1

0

dλ
�

ia, jb

�

�ib�aj�
�
(P�,λ)ia, jb � (P−,λ)ia, jb

�

� �ij �ab�
�
(P�,λ)ia, jb − (P−,λ)ia, jb

�
�

, (13)

where

P±,λ = (Aλ ∓ Bλ)
1�2 M

−1�2

λ
(Aλ ∓ Bλ)

1�2 − 1. (14)

As a consequence of Eq. (3), the summation over

occupied-virtual spin orbital pairs in Eq. (13) can be decom-

posed by spin i = i ↑, i ↓ and simplified to
�

ia, jb = (
�

i↑a↑

�

�
i↓a↓)(

�
j↑b↑ �

�
j↓b↓).

The RPA functional defined thereby often is called direct

RPA (dRPA) or simply RPA. Since the Coulomb integrals used

in the expressions are not antisymmetrized, the direct-RPA C

energy suffers from electron self-interaction error (SIE). One

way to remove the one-electron self-correlation in RPA is to

add the second-order screened exchange (SOSEX) correction.

That scheme is called RPA+SOSEX.43,44 Its C expression is

obtained by replacing the two-electron Coulomb integrals in

Eq. (13) by their anti-symmetrized counterparts, to wit

ERPA�SOSEX
c =

1

4

� 1

0

dλ
�

ia,jb

�

�ib � aj�
�
(P�,λ)ia,jb � (P−,λ)ia,jb

�

� �ij � ab�
�
(P�,λ)ia,jb − (P−,λ)ia,jb

� �

, (15)

where �ib � aj� = �ib�aj� − �ia∗ �b∗j�, �ij � ab� = �ij �ab�

− �ij �ba�, and a∗, b∗ are the complex conjugates of virtual

orbitals a and b, respectively. With a little algebra, one obtains

the spin-decomposed SOSEX correction to RPA,

ERPA�SOSEX
c = ERPA

c −
1

4

� 1

0

dλ
��

�

�

i↑a↑,j↑b↑

�

�

i↓a↓,j↓b↓

��

�

×

�
�ia∗ �b∗j�

�
(P�,λ)ia,jb � (P−,λ)ia,jb

�

� �ij �ba�
�
(P�,λ)ia,jb − (P−,λ)ia,jb

� �
. (16)

All the coupling-constant integrations in Eqs. (13) and

(16) can be performed with suitable accuracy by a 7-point
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Gauss-Legendre quadrature.42 Correlation-consistent polar-

ized core-valence basis sets, cc-pCVXZ, of Dunning were

used.40 Here X = 3, 4, 5 is a cardinal number. Since the

RPA C energy exhibits slow convergence with respect to

basis set size,45 we extrapolated these to the complete basis

set (CBS) limit Ec(CBS) using a two-point extrapolation

scheme,

Ec(X) = Ec(CBS) �
C

X3
. (17)

It is assumed that C is a constant for a given atom and family

of correlation-consistent basis sets that differ only by cardinal

numbers X. Except for the Li and Be atoms and their ions, for

which we used X = 3, 4, we used X = 4, 5 extrapolation.46

Self-consistent DFT and HF energies from local or semi-local

functionals were extrapolated to the CBS limit with a three-

point exponential formula,

EDFT�HF(X) = EDFT�HF(CBS) � Ae−BX , (18)

where X = 3, 4, 5.46

III. RESULTS AND DISCUSSION

First we consider neutral atoms with nuclear charge

Z ≤ 18, including eight open p−shell atoms. Closed shell

atoms and those with a half-filled p−shell (N and P) have

ground stateswith no current density and total atomicmagnetic

quantum number ML = 0. Atoms with one electron in their

open outer p−shell (B, O, Al, S) can have either the p0 orbital

occupied, rendering jp = 0 and ML = 0, or either the p� or

p− orbital occupied, resulting in non-zero current density and

ML = ±1. For two p−electrons in the open shell (C, F, Si,

Cl), the electronic configuration p�p− corresponds to ML = 0

(zero-current), and configurations p�p0 and p0p− correspond

to ML = ±1 (non-vanishing jp).

Because both RPA and RPA+SOSEX calculations were

implemented non-self-consistently (“post-SCF”), it is neces-

sary to note both the approximation and the reference SCF

orbital set used for its evaluation.We follow the notation intro-

duced byRen et al. to label a chosen correlationmethod and its

reference orbital set.21,47 For example, RPA+SOSEX@PBE

means RPA correlation energy with SOSEX correction evalu-

ated with self-consistent orbitals from a calculation that used

PBE XC. In this study, RPA-like functionals always were

combined with exact exchange EXX
x and the same reference

orbital set was used for both X and C unless explicitly stated

otherwise.

In Tables I and II, we give correlation energies and

atomic total energy deviations from experimental values

(Ecalculated−Eexpt) calculated from several different function-

als.48 For self-consistent DFT calculations, two approximate

functionals, PBE49 and TPSS, are included as represen-

tatives of GGA- and mGGA-tier functionals. The HGGA

TABLE I. Correlation energy in atoms from SCF-DFT, RPA, and RPA+SOSEX methods. KS orbitals are from PBE, TPSS, and exchange-only functionals

(energy in Hartree).

SCF-DFTb RPA @ RPA+SOSEX @

Atoma PBE TPSS PBE TPSS EXXc PBE TPSS Expt.d

He −0.0411 −0.0427 −0.0843 −0.0825 −0.083 −0.0422 −0.0413 −0.042 044

Li −0.0510 −0.0496 −0.1117 −0.1100 −0.112 −0.0448 −0.0441 −0.045 33

Be −0.0854 −0.0874 −0.1813 −0.1764 −0.179 −0.0921 −0.0896 −0.094 34

B(ML = 0) −0.1125 −0.1149 −0.2376 −0.2279 −0.1152 −0.1114 −0.124 85

B(ML = 1) −0.1146 −0.1172 −0.2310 −0.2252 −0.1192 −0.1163

C(ML = 0) −0.1438 −0.1475 −0.2934 −0.2839 −0.1438 −0.1404 −0.156 40

C(ML = 1) −0.1459 −0.1496 −0.2846 −0.2784 −0.1477 −0.1446

N −0.1785 −0.1835 −0.3392 −0.3328 −0.335 −0.1768 −0.1738 −0.188 31

O(ML = 0) −0.2326 −0.2361 −0.4330 −0.4227 −0.2391 −0.2350 −0.257 94

O(ML = 1) −0.2349 −0.2388 −0.4241 −0.4176 −0.2452 −0.2415

F(ML = 0) −0.2888 −0.2923 −0.5254 −0.5151 −0.3074 −0.3033 −0.324 53

F(ML = 1) −0.2912 −0.2951 −0.5142 −0.5075 −0.3138 −0.3096

Ne −0.3464 −0.3504 −0.6052 −0.5982 −0.597 −0.3808 −0.3765 −0.390 47

Na −0.3687 −0.3705 −0.6279 −0.6214 −0.626 −0.3881 −0.3839 −0.395 64

Mg −0.4091 −0.4142 −0.6898 −0.6823 −0.687 −0.4334 −0.4286 −0.438 28

Al(ML = 0) −0.4442 −0.4485 −0.7539 −0.7433 −0.4639 −0.4583 −0.469 60

Al(ML = 1) −0.4452 −0.4499 −0.7505 −0.7426 −0.4674 −0.4627

Si(ML = 0) −0.4831 −0.4880 −0.8101 −0.7989 −0.4955 −0.4902 −0.505 03

Si(ML = 1) −0.4844 −0.4894 −0.8055 −0.7971 −0.4991 −0.4944

P −0.5249 −0.5308 −0.8599 −0.8511 −0.850 −0.5324 −0.5275 −0.540 26

S(ML = 0) −0.5830 −0.5877 −0.9464 −0.9341 −0.5881 −0.5817 −0.604 76

S(ML = 1) −0.5850 −0.5904 −0.9432 −0.9334 −0.5950 −0.5892

Cl(ML = 0) −0.6431 −0.6478 −1.0327 −1.0195 −0.6498 −0.6433 −0.665 98

Cl(ML = 1) −0.6450 −0.6503 −1.0281 −1.0179 −0.6570 −0.6506

Ar −0.7045 −0.7096 −1.1082 −1.0976 −1.101 −0.7160 −0.7094 −0.722 16

aML = 1 for current-carrying atomic ground states, and ML = 0 for ground states with no paramagnetic current.
bSelf-consistent field DFT calculations with GGA (PBE XC functional) and meta-GGA (TPSS XC functional).
cSelf-consistent exact exchange only orbitals. Data from Ref. 14.
dExperimental estimate of correlation energy. Data from Ref. 48.
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TABLE II. Deviations of total atomic energies by different methods from experimental estimates (energy in Hartree).

SCF-DFTb Hartree RPA+SOSEX @

Atoma PBE TPSS HGGAc -Fock PBE TPSS HGGAc HF Hyb. 1d Hyb. 2e Expt.f

He 0.010 �0.006 �0.001 0.042 0.001 0.002 0.008 0.008 �0.011 �0.005 �2.903 72

Li 0.016 �0.011 �0.004 0.045 0.003 0.002 0.009 0.007 �0.008 �0.003 �7.478 06

Be 0.038 �0.004 0.007 0.094 0.005 0.006 0.030 0.027 �0.002 0.001 �14.667 36

B(ML = 0) 0.042 �0.015 0.006 0.121 0.011 0.012 0.034 0.034 �0.008 0.001 �24.653 91

B(ML = 1) 0.046 �0.005 0.006 0.124 0.008 0.010 0.034 0.034 �0.006 0.001 �24.653 9

C(ML = 0) 0.046 �0.022 0.003 0.151 0.015 0.015 0.038 0.038 �0.015 �0.000 �37.845 0

C(ML = 1) 0.050 �0.013 0.003 0.154 0.012 0.013 0.039 0.038 �0.013 �0.000 �37.845 0

N 0.053 �0.027 �0.001 0.184 0.016 0.016 0.040 0.039 �0.023 �0.003 �54.589 2

O(ML = 0) 0.052 �0.043 0.010 0.248 0.021 0.021 0.052 0.052 �0.029 �0.004 �75.067 3

O(ML = 1) 0.061 �0.024 0.010 0.252 0.017 0.018 0.052 0.051 �0.029 �0.006 �75.067 3

F(ML = 0) 0.057 �0.047 0.021 0.317 0.024 0.024 0.061 0.060 �0.038 �0.007 �99.733 9

F(ML = 1) 0.066 �0.031 0.022 0.321 0.020 0.021 0.061 0.060 �0.037 �0.009 �99.733 9

Ne 0.070 �0.045 0.035 0.390 0.025 0.025 0.068 0.066 �0.048 �0.012 �128.937 6

Na 0.082 �0.043 0.023 0.396 0.017 0.018 0.060 0.060 �0.031 �0.007 �162.254 6

Mg 0.098 �0.041 0.022 0.438 0.014 0.016 0.068 0.067 �0.025 �0.005 �200.053

Al(ML = 0) 0.110 �0.042 0.015 0.465 0.012 0.014 0.066 0.065 �0.030 �0.009 �242.346

Al(ML = 1) 0.113 �0.036 0.017 0.468 0.011 0.012 0.066 0.065 �0.025 �0.007 �242.346

Si(ML = 0) 0.125 �0.041 0.011 0.500 0.013 0.017 0.072 0.071 �0.028 �0.007 �289.359

Si(ML = 1) 0.127 �0.036 0.012 0.503 0.012 0.015 0.072 0.072 �0.023 �0.006 �289.359

P 0.144 �0.036 0.007 0.540 0.023 0.018 0.078 0.077 �0.020 0.002 �341.259

S(ML = 0) 0.157 �0.038 0.008 0.597 0.023 0.023 0.089 0.088 �0.024 �0.001 �398.110

S(ML = 1) 0.162 �0.030 0.010 0.602 0.020 0.020 0.089 0.088 �0.020 �0.000 �398.110

Cl(ML = 0) 0.174 �0.036 0.009 0.658 0.021 0.023 0.097 0.096 �0.024 �0.001 �460.148

Cl(ML = 1) 0.177 �0.029 0.011 0.664 0.018 0.020 0.098 0.097 �0.021 �0.001 �460.148

Ar 0.194 �0.029 0.011 0.723 0.018 0.020 0.103 0.102 �0.021 �0.002 �527.540

Average 0.091 �0.029 0.011 0.360 0.015 0.016 0.059 0.059 �0.022 �0.004

aML = 1 for current-carrying atomic ground states, and ML = 0 for ground states with no paramagnetic current.
bSelf-consistent field DFT calculations with GGA (PBE XC functional), meta-GGA (TPSS XC functional), and HGGA (exact exchange functional and TPSS correlation functional,

see Eq. (6)).
cHyper-generalized gradient approximation. Chosen functionals are exact exchange and TPSS correlation functional.
dHybrid references. Exact exchange energy from HF orbitals and other pieces of energy from PBE orbitals.
eHybrid references. Half of the exact exchange energy from HF orbitals and the other half from PBE orbitals. Other pieces of energy from PBE orbitals. See Eq. (19). This column is

actually the average of the two columns labeled by PBE and Hyb. 1 under the category RPA+SOSEX.
fExperimental estimate of total atomic energy. Data from Ref. 48.

combination of exact-exchange EXX
x with TPSS correlation,

Eq. (6), also is included.

Our spherical atom results can be compared with pub-

lished data from SCF-PBE and RPA calculations. Our PBE

total energies differ from those in Ref. 50 by no more than

0.3mHexcept forNe, forwhichwe obtained an energy 1.5mH

lower. The reason for this discrepancy is uncertain but plau-

sibly reflects a difference in basis sets (and, perhaps, in CBS

extrapolation procedures). For open-shell atoms, we always

get energies a few mH below those in Ref. 50 because a non-

spherical electron density is admissible in our calculation. Our

RPA energies can be compared to the data from the work of

Jiang and Engel.14 For RPA@PBE, the total atomic energies

agree with their RPA@BLYP data within 1 mH, except for

two noble gas atoms, Ne (ours is 4 mH higher) and Ar (ours is

4 mH lower). Again, the difference may arise from basis sets

or reference orbital sets. For example, we used CBS extrap-

olation whereas they used a hard-wall cavity approach. The

generally nice agreement shows overall good convergence in

our calculations however.

Jiang and Engel commented that the RPA energies are

insensitive to reference orbitals,14 but we find that to depend

a bit on the energy standard used. We take the standard to

be that differences larger than 2 mH (≈1.25 kcal/mol) are

consequential. Consider what happens with PBE and TPSS

(two non-empirical XC functionals in the same lineage) as

generators of reference orbital sets. RPA correlation ener-

gies based on their orbitals differ appreciably, especially for

open-shell atoms. This difference clearly is discernible in

Table I. For the Cl atom with no current, the ERPA
c differ-

ence is as large as 13 mH, albeit the total energy difference

is somewhat smaller, only 8 mH. The RPA correlation ener-

gies based on exact-exchange orbitals from Ref. 14 also are

given in Table I for comparison. Typically those values are

between our ERPA
c results from RPA@PBE and RPA@TPSS.

Janesko and Scuseria also have reported as much as a 50�

shift inEc from range-separated RPA depending uponwhether

the reference orbitals arose from semi-local or non-local

exchange.11

This sensitivity of RPA-like functionals may be valuable

as well, in the sense that more orbital detail is detected by

the functionals. The specific case most related to this study

is that ERPA
c and ERPA�SOSEX

c can recognize the two degener-

ate ground states of open-shell atoms with different current
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densities (ML = ±1 andML = 0). For the two possible ground

states of the F atom, Table I shows that both EPBE
c and ETPSS

c

differ by only about 2 mH between the two different current-

carrying ground states, but ERPA
c @PBE differs by 11mH. This

behavior also occurs in RPA+SOSEX. The reason is obvious.

Local and semi-local functionals depend only on the electron

density and density gradients, not on the current density. The

small variation inEPBE
c andETPSS

c reflects a slight difference in

electron densities, but the structure related to the current den-

sity is ignored in the semi-local functionals. On the other hand,

RPA-like functionals preserve more current-related structure

and are expected to bemore suitable as practical current density

functionals.

As is well known by now, RPA grossly overestimates the

magnitude of atomic correlation energies.9 The situation is

much improved by adding the SOSEX correction. This aspect

is seen clearly in Table I. For smaller Z atoms, ERPA�SOSEX
c

has nearly halved ERPA
c , with less dramatic reduction in mag-

nitude for larger Z atoms. The dependence of the correlation

energy on reference orbitals also is reduced nearly by half

but still is discernible. Inclusion of the SOSEX correction

removes electron self-interaction (SI) in correlation, with the

result being a C functional fully compatible with EXX
x , and

correspondingly improved C energies. Understandably, SI is

more severe in few-electron systems and thus the SOSEX

correction to RPA is more significant for smaller Z atoms.

In fact, semi-local functionals, PBE and TPSS, themselves

give rather accurate C energies for the higher Z atoms. From

Table I one sees that ERPA�SOSEX
c @PBE improves EPBE

c con-

siderably, butERPA�SOSEX
c @TPSS does not improvemuch over

ETPSS
c , an indication that much of the RPA excitation contribu-

tion has been incorporated properly in the TPSS C functional.

For atoms with Z ≥ 5, although ERPA�SOSEX
c is very close to

experimental values, it is still nearly 10 mH short. This is per-

haps because of the absence of single excitations in RPA-like

functionals.47

As to atomic total energies, Table II shows that PBE

systematically gives under-estimates and TPSS systemati-

cally gives over-estimates. The HGGA combination, Eq. (6),

improves upon both of them significantly. Since direct RPA

without correction gives atomic energies that are too low,

ERPA is not included in Table II. RPA+SOSEX@PBE and

RPA+SOSEX@TPSS results are very close to one another,

with no obvious improvement over self-consistent HGGA

energies. There is nomeaningful dependence of RPA+SOSEX

total atomic energies on PBE versus TPSS orbitals (both from

semi-local functionals). But the use of non-local HGGA or

HForbitals instead gives quite large changes. This again shows

the importance of choosing suitable reference orbitals for post-

SCF evaluation ofRPA-like functionals. It appears that orbitals

from semi-local functionals are the better choice for total

energies.

Since RPA omits single excitation, Ren et al. proposed

a hybrid-RPA scheme as an approximate remedy. In it, HF

orbitals are used for EXX
x and PBE orbitals for ERPA

c .47 We

also checked this hybrid scheme in our RPA+SOSEX calcu-

lation. Results from it are labeled as “Hyb. 1” in Table II. It

does not improve upon RPA+SOSEX@PBE total energies but

shifts their error from positive to negative. We thus tried a new

scheme, labeled as “Hyb. 2” in Table II, namely,

E
Hyb.2
xc =

1

2

�
EXX
x @HF � EXX

x @PBE
�
� ERPA�SOSEX

c @PBE

(19)

in which only half of EXX
x is calculated from HF orbitals,

with the other half still calculated from PBE orbitals. This

combination is the average of RPA+SOSEX@PBE and

RPA+SOSEX@Hyb. 1. It gives very accurate atomic total

energies, with an average error of only 4 mH. The com-

bination is reminiscent of the earlier half-exact-exchange

hybrid approach proposed by Becke.51 Details of how

these two prescriptions are related remain for subsequent

investigation.

Now we turn to the long-existing difficulty of non-

degeneracy of current-carrying atomic configurations (ML

= ±1) and zero-current configurations (ML = 0) summarized

at the outset.23 Since local and semi-local functionals usu-

ally generate lower energies forML = 0, that value commonly

is chosen as the ground state. Table III compiles the differ-

ences in total energies between ML = ±1 and ML = 0 states

from a variety of computational prescriptions. Our data in the

SCF-PBE column agree precisely with those from Ref. 28

because their construction of complex KS orbitals is equiva-

lent to ours. However, our SCF-PBE and SCF-TPSS energy

splittings are consistently larger than those given in Ref. 29.

Apparently the difference stems primarily from the different

reference orbital sets employed. While we use non-spherical

self-consistent orbitals, Tao and Perdew used spherical spin-

restricted HF orbitals and densities.

Next we consider various schemes to remove the spurious

energy splittings between current-carrying and zero-current

atomic ground state densities. In Table III, Becke’s modifica-

tion of the Becke-Roussel functional27 is labeled as jBR. The

spurious splittings are reduced significantly but not removed.

The extension of PBEbyMaximoff, Ernzerhof, and Scuseria28

to include jp explicitly is labeled as jPBE. Table III shows

that it can give smaller magnitude splittings than does jBR,

but not consistently so. That table also includes the findings

of Ref. 25, namely, that the exact-exchange-only functional

in the KLI approximation26 gives much larger magnitude

splittings in spin-unrestricted calculations than in the spin-

restricted case. Those results are listed under the headings

x-KLI, subheading SDFT for spin-unrestricted DFT, subhead-

ing DFT for spin-restricted. The SDFT splittings are roughly

10� smaller than HF splittings.

Results from the Tao-Perdew29 extension of both GGA

andmGGA functionals to include dependence upon the gauge-

invariant vorticity variable �, yielding functionals called

CGGA and CMGGA, respectively, are listed in Table III

under the heading ν−DFT. They reduce the artificial split-

tings in their parent functionals by more than half but

their performance is not as impressive as the jp-dependent

functionals.

In that context, it is significant that Table III shows that

self-consistent HGGA itself reduces the spurious splittings

substantially, by four-fold from PBE and eight-fold from

TPSS. RPA+SOSEX@PBE only decreases the PBE splitting

by half, but the order of degenerate ground states is reversed.

Current-carrying states (ML = ±1) have lower energies than
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TABLE III. Total atomic energy differences ∆E = E(ML = ±1) − E(ML = 0) (energy in kcal/mol) for open-shell atoms from different methods.

SCF-DFTa Hartree RPA+SOSEX @ jDFTb ν−DFTc x-KLId

Atom PBE TPSS HGGAe -Fock PBE TPSS HGGAe HF Hyb.1f Hyb.2g jBRh jPBEi CGGA CMGGA SDFT DFT

B 2.89 6.71 0.06 1.81 �1.37 �0.82 0.13 0.06 1.69 0.16 0.61 0.10 1.19 2.51 1.66 0.06

C 2.73 5.60 0.20 1.76 �1.40 �1.32 0.13 0.00 1.53 0.07 0.38 �0.20 1.26 2.26 1.58 0.06

O 6.05 11.87 0.40 2.51 �2.03 �1.95 �0.50 �0.25 0.25 �0.89 0.92 �0.70 1.82 3.89 2.36 0.55

F 5.48 9.61 0.61 2.56 �2.15 �2.07 0.06 0.00 0.60 �0.78 0.66 �0.70 2.38 3.77 2.32 0.40

Al 1.74 3.59 0.86 1.90 �1.02 �1.19 0.19 0.13 3.27 1.13 0.23 0.30 0.06 0.69 1.68 0.04

Si 1.26 2.92 1.04 2.04 �0.86 �1.00 0.31 0.25 2.77 0.96 0.00 �0.10 0.19 0.82 1.76 0.05

S 2.84 5.00 1.26 3.34 �2.03 �1.88 0.19 �0.06 2.56 0.27 0.12 0.20 �0.13 0.38 3.04 0.34

Cl 2.18 4.09 1.62 3.42 �2.11 �1.69 0.44 0.25 2.07 �0.02 0.01 �0.20 0.88 1.78 3.15 0.25

Mean 3.15 6.17 0.76 2.42 �1.62 �1.49 0.12 0.05 1.84 0.11 0.37 �0.16 0.96 2.01 2.19 0.22

MAE 3.15 6.17 0.76 2.42 1.62 1.49 0.24 0.13 1.84 0.53 0.37 0.31 0.99 2.01 2.19 0.22

aSelf-consistent field DFT calculations with GGA (PBE XC functional), meta-GGA (TPSS XC functional), and HGGA (exact exchange functional and TPSS correlation functional,

see Eq. (6)).
bExplicit current-dependent DFT functionals.
cExplicit vorticity-dependent functionals. Data from Ref. 29.
dExact exchange only functional defined by KLI (Krieger-Li-Iafrate) approximation. SDFT for spin-unrestricted and DFT for spin-restricted orbitals. Data from Ref. 25.
eHyper-generalized gradient approximation. Chosen functionals are exact exchange and TPSS correlation functional.
fHybrid references. Exact exchange energy from HF orbitals and other pieces of energy from PBE orbitals.
gHybrid references. Half of the exact exchange energy from HF orbitals and the other half from PBE orbitals. Other pieces of energy from PBE orbitals. See Eq. (19). This column is

actually the average of the two columns labeled by PBE and Hyb. 1 under the category RPA+SOSEX.
hData from Ref. 27.
iData from Ref. 28.

zero-current states (ML = 0) in theRPA+SOSEX@PBEcalcu-

lation. Since TPSS has large splittings, it is perhaps unsurpris-

ing that RPA+SOSEX@TPSS reduces those greatly but leaves

unsatisfactory results nevertheless. RPA+SOSEX@HGGA

and RPA+SOSEX@HF, which are not the best performers for

atomic total energies, give the smallest mean splittings and the

smallest mean absolute errors (MAEs) among all the methods

included in Table III. It may be important for the reference

orbitals to be self-interaction free in order for RPA+SOSEX

to be able to predict degenerate ground states. Results from

RPA+SOSEX calculations based on hybrid orbital sets dis-

cussed above also are included in Table III. Perhaps the hybrid

scheme 2 is the best choice when both the accuracy of total

energy and the near-degeneracy of different ground states are

taken as simultaneous requirements.

Alternatively, one may examine atomic ionization ener-

gies. On the basis of their finding only small but non-negligible

current-dependent effects, Orestes et al.35,36 suggested that

functional refinement was required. With higher-rung func-

tionals now available, especially orbital-dependent oneswhich

can include current density naturally provided that com-

plex orbitals are used, it is reasonable to restudy the issue.

Therefore we also checked the first atomic ionization ener-

gies produced from the different methods studied in this

work.

The ionization energy (IP) was taken as the difference

between the free atom total energy and that of its corre-

sponding singly positive ion. As before, there is an ambi-

guity for some atoms in the calculated ionization energy,

namely, whether a current-carrying or zero-current state is

chosen for the neutral atom and for the ion. Table IV there-

fore shows explicitly the chosen atomic and ionic states used

to deduce the IPs reported there. Note that since the two

outer p−electrons in the ML = 0 atomic state occupy both the

p� and the p− orbitals, removing either electron will result

in a current-carrying ion, hence the case ML = 0→ML = 0

is not included in the table. Table IV shows that semi-local

functionals actually are not bad for ionization energies. PBE

and TPSS again give results close to each other, with their

mean absolute errors (MAEs) only 0.2 eV. The use of exact

exchange in HGGA reduces the average error but does not

improve the MAE. Without SOSEX correction, RPA@PBE

results in larger errors than those from either PBE or TPSS.

This again traces to the RPA overestimation of correlation

energymagnitude (recall Table I and discussion of it). The situ-

ation is much improved when the SOSEX correction is added,

especially for lower Z atoms. RPA+SOSEX@PBE gives an

average error of only −0.06 eV and MAE of 0.08 eV. The

use of hybrid reference orbital sets does not yield much gain

in accuracy of computed IPs, but the use of the prescrip-

tion of Eq. (19) does reduce the IP ambiguity substantially.

For example, the difference betweenC(ML = 0)→C�(ML = 1)

and C(ML = 1)→C�(ML = 0) is 0.30 eV from PBE, 0.67 eV

from TPSS, and 0.63 eV from RPA@PBE, but only 0.01 eV

from Eq. (19).

The ambiguity in calculated IPs makes the comparison

with experimental data somewhat murky. If one compares

the TPSS value for C(ML = 1) → C�(ML = 0) (11.21 eV) to

the experimental estimate (11.26 eV), it would seem that the

theoretical prediction is quite accurate. However, if one uses

the TPSS value for C(ML = 0) → C�(ML = 1) (11.88 eV),

the presumed error would increase by an order of magni-

tude. The ambiguity ultimately limits the predictive power and

usefulness of the functional. This embarrassment is largely

removed by the use of Eq. (19) since it reduces the ambiguity

to a level usually much smaller than other residual errors in

calculated IPs. It appears that the effect of current den-

sity has been included appropriately in this functional. This
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TABLE IV. First atomic ionization energies from different methods (energy in eV).

SCF-DFTb Hartree RPA@ RPA+SOSEX @

Atomic configurationa Ionic configurationa PBE TPSS HGGA -Fock PBE PBE Hyb. 1c Hyb. 2d Expt.e

Li Li� 5.59 5.51 5.44 5.34 6.02 5.37 5.32 5.35 5.39

Be Be� 9.00 9.06 9.00 8.04 9.60 9.25 9.15 9.20 9.32

B(ML = 1) B� 8.55 8.48 8.62 7.97 8.57 8.30 8.50 8.40 8.30

B(ML = 0) B� 8.68 8.77 8.62 8.04 8.80 8.24 8.57 8.40 8.30

C(ML = 1) C�(ML = 0) 11.43 11.21 11.50 10.72 11.31 11.28 11.48 11.38 11.26

C(ML = 1) C�(ML = 1) 11.61 11.63 11.50 10.81 11.65 11.20 11.54 11.37 11.26

C(ML = 0) C�(ML = 1) 11.73 11.88 11.51 10.89 11.94 11.14 11.60 11.37 11.26

N N�(ML = 1) 14.89 14.99 14.69 13.98 14.98 14.45 14.98 14.71 14.53

N N�(ML = 0) 14.73 14.67 14.69 13.89 14.56 14.52 14.92 14.72 14.53

O(ML = 1) O� 13.81 13.53 13.21 11.92 13.88 13.55 14.01 13.78 13.62

O(ML = 0) O� 14.07 14.05 13.23 12.02 14.20 13.46 14.02 13.74 13.62

F(ML = 1) F�(ML = 0) 17.43 17.02 16.87 15.54 17.38 17.37 17.93 17.65 17.42

F(ML = 1) F�(ML = 1) 17.75 17.67 16.88 15.66 17.83 17.28 17.94 17.61 17.42

F(ML = 0) F�(ML = 1) 17.99 18.09 16.91 15.77 18.21 17.18 17.97 17.58 17.42

Ne Ne�(ML = 1) 21.95 21.99 20.94 19.77 22.03 21.37 22.26 21.82 21.56

Ne Ne�(ML = 0) 21.67 21.49 20.91 19.65 21.52 21.47 22.24 21.86 21.56

Na Na� 5.36 5.18 5.06 4.95 5.64 5.11 5.05 5.08 5.14

Mg Mg� 7.61 7.55 7.43 6.61 8.02 7.66 7.48 7.57 7.65

Al(ML = 1) Al� 6.00 5.99 6.13 5.53 6.36 5.94 5.92 5.93 5.98

Al(ML = 0) Al� 6.08 6.14 6.16 5.61 6.50 5.90 6.06 5.98 5.98

Si(ML = 1) Si�(ML = 0) 8.14 8.08 8.26 7.55 8.37 8.19 8.00 8.09 8.15

Si(ML = 1) Si�(ML = 1) 8.23 8.27 8.32 7.65 8.57 8.13 8.14 8.14 8.15

Si(ML = 0) Si�(ML = 1) 8.28 8.39 8.36 7.74 8.76 8.09 8.26 8.18 8.15

P P�(ML = 1) 10.54 10.64 10.71 10.01 10.71 10.33 10.54 10.44 10.49

P P�(ML = 0) 10.48 10.50 10.65 9.90 10.45 10.38 10.42 10.40 10.49

S(ML = 1) S� 10.30 10.24 10.27 9.09 10.65 10.27 10.43 10.35 10.36

S(ML = 0) S� 10.43 10.45 10.33 9.24 10.84 10.18 10.54 10.36 10.36

Cl(ML = 1) Cl�(ML = 0) 12.87 12.77 12.86 11.61 13.07 13.00 12.93 12.96 12.97

Cl(ML = 1) Cl�(ML = 1) 13.01 13.02 12.93 11.78 13.32 12.91 13.05 12.98 12.97

Cl(ML = 0) Cl�(ML = 1) 13.10 13.20 13.00 11.92 13.55 12.81 13.14 12.98 12.97

Ar Ar�(ML = 1) 15.80 15.88 15.83 14.71 16.18 15.82 15.94 15.88 15.76

Ar Ar�(ML = 0) 15.70 15.69 15.75 14.55 15.88 15.92 15.84 15.88 15.76

Average error 0.15 0.12 �0.05 �0.93 0.35 �0.06 0.19 0.06

Mean absolute error 0.18 0.21 0.24 0.93 0.36 0.08 0.24 0.10

aAtom and ion electronic configurations. ML = 1 for current-carrying ground states and ML = 0 for ground states with no paramagnetic current.
bSelf-consistent field DFT calculations with GGA (PBE XC functional), meta-GGA (TPSS XC functional), and HGGA (exact exchange functional and TPSS correlation functional,

see Eq. (6)).
cHybrid references. Exact exchange energy from HF orbitals and other pieces of energy from PBE orbitals.
dHybrid references. Half of the exact exchange energy from HF orbitals and the other half from PBE orbitals. See Eq. (19). This column is actually the average of the two nearest

columns to the left.
eExperimental estimate of atomic ionization energy. Data from Ref. 48.

good feature also is found in the HGGA functional, see

Eq. (6).

IV. SUMMARY AND CONCLUSIONS

From the study of total atomic energies, spurious split-

tings between current-carrying and zero-current atomic states,

and ionization potentials, we find that two functionals are

the best in their overall performance. One is EXX
x combined

with TPSS correlation, which stands on the HGGA rung of

the DFT functional hierarchy ladder. It has the virtue of sim-

plicity while providing sizable improvement over semi-local

functionals. Although RPA+SOSEX@PBE has rather good

performance and gives very accurate atomic ionization ener-

gies, the spurious splittings from this functional between two

degenerate atomic ground states, ML = 0 and ML = 1, still

are too large to be acceptable. The use of hybrid reference

orbital sets, Eq. (19), incorporates the current density and

considerably reduces spurious splitting, while simultaneously

giving highly accurate atomic total energies and ionization

energies. This functional is the other one that we propose to

use at the fifth rung of the ladder. It is plausibly a practical

implicit current density functional one could use when current

effects need to be included.

Given the context, it is almost automatic to raise the ques-

tion of whether there are explicit CDFT functionals (current

or vorticity-dependent) which could be useful in conjunction

with the orbital-dependent functionals evaluated with com-

plex orbitals. One obvious form of such a strategy would

be to obtain the SCF orbitals from such an explicit CDFT
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functional calculation (instead of, for example, a PBE XC cal-

culation). The barrier to this approach, as we discussed in the

Introduction (see just after Eq. (1)), is that there are no really

successful CDFT XC functionals. Earlier we had shown33,34

that VRG,32 the only functional available even at the LDA

rung of the Jacob’s ladder, is unrealistic and that the vortic-

ity is a difficult computational variable. Lack of progress in

overcoming those barriers was, in fact, a significant motiva-

tion for the present study. Orbital-dependent functionals (e.g.,

RPA+SOSEX) with complex orbitals appear to alleviate, at

the very least, the necessity of including explicit current or

vorticity dependence.

ACKNOWLEDGMENTS

Helpful discussions with A. Savin (CNRS), X.-Y. Pan

(Ningbo University), Xinguo Ren (USTC), and Jian Wang

(HuzhouUniversity) are acknowledged. Thisworkwas funded

by the Zhejiang Provincial Natural Science Foundation of

China under Grant No. LY13A050002 (W. Zhu and L. Zhang),

in part by the National Natural Science Foundation of China

Grant Nos. 11474081 and 11274085 (W. Zhu), and in part by

the U.S. Department of Energy Grant No. DE-SC-0002139

(S. B. Trickey).

1D. Bohm andD. Pines, Phys. Rev. 92, 609 (1953); P. Noziéres andD. Pines,
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38S. Kümmel and L. Kronik, Rev. Mod. Phys. 8�, 3 (2008).
39R. C. Morrison, Int. J. Quantum Chem. 46, 583 (1993).
40T. H. Dunning, J. Chem. Phys. 9�, 1007 (1989); D. E. Woon and T. H.

Dunning, ibid. 1�3, 4572 (1995); K. A. Peterson and T. H. Dunning,

ibid. 117, 10548 (2002).
41J. Tao, J. P. Perdew, V. N. Staroverov, and G. E. Scuseria, Phys. Rev. Lett.

91, 146401 (2003).
42F. Furche, Phys. Rev. B 64, 195120 (2001).
43D. L. Freeman, Phys. Rev. B 15, 5512 (1977).
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