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In high magnetic field calculations, anisotropic Gaussian type orbital (AGTO) basis functions are

capable of reconciling the competing demands of the spherically symmetric Coulombic interaction

and cylindrical magnetic (B field) confinement. However, the best available a priori procedure for

composing highly accurate AGTO sets for atoms in a strong B field [W. Zhu et al., Phys. Rev. A

90, 022504 (2014)] yields very large basis sets. Their size is problematical for use in any calculation

with unfavorable computational cost scaling. Here we provide an alternative constructive procedure.

It is based upon analysis of the underlying physics of atoms in B fields that allow identification of

several principles for the construction of AGTO basis sets. Aided by numerical optimization and

parameter fitting, followed by fine tuning of fitting parameters, we devise formulae for generating

accurate AGTO basis sets in an arbitrary B field. For the hydrogen iso-electronic sequence, a set

depends on B field strength, nuclear charge, and orbital quantum numbers. For multi-electron systems,

the basis set formulae also include adjustment to account for orbital occupations. Tests of the new

basis sets for atoms H through C (1 ≤ Z ≤ 6) and ions Li+, Be+, and B+, in a wide B field range

(0 ≤ B ≤ 2000 a.u.), show an accuracy better than a few µhartree for single-electron systems and a few

hundredths to a few mHs for multi-electron atoms. The relative errors are similar for different atoms

and ions in a large B field range, from a few to a couple of tens of millionths, thereby confirming rather

uniform accuracy across the nuclear charge Z and B field strength values. Residual basis set errors

are two to three orders of magnitude smaller than the electronic correlation energies in multi-electron

atoms, a signal of the usefulness of the new AGTO basis sets in correlated wavefunction or density

functional calculations for atomic and molecular systems in an external strong B field. Published by

AIP Publishing. https://doi.org/10.1063/1.5004713

I. INTRODUCTION

Theoretical calculations for atoms and molecules sub-

jected to a strong magnetic field (B) are indispensable to the

interpretation of observed spectra and to ascertainment of the

elemental composition of the atmosphere of those celestial

bodies which exist in a strong B-field, e.g., the fields of mag-

netic white dwarfs (102–105 T) and neutron stars (>107 T).

Although such large field strengths far exceed terrestrially

available values, typical strong field effects nevertheless can be

observed in laboratories in which static fields up to 30–40 T

can be generated. Example systems include Rydberg atoms

and the exciton in a semiconductor which possesses a small

effective mass and a large dielectric constant.1

A non-perturbative approach is required to address the

problem of atoms and molecules in a strong B field because

the Coulomb force and the Lorentz force experienced by the

electrons are on a par. A variety of methods thus has been

devised to cope with the problem. They include formal math-

ematical analysis,2 algebraic methods,3 representation of the

electronic wave function on a two-dimensional (2D) mesh,4,5

a)Electronic addresses: zhuwm@hznu.edu.cn and trickey@qtp.ufl.edu

or as a linear expansion in a suitably chosen basis. Basis

sets used include finite-element schemes,6 B-splines,7 Slater-

type orbitals (STO)8 (which are more suitable for the weak B

regime), Landau functions9,10 (which are suitable for the very

strong B field regime in which the adiabatic approximation is

applicable11), or the product of both.12 Recently Stopkowicz

et al. extended coupled-cluster theory to the non-vanishing

field regime, thus making standard quantum chemistry calcu-

lations available for atoms and molecules in strong B fields.13

Those authors also found that standard basis sets were inad-

equate for B larger than about 1 a.u., which underscores

the necessity of devising basis sets better than the currently

available ones.

The medium to high field strength regime poses a

formidable challenge to the calculations because of different

symmetries of Coulomb and Lorentz interactions, neither of

which is treatable as a perturbation. Current best practice for

this difficult regime is to employ an anisotropic Gaussian type

orbital (AGTO) basis. In such a basis, the exponential factor

of the basis functions has different decay constants along the

direction of the B field and the direction perpendicular to it.

This anisotropy provides the flexibility required to describe

the elongation of electron orbitals and densities along the field

direction.
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AGTO basis sets were first introduced, to our knowl-

edge, by Aldrich and Greene14 and exploited extensively by

Schmelcher and Cederbaum.15 Successful applications are

found in several studies of atoms in strong B fields.16–20 As

with ordinary GTO basis sets, the lack of a unique formal

prescription for determination of the basis exponents compels

the development of a physically sound prescription. Kappes

and Schmelcher gave an optimization algorithm.21 Because it

must be used for every distinct combination of atomic config-

uration and field strength, computational cost and tedium are

substantially larger than an ordinary ground-state GTO set.

Furthermore, a good starting set of exponents is required.16

Consequently, it is almost dauntingly hard and computation-

ally costly to achieve near uniformity of quality of the gener-

ated basis sets. The magnitude of the residual basis set errors is

uncontrolled, with no guarantee that those errors are insignif-

icant nor close enough to uniform to support unbiased com-

parisons between different atomic configurations or different

field strengths.

An alternative to case-by-case optimization is the use of

nearly optimized basis sets. Kravchenko and Liberman (KL)22

investigated one-electron systems, the hydrogen atom and the

hydrogen molecular ion. They found that systematically con-

structed AGTO basis sets could provide absolute accuracy

(relative to exact solution) of 10 6 hartree or better. We later

improved the construction procedure and produced a set of for-

mulae to generate nearly optimized basis sets based on a simple

physical model. Details can be found in Ref. 23. Unfortunately,

both the KL basis sets and ours rely upon multiple sequences

of exponents (up through five) to reach relatively high accu-

racy, especially for large B. The inescapable result is a very

large basis set size when compared to ordinary high-quality

ground-state GTO sets. Such large sizes are quite unfavor-

able for use in highly correlated method calculations. Those

methods typically have rather severe computational cost scal-

ing with basis set cardinality (some power higher than four

of basis set size times number of electrons). Therefore it is

highly desirable to keep the basis set size as small as possi-

ble commensurate with desired accuracy. Experience with our

multiple-sequence sets strongly suggests that we should have

only one sequence of basis exponents or at most two if that is

unavoidable.

For the B = 0 case, a huge variety of well-developed basis

sets is available to choose from. Among them, two with very

long lineages in quantum chemistry (beginning in the 1960s)

are the Pople-type sets which use minimal representations of

Slater-type functions or split-valence primitives to describe

core and valence electron wavefunctions24 and the Dunning

correlation-consistent basis sets. The latter sets are composed

of Gaussian primitives contrived to provide systematic conver-

gence of the correlation energy from post-Hartree-Fock (HF)

calculations.25 For B > 0, there is no obvious single path to

generalizing either the Pople or Dunning type set because of

the infinite number of combinations of atomic nuclear charge

Z and B field strength. Instead, one must seek appropriate

formulations as a function of field strength and, as we will

discuss below, orbital type as helpful parameters. In doing so,

we follow the philosophy adopted by Dunning.25 We explore

(analytically and numerically) some simple paradigmatic

systems to establish a few principles which should be appli-

cable in general. We try to fathom, or at least rationalize, the

underlying physical reasons that dictate those principles. We

do some fine-tuning and test the resulting formulas for basis

set generation with atoms H through C (1 ≤ Z ≤ 6, where Z

= atomic number) over a very large range of B field strength

(0 ≤ B ≤ 2000 a.u.). We take advantage of the availability

of several highly accurate HF calculations4,5,7,8 to assess the

residual errors associated with the new basis set construction

formulation.

Density functional theory (DFT) calculations are not

included in this study because the extra errors originating

from numerical grids and variety of exchange-correlation

functionals would complicate comparison between our calcu-

lated results and reference values. Nevertheless, the basis set

construction procedure presented here is applicable to DFT

calculations as well as to wavefunction based methods.

Section II gives the essential details of the problem and

reviews our previous basis set construction procedure.23 We

single out the points that should be kept in the new proce-

dure and discern principles and requirements that were omit-

ted. Subsection III A details the basis set construction for

the hydrogen iso-electronic sequence in an arbitrary B field.

From the newly constructed one-electron system basis set, in

Subsection III B we extend the treatment to multi-electron

atoms or atomic ions by modification to recognize orbital occu-

pations. The result is a set of formulae for constructing basis

sets for multi-electron atomic systems in a B field. In Sec. IV,

we summarize and make a few conclusions.

II. METHODOLOGY

A. Basics

The system Hamiltonian of a central field atom at the

origin in a uniform, static external magnetic field along the z

direction, B = Bẑ, commutes with rotations about ẑ, so the total

magnetic quantum number
∑

i mi of all electrons remains good,

where mi is the magnetic quantum number for the ith electron.

The total spin S
2, its z component Sz, and spatial parity in z

also are conserved, so a state can be labeled by those quan-

tum numbers. We choose the Coulomb gauge, A(r)= 1
2
B × r,

with A as the vector potential. Then the system Hamiltonian

is

H =
∑

i

[
−

1

2
∇2

i −
Z

ri

+
B2

8

(

x2
i + y2

i

)

+
B

2

(

mi + 2ms,i

)

]

+
1

2

∑

i,j

1
���ri − rj

���
, (1)

with ri and ms ,i as the space coordinate and spin z compo-

nent for the ith electron. [Hartree atomic units (~ = melectron

= qelectron = 1) are used throughout unless otherwise noted.

One Hartree a.u. of magnetic field equals 2.3505 × 105 T.]

In what follows, unpaired electrons are always taken as spin

down, ms,i = − 1
2
, unless stated otherwise.

B. Previous construction scheme

In cylindrical coordinates (ρ, z, φ), the jth AGTO basis

function takes the form
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χj(ρ, z, φ) = Nj ρ
nρj z

nzj e−αjρ
2−βjz

2

eimjφ , j = 1, 2, 3, . . . , (2)

where nρj
= |mj | + 2kj, kj = 0, 1, . . ., with mj = . . . ,  2,  1, 0,

1, 2, . . . , and nzj
= πzj

+ 2lj, lj = 0, 1, . . ., with πzj
= 0, 1. Such

functions are advantageous for the study of atoms in strong B

fields because of their flexibility in describing the elongation

of the electron orbitals and densities along the B field direction.

Since the B field compresses the transverse (radial) functions

(related to exponents αj) relative to the corresponding longi-

tudinal (axial) ones (exponents βj), we always have αj ≥ βj.

Schmelcher and Cederbaum deduced all the required matrix

elements of the Hamiltonian with respect to such AGTO basis

functions.15 However, the optimal determination of the sets

{αj} and {βj} was left largely as an open question.

As previously mentioned, we constructed KL-like highly

optimized basis sets without requiring case-by-case full non-

linear optimization.23 We summarize that procedure to lay the

ground work for the new scheme.

A very highly accurate total energy for the non-relativistic

H atom at B = 0 a.u. is given by an even-tempered Gaussian

(ETG) sequence of length Nb and rule of formation,26

βj = pqj, j = 1, 2, . . . , Nb,

ln p = a ln(q − 1) + a′,

ln(ln q) = b ln Nb + b′,

a = 0.3243, a′ = −3.6920,

b = −0.4250, b′ = 0.9280,

(3)

with Nb = 16. This determines the parameters p and q, hence

the longitudinal exponents βj, of what we choose as the “base

sequence,” that is, the exponent set with reference to which all

the others are constructed.

First, since the magnetic field does not change the confine-

ment along z, we expect little effect of B upon the ETG expo-

nents. Therefore our construction retained the ETG sequence

Eq. (3) unchanged for the longitudinal exponents βj. The one

modification occurs in cases for which the electron density

has diffuse, non-zero orbital angular momentum contributions.

Those require that the tempering be extrapolated to include a

small number of negative j values.

Then, by consideration of large and small B field limits

and use of a nonlinear fit to calculated one-electron system

results, Ref. 23 reached a prescription for highly refined, nearly

optimal exponents for Eq. (2). Those AGTO basis sets are

comprised of one to five exponent sequences (` = 1, 2, 3, 4,

5), Each sequence is a subset of exponents related by

αj,` = βj + (1 + µ`)∆(B), (4)

µ1 = 0.0 , µ2,3 = ±0.2 , µ4,5 = ±0.4 , (5)

and

∆(B) =
B

20


4

[
1 +

4

b(γ)

βj

B

]−2

+

[
1 +

4

b(γ)

βj

B

]−1/2
, (6)

where

b(γ) = −0.16[tan−1(γ)]2 + 0.77 tan−1(γ) + 0.74 , (7)

γ = B/Z2 . (8)

The initial sequence for these exponents is µ`=1 = 0. Then

µ` = ±0.2 and ±0.4 for the second, third, fourth, and fifth

sequences, respectively. For ` = 2, 3, there are half as many

exponents (with doubled spacing) as in the base sequence,

while for ` = 4, 5, there are one-fourth as many (with

quadrupled spacing).

Testing showed that the resulting basis sets, Eqs. (4)–

(8), introduce errors of less than 1 µhartree for the H atom

over 0 ≤ B ≤ 2000 a.u. as compared with more accurate alge-

braic results.3 Further, the HF total energies for multi-electron

atoms from the AGTO prescription, Eqs. (4)–(7), are nearly

indistinguishable from full numerical two-dimensional mesh

results.4

However, our previous scheme has several limitations.

First, the scheme makes no distinction among orbitals of

different types (different quantum numbers), yet clearly the

physics of magnetic confinement is not identical. Second,

no consideration of the strong electron-electron interaction

in a multi-electron system was involved. Finally, up to five

sequences from Eq. (5) were required to reach appropriate

accuracy. Including multiple sequences may offset, in part at

least, the aforementioned two deficiencies in the constructed

basis sets. But as already noted, multiple sequences introduce

unfavorable computational cost scaling, especially for highly

correlated methods applied to many-electron systems. Thus

the endeavor here is to include as few sequences as possible

in our basis sets, ideally only one.

One other aspect of our previous basis set construction

scheme is worth mentioning because it is important enough

that we retained it. This is a pair of constraints on ∆(B)

for very small and very large longitudinal basis set expo-

nents. Specifically, we take ∆(B) = B
4

in the limit βj → 0.

This can be viewed as the large B limit or the zero nuclear

charge limit. Either way, the one-electron state is a Landau

orbital, with an exponential parameter αj ≡ aB = B/4 (aB is

the scale parameter in the Landau orbital). The opposite limit,

βj → ∞, corresponds to B = 0 a.u. which restores spheri-

cal symmetry, αj = βj, hence ∆(B = 0) = 0. We found that a

convenient choice for orbital exponent asphericity is a scal-

ing of aB. Then ∆(B) is taken as a monotonically decreasing

function of the increasing longitudinal exponents βj of the

functions in a given basis set. The underlying physics is that

a small-exponent basis function samples a large volume far

from the nucleus. In that region, the B field far outweighs

the nuclear attraction, with the consequence that the distortion

(relative to the field-free spherical symmetry) will be relatively

larger than for the region sampled by larger-exponent basis

functions.

III. NEW CONSTRUCTION SCHEME

Extension of Eqs. (4)–(7) is required to allow better fit-

ting to the numerically optimized transverse exponents. But

this must be done with a concurrent goal of simplification,

namely, getting rid of the multiple sequences. Substantial

numerical experimentation and testing of several plausible

expressions was required to arrive at expressions that seem

superior because of their combined simplicity, accuracy, and

flexibility. The easiest way to understand the rationale is to

recognize that the construction has two phases, one-electron

and multi-electron. Subsections III A and III B present those.
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A. Basis sets for hydrogen atom and hydrogen-like
ions in B field

Since there is only one electron in the hydrogen iso-

electronic sequence, electron-electron interaction disappears

in these paradigmatic systems. The first step is to optimize

transverse exponents αj. Unlike our previous study, in which

we optimized αj by starting from the spherical base sequence

(αj = βj), Eq. (3), and used a down-hill algorithm,23 in this

study we started from a base sequence generated by Eq. (6).

Simply because of its explicit asphericity, it undoubtedly is an

improved starting point. Then we employed conjugate gradient

algorithm searching in the parameter space {αj} to minimize

the total energy of the system. That produces both faster and

more reliable numerical convergence.27

The transverse exponent αj optimization was done for the

H iso-electronic series (H, He+, Li++, Be+++, B4+, C5+, N6+,

and O7+) in reduced fields γ = 0.1, 0.2, 0.5, 1, 2, 5, 10,

20, 50, 100, 200, 500, 1000. Our previous scheme fits only

to optimized αj’s for the 1s orbital (m = πz = 0), and we

applied the resulting expression, Eq. (6), to other orbitals as

well. Closer examination, however, shows differences among

orbitals which must be taken into account if a truly highly

accurate basis is to be had. An example of the orbital depen-

dence is shown in Fig. 1. It displays the results of optimization

for γ = 1 for three different orbitals, namely, 1s, 2p
 1, and

3d
 2. Note the asphericity of the basis function as measured

by (αj  βj)/B, which is the vertical axis in that plot. Several

observations ensue from examining Fig. 1.

First, the data points of a given orbital with different

nuclear charges but for fixed γ fall on the same curve. For

example, all the black symbols are for 1s orbitals, but the

nuclear charge Z ranges from 1 (neutral H) to 8 (O7+), yet

obviously they all lie on a single curve. A simple argument

shows that this must be the case. This apparently was first

shown by Surmelian and O’Connell.28 Also see the work of

FIG. 1. Fitting the optimized exponents of AGTO basis functions for hydro-

gen atom and hydrogen-like ions in reduced magnetic field strength γ = 1.

Empty symbols are optimized exponents from searching {αj} space. Solid

curves are fits to those data points, generated by Eqs. (10)–(13). Filled squares

are the AGTO basis sets for the hydrogen atom in B = 1 a.u. generated accord-

ing to Eqs. (10)–(15). Black, red, and blue stand for the 1s, 2p
 1, and 3d

 2

orbitals, respectively.

Ruder et al.29 Suppose the H atom wavefunction in an external

B field is ΨH (r, B), then Eq. (1) gives
[
−

1

2
∇2 −

1

r
+

B2

8

(

x2 + y2
)

+
B

2
(m + 2ms)

]
ΨH (r, B)

= EHΨH (r, B).

Scaling r→ Zr and multiplication by Z2 gives
[
−1

2
∇2 − Z

r
+

(Z2B)2

8

(

x2 + y2
)

+
Z2B

2
(m + 2ms)

]
ΨH (Zr, B)

= (Z2EH )ΨH (Zr, B).

The scaled Hamiltonian is the same as that of a hydrogen-

like atom with nuclear charge Z in an external field B′ = Z2B

or, equivalently, γ = B′

Z2 =B. The scaled hydrogen-atom wave-

function is precisely the eigenfunction of this Hamiltonian

with energy of Z2EH . Now we expand ΨH (r, B) in the

optimized basis set,

ΨH (r, B) =
∑

j

aj χj =

∑

j

ajNj ρ
nρj z

nzj e−αjρ
2−βjz

2

eimφ . (9)

The scaled wavefunction accordingly is

ΨZ (r, Z2B) = ΨH (Zr, B)

=

∑

j

ajNjZ
nρj

+nzj ρ
nρj z

nzj e
−α′

j
ρ2−β′

j
z2

eimφ ,

where α′
j
= Z2αj and β′

j
= Z2 βj. Obviously,

α′
j
−β′

j

B′ =
αj−βj

B

and
β′

j

B′ =
βj

B
, which shows that the two cases indeed are on the

same curve.

Second, though the optimized data points for orbitals with

different quantum numbers do not fall on the same curve,

their trends as functions of B are similar. To accommodate

this behavior, we introduce two parameters that depend upon

the reduced field strength and orbital quantum numbers, A(γ,

m, πz) and D(γ, m, πz). Their purpose is to provide orbital-

dependent asphericity in the basis functions. After exten-

sive numerical exploration, we reached a prescription for the

orbital-dependent version of ∆, namely,

∆j(βj, B) = B

{(

1

4
−
βj

B

) [
1 −

(

1 − e−30βj/B
)8
]

+
A(γ, m, πz)

(βj/B)D(γ,m,πz)

(

1 − e−30βj/B
)8

}

. (10)

Initially, the parameters A(γ, m, πz) and D(γ, m, πz) were

obtained from fits to the data points such as those displayed

in Fig. 1 by use of Eq. (10) for each γ = 0.1, 0.2, 0.5, 1, 2, 5,

10, 20, 50, 100, 200, 500, 1000 and for each of five orbitals,

1s, 2p0, 2p
 1, 3d

 1, and 3d
 2. With that set of parameters A(γ,

m, πz) and D(γ, m, πz) determined, a second fit was made to

express those parameters as analytical functions of reduced

field strength γ and orbital quantum numbers m and πz. The

final result is

D(γ, m, πz) = 0.4 +
0.6(l + 1)/(l2 + l + 1)

1 + 1.105(l + 1)3γ0.425(l+2)
,

A(γ, m, πz) =
0.020 73 + 0.000 35(2πz + l(l − 1)/3)

D(γ, m, πz)1.25
,

(11)

where l = |m| + πz.
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The final observation is specific to the H iso-electronic

series. As one sees in Fig. 1, except for the 1s orbital, the

asphericity of basis functions does not vanish for very tight

functions when βj→∞. Instead the higher orbital asphericities

go to some non-zero, nearly constant values. This behavior is

understandable from decomposition of the wavefunction into

radial and angular parts. The kinetic energy operator in the

Hamiltonian Eq. (1) acting on the angular part of the wave-

function gives rise to a repulsive centrifugal potential for the

non-zero angular momentum orbitals. That kills the singular-

ity in the nuclear attractive potential. Thus, the overpower-

ing Coulomb attraction exists only for the s orbital for very

tight functions, for which the asphericity of s basis functions,

(αj  βj)/B, does go to zero when βj → ∞. For non-zero

angular momentum orbitals, the strong repulsive centrifugal

potential causes the coefficients aj in the wavefunction expan-

sion, Eq. (9), to become negligible quickly with increasing

βj (tighter and tighter basis functions). Thus it is useful and

effective to use a cutoff as a simple approximation to the limit

of ∆j(B) as βj → ∞. We impose a minimum value for ∆j(B)

according to

∆min(B) =



0, if m = πz = 0,

0.1562B

1 + γ−0.55
, if |m| = 1 and πz = 0,

0.1744B

1 + 0.8γ−0.55
, otherwise.

(12)

Combining Eqs. (10) and (12) yields the highly optimized

transverse exponents αj of the AGTO basis functions for the

hydrogen iso-electronic sequence in an arbitrary B field,

αj = βj + max(∆j(βj, B),∆min(B)). (13)

To this point, we have only explored the parameter space

{αj} with {βj} kept unchanged as in the base ETG sequence;

see Eq. (3). This strategy is not entirely advantageous because

the basis functions which have intermediate asphericity (0.05B

. αj  βj . 0.20B) may not be adequate in number. Thus we

require the asphericities of any two adjacent basis functions,

say the jth and (j + 1)th, to differ by no more than 0.03B. This

is a heuristic choice which seems to be well balanced. Its prac-

tical effect is evident. For any AGTO basis function 0 ≤ αj

 βj ≤ 0.25B, setting the maximum interval at 0.03B results

in there being at least 0.25
0.03
≈ 8 basis functions included for

the range over which the asphericity changes from zero to its

maximum value, 0.25. That is, we use a denser set of basis func-

tions in the exponent range through which the basis function

asphericity changes most rapidly. To avoid approximate linear

dependencies from excessively dense spacing of functions, we

also require that the ratio of the longitudinal exponents of any

two adjacent basis functions be no less than
√

q, where q is

from Eq. (3). This is a modification of that equation. At the

ratio
√

q, there is twice the basis function density than from use

of the ratio q. Heuristically this works well in avoiding approx-

imate linear dependencies while handling changing aspheric-

ity. To enforce those constraints, first we need the inverse of

Eq. (10),

βj = ∆
−1
j

(

∆j(βj, B), B
)

. (14)

Then the recursive relations for determination of βj are

βj+1 = min
(

max
(

∆
−1
j+1

(

αj − βj − 0.03B, B
)

,
√

qβj

)

, qβj

)

,

βj−1 = max
(

min
(

∆
−1
j−1

(

αj − βj + 0.03B, B
)

, βj/
√

q
)

, βj/q
)

,

β0 = p, (15)

where p and q are defined in Eq. (3). This completes the AGTO

basis set construction for the hydrogen iso-electronic sequence

in an external constant B field.

To see how faithfully the new prescription reproduces the

fully optimized exponents, as shown in Fig. 1 with empty

symbols, the three solid curves in the figure follow from Eqs.

(10)–(13). Indeed, the fits are excellent except in the regions

of very tight functions for orbitals with non-zero angular

momentum, where we adopted the simplified cutoff. Because

that is in the weak field regime, in practice, the deviation

does not pose any serious problem. See the discussion above

[Eq. (12)]. The AGTO basis sets for the three orbitals, 1s,

2p
 1, and 3d

 2, for the hydrogen atom in B = 1 a.u., gener-

ated according to our construction, Eqs. (10)–(15), are repre-

sented in the figure by filled symbols. Using those three newly

constructed AGTO basis sets, we obtain atomic energies of

 0.831 168 2 hartree,  0.456 596 1 hartree, and  0.353 047 1

hartree. Comparison with the presumably more accurate

algebraic results by Kravchenko et al.3 ( 0.831 168 896 733

hartree,  0.456 597 058 424 hartree, and  0.353 048 025 149

hartree) gives residual errors from our AGTO scheme as less

than 1 µhartree.

More test results are included in Tables I and II. We can see

that the absolute error from our constructed AGTO basis set

ranges from a fraction of 1 µhartree to a few µhartrees. While

the absolute error increases with increasing B field strength,

the relative error does not. The mean absolute errors (MAEs)

of the seven states included in Table II range from 1.4 µhartree

to 4.2 µhartree. It is especially noteworthy that not all of those

states were used in the optimization of exponents nor in the

fitting. The accuracy of our present basis sets which include

only a single sequence surpasses that of our previous basis sets,

Eqs. (5)–(7), in which double sequences were included. Indeed

the accuracy of the new sets is nearly on par with previous basis

sets that used triple sequences.

Considering the substantially reduced size of the new

hydrogenic AGTO basis sets, we turn in Subsection III B to

the problem of extending that improvement to many-electron

atoms in a strong B field.

B. Basis sets for many-electron atoms and ions
in B field

There are several complications due to the electron-

electron interaction in a many-electron atom or ion. If the 1s

orbital is occupied by one or two electrons, the singular nuclear

attractive potential will be screened and hence be less effec-

tive in driving down the asphericity of tight basis functions in

orbitals other than 1s than is the case for hydrogen-like ions.

This effect dwindles for more diffuse basis functions; hence, it

may be neglected beyond some point in a sequence of increas-

ingly diffuse exponents. Evidently the effect is inversely pro-

portional to the average distance between the orbital and the

nucleus, which is related to the quantum numbers m and πz

of the orbital. On the other hand, outer electrons also affect 1s
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TABLE I. Comparison of the H atomic energies in B fields between our present study using a single sequence of AGTO basis functions and the more accurate

algebraic results as reference values. (Atomic energies are in hartree, absolute errors are in µhartree, relative errors are in millionth, and B is in a.u.)

H (1s) H (2p0)

B (a.u.) Present Ref.a Error (µhartree) Relative error Present Ref.a Error (µhartree) Relative error

0  0.499 999 93  0.500 000 00 0.07 0.14  0.124 999 88  0.125 000 00 0.12 1.0

0.01  0.504 974 93  0.504 975 00 0.07 0.14  0.129 850 22  0.129 850 42 0.20 1.5

0.02  0.509 899 98  0.509 900 04 0.06 0.14  0.134 406 04  0.134 406 47 0.43 3.2

0.05  0.524 376 64  0.524 376 71 0.07 0.13  0.146 463 26  0.146 464 84 1.6 10.8

0.1  0.547 526 39  0.547 526 48 0.09 0.17  0.162 408 20  0.162 410 08 1.9 11.5

0.2  0.590 381 38  0.590 381 57 0.19 0.31  0.185 182 48  0.185 184 04 1.6 8.5

0.5  0.697 210 07  0.697 210 54 0.47 0.7  0.224 759 3  0.224 760 34 1.0 4.5

1  0.831 168 21  0.831 168 90 0.69 0.8  0.260 004 1  0.260 006 62 2.5 9.7

2  1.022 212 4  1.022 213 91 1.5 1.5  0.297 709 1  0.297 710 97 1.9 6.2

5  1.380 397 5  1.380 398 87 1.4 1.0  0.347 616 4  0.347 617 78 1.3 3.8

10  1.747 796 2  1.747 797 16 0.9 0.5  0.382 647 4  0.382 649 85 2.4 6.4

20  2.215 396 7  2.215 398 52 1.8 0.8  0.413 374 3  0.413 377 73 3.4 8.3

50  3.017 857 2  3.017 860 71 3.6 1.2  0.445 682 6  0.445 685 11 2.5 5.6

100  3.789 797 7  3.789 804 24 6.5 1.7  0.463 616 5  0.463 617 76 1.3 2.8

200  4.727 140 9  4.727 145 11 4.2 0.9  0.476 531 3  0.476 532 00 0.7 1.5

500  6.257 081 6  6.257 087 67 6.0 1.0  0.487 506 9  0.487 507 10 0.2 0.5

1000  7.662 415 4  7.662 423 25 7.8 1.0  0.492 494 8  0.492 495 00 0.2 0.4

2000  9.304 755 7  9.304 765 08 9.4 1.0

4000  11.204 134 0  11.204 145 21 11.2 1.0

H (2p
 1) H (3d

 2)

B (a.u.) Present Ref.a Error (µhartree) Relative error Present Ref.a Error (µhartree) Relative error

0  0.124 999 88  0.125 000 00 0.12 1.0  0.055 555 11  0.055 555 56 0.45 8.0

0.01  0.134 701 01  0.134 701 14 0.13 1.0  0.069 246 69  0.069 247 18 0.49 7.2

0.02  0.143 817 41  0.143 817 61 0.20 1.4  0.080 685 15  0.080 685 87 0.72 8.9

0.05  0.168 057 83  0.168 058 19 0.36 2.2  0.106 888 68  0.106 888 75 0.07 0.7

0.1  0.200 845 44  0.200 845 67 0.23 1.2  0.137 838 95  0.137 839 52 0.57 4.1

0.2  0.250 538 86  0.250 539 10 0.24 0.9  0.181 320 01  0.181 320 61 0.60 3.3

0.5  0.349 476 68  0.349 477 30 0.62 1.8  0.264 389 27  0.264 389 55 0.28 1.1

1  0.456 596 14  0.456 597 06 0.92 2.0  0.353 047 15  0.353 048 03 0.88 2.5

2  0.599 611 93  0.599 612 77 0.84 1.4  0.471 170 4  0.471 171 93 1.5 3.2

5  0.859 831 70  0.859 832 62 0.92 1.1  0.686 799 4  0.686 802 52 3.1 4.5

10  1.125 420 6  1.125 422 34 1.7 1.5  0.908 211 7  0.908 214 78 3.1 3.4

20  1.465 503 7  1.465 508 55 4.8 3.3  1.193 627 4  1.193 633 18 5.8 4.9

50  2.056 842 2  2.056 846 67 4.5 2.2  1.694 314 6  1.694 321 25 6.7 3.9

100  2.634 753 3  2.634 760 67 7.4 2.8  2.188 163 8  2.188 167 24 3.5 1.6

200  3.347 136 0  3.347 145 23 9.3 2.8  2.801 995 8  2.802 000 03 4.3 1.5

500  4.531 236 8  4.531 246 38 9.6 2.1  3.832 385 5  3.832 390 06 4.5 1.2

1000  5.638 409 7  5.638 421 08 11.4 2.0  4.805 105 7  4.805 110 67 5.0 1.0

aData are from Ref. 3.

electron(s). Among them, the innermost (tightly bound) non-

1s orbital (m , 0, πz = 0) dominates, so it is the only one that

we consider here. If the 1s orbital is doubly occupied, of course

the two 1s electrons are strongly repulsive to each other, a fact

we also shall take into account.

To describe the aforementioned effects, we generalize Eq.

(13) to become

αj = βj + f (βj, mj, πj, B)∆j(βj, B) . (16)

The new feature is the rescaling factor f,

f (βj, mj, πj, B) =



1 − N1s

20
, if |mj | + πj > 0, and ∆j = αj − βj <

0.14(πj + 1.2|mj |)B
πj + |mj |

,

1 − 1

20|mt |
, if |mj | = πj = 0, mt , 0, and ∆j = αj − βj < 0.17B,

1 − N1s − 1

20
, if |mj | = πj = 0, N1s > 1, and ∆j = αj − βj < 0.17B,

1, otherwise ,

(17)
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TABLE II. Basis set errors for the H atom in B fields.a (Absolute errors are in µhartree, numbers in parentheses

are the relative errors in millionths, and B is in a.u.)

B (a.u.) 1s 2p0 2p
 1 3d

 1 3d
 2 4f

 3 5g
 4

0 0.1(0.1) 0.1(1.0) 0.1(1.0) 0.4(8.0) 0.4(8.0) 0.7(24) 2.0(99)

0.01 0.1(0.1) 0.2(1.5) 0.1(1.0) 0.9(14) 0.5(7.2) 1.1(23) 1.7(45)

0.02 0.1(0.1) 0.4(3.2) 0.2(1.4) 1.7(23) 0.7(8.9) 0.5(7.9) 0.9(19)

0.05 0.1(0.1) 1.6(11) 0.4(2.2) 0.4(4.8) 0.1(0.7) 0.2(2.2)  0.1(1.8)

0.1 0.1(0.2) 1.9(12) 0.2(1.2) 0.2(1.8) 0.6(4.1) 1.1(9.9) 0.4(3.9)

0.2 0.2(0.3) 1.6(8.5) 0.2(0.9) 0.2(1.9) 0.6(3.3) 0.7(4.6) 1.0(7.7)

0.5 0.5(0.7) 1.0(4.5) 0.6(1.8) 2.1(12) 0.3(1.1) 1.1(4.7) 6.3(32)

1 0.7(0.8) 2.5(9.7) 0.9(2.0) 3.2(15) 0.9(2.5) 2.3(7.8) 7.7(29)

2 1.5(1.5) 1.9(6.2) 0.8(1.4) 2.5(10) 1.5(3.2) 3.3(8.3) 8.0(22)

5 1.4(1.0) 1.3(3.8) 0.9(1.1) 6.7(23) 3.1(4.5) 4.7(7.9) 4.8(9.1)

10 0.9(0.5) 2.4(6.4) 1.7(1.5) 6.8(20) 3.1(3.4) 4.0(5.0) 2.5(3.5)

20 1.8(0.8) 3.4(8.3) 4.8(3.3) 7.6(20) 5.8(4.9) 7.2(6.9) 3.0(3.2)

50 3.6(1.2) 2.5(5.6) 4.5(2.2) 4.7(11) 6.7(3.9) 7.3(4.9) 4.2(3.1)

100 6.5(1.7) 1.3(2.8) 7.4(2.8) 2.9(6.4) 3.5(1.6) 4.5(2.3) 9.2(5.3)

200 4.2(0.9) 0.7(1.5) 9.3(2.8) 1.5(3.2) 4.3(1.5) 5.3(2.1) 5.9(2.6)

500 6.0(1.0) 0.2(0.5) 9.6(2.1) 0.5(1.1) 4.5(1.2) 6.1(1.8) 7.1(2.3)

1000 7.8(1.0) 0.2(0.4) 11.4(2.0) 0.1(0.2) 5.0(1.0) 6.4(1.5) 7.4(1.9)

MAE 2.09(0.7) 1.36(5.1) 3.12(1.8) 2.49(10) 2.45(3.6) 3.32(7.3) 4.24(17)

aReference values used to deduce basis set errors are from Ref. 3 for the 1s, 2p0, 2p
 1, 3d

 1, and 3d
 2 states. For the states 4f

 3

and 5g
 4, reference data are taken from our calculation with very large basis sets which include multiple sequences (through five)

of Eq. (5). There is slight improvement over our earlier published results in the low-B field region.23

where N1s ∈ [0, 2] is the number of electrons that occupy

the 1s orbital, including the spin-up and the spin-down elec-

trons, and mt is the magnetic quantum number of the occu-

pied innermost tightly bound orbital for which the z-parity

is even. Observe that Eqs. (15) remain valid since only the

transverse part of the function is modified. What Eq. (17)

does is reduce the asphericity slightly at fixed B. That would

lead to moving the points from the upper members of the

iso-electronic sequence slightly downward in the right two-

thirds of a many-electron version of Fig. 1. The shift is not

enough to warrant a separate figure. There is a welcome fea-

ture of the 1s orbital being occupied. Since the nucleus is

now screened by the innermost electron cloud, the effective

repulsive centrifugal potential for non-zero angular momen-

tum orbitals also is smoothed and a cutoff, Eq. (12), no longer is

required.

Lastly, consider the situation in which more than one shell

of a single kind of orbital is occupied, for example, the 1s2s

configuration for the He atom and the ground state 1s22s for

the Li atom in a weak B field. Although we have tried to opti-

mize the transverse exponents by exploring the {αj} space

while keeping only a single sequence, unfortunately we did

not succeed in getting adequately accurate basis sets. The dif-

ficulty can be traced to the quite different behaviors of 1s and 2s

orbitals. It seems unavoidable to have a second basis function

sequence. As we observed above, the severest demands upon

basis functions are for those having intermediate asphericities.

Bearing this in mind, we choose to limit the second sequence of

basis functions to have asphericity between 0.03B and 0.225B.

Again this is a design choice which is based on the fact that

the asphericity curves in Fig. 1 are rather flat in the ranges

0–0.03B and 0.225B–0.25B. Use of a larger range would result

in excessively many basis functions in the second sequence and

hence an un-necessary increase of the basis set size. For small

B, the basis functions in the second sequence may collapse

into (i.e., be approximately linearly dependent with) the first

sequence. To avoid this problem, a minimum B field strength

of 0.2 a.u. is effective as a parameter in calculating∆j(βj, B) for

the second sequence. Thus the second sequence is generated

according to

αj,2 = βj + 0.8∆j(βj, max(B, 0.2)),

if 0.03B < ∆j(βj, B) < 0.225B.
(18)

Another technique to avoid basis function collapse is to use kj

= 1, (e.g., nρj
= |mj | + 2kj = |mj | + 2) for the basis functions,

Eq. (2), in the second sequence whenever
αj−βj

αj+βj
≤ 0.05.

Again because of inner electron screening, each electron

in the atom or the ion feels different effective charges, thus

different reduced B field strength γ. A detailed analysis can

be quite complicated. Instead, we adopt a rough but effective

approximation that works quite well. Each electron is assigned

an effective nuclear charge Zeff . For the innermost electrons,

Zeff should be close to the bare nuclear charge, so we simply

take Zeff = Z. For other electrons, Zeff is close to the nuclear

charge reduced by the number of inner-shell electrons. Hence,

the reduced field strengths γ =B/Z2
eff

are different for each

electron. Those values are used for γ that appears in Eqs. (10)

and (11). However, notice that the B field experienced by all

electrons is the same.

To this point we have not specified the range of the index

j in Eq. (2), which determines the number of the basis func-

tions in a basis set. The usual computational practice is to use

a range large enough to ensure that the accuracy of the basis

set is not degraded by insufficient tight functions or diffuse

functions. More precisely, the incremental error introduced
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into the basis set by removing the most diffuse or the most

tight basis function should not exceed the residual error in

the unaltered basis set. This criterion can be met with lit-

tle difficulty in practice simply by repeatedly removing the

most diffuse or the most tight basis function and checking

the calculated results. We did tabulate the ranges for different

B field strengths and different orbitals in our computer code

but do not dwell on it here because the results are both quite

straightforward and not very informative. One caveat is that

in the cases for which the electron density has diffuse, non-

zero orbital angular momentum contributions, sometimes it is

necessary to extrapolate to negative j values and to include

a small number of such diffuse basis functions in the basis

sets.

We note that many constants which appear in Eqs.

(10)–(18) are either chosen by physical plausibility or were

determined by fitting to numerically optimized data points

followed by fine tuning to achieve the best overall perfor-

mance. When the results proved comparatively insensitive to

a constant, we chose a simpler value to keep the expressions

concise. The forms of these equations are devised in the hope

of encapsulating most of the underlying physics.

We use published HF calculations for atoms in strong B

fields to assess the accuracy of our newly constructed basis

sets. The basis set errors are given in Tables III–VII for atoms

He through C and a few ions. In all cases, the electronic states

are labeled according to their corresponding zero field HF

electronic configurations. We did not include correlated wave-

function or DFT calculations because we focus only on basis

set construction in this study, and calculations including elec-

tron correlation would complicate our comparisons. However,

we note that the basis sets constructed according to the new

procedure are intended for use both in correlated wavefunction

and DFT calculations, not just HF calculations.

There is an issue of reference data. For the He atom,

Ruder and co-workers did extensive HF calculations and gave

abundant tabulated data.29 Jones, Ortiz, and Ceperley also

used AGTO basis functions but different basis sets.8 Zhao

and Stancil used a B-spline basis and quadruple-precision

calculations to obtain very accurate HF energies for 0 ≤ B

≤ 100 a.u., but their data are only available for the 1s2

state.7 Using different sources as reference data will intro-

duce non-uniformity of accuracies, thus jeopardize clarity

of comparison. Hence, we decided to use our own recent

results as reference. They were obtained by using the mul-

tiple sequence AGTO basis functions.23 They were in good

agreement with other published results and even have higher

accuracy for some states (lower HF energies compared to

Ref. 8).

Basis set errors for the He atom in B fields are shown in

Table III. Absolute errors range from a few to a couple of hun-

dreds of µhartree, with an average of a few tens of µhartree.

Understandably they are larger than the basis set errors for H

atom, but the relative errors are not. The MAE for the 1s2s state

seems significantly smaller than those of other states, simply

because double sequences were employed for that case alone.

At low field strength B = 0.1 a.u., there are several negative val-

ues in the table, which means that our current single sequence

basis sets give lower HF energies than the reference calcula-

tions that used the multiple sequence basis sets of Eq. (5). The

improvement is obvious. The test on this simplest two-electron

system shows that our constructed basis sets work as well for

these systems as they do for a single-electron system, H atom.

Tables IV–VII give the basis set errors for the Li, Be, B,

and C atoms and the positive ions, Li+, Be+, and B+, in field

strengths 0 ≤ B ≤ 2000 a.u. Comparison data for atoms and

ions with Z ≥ 3 are from the series studies by Ivanov and

Schmelcher, who used two-dimensional (2D) mesh methods.4

Exceptions are the 1s22s2 state of the Be atom and B+ ion and

the 1s22s22p
 1 state of the B atom, for which they allowed

asymmetrical wavefunctions for 2s2 electrons with respect to

the z = 0 plane,4 whereas we required definite z parity, πz = 0, 1.

TABLE III. Basis set errors for the He atom in B fields.a (Absolute errors are in µhartree, numbers in parentheses

are the relative errors in millionths, and B is in a.u.)

B (a.u.) 1s2 1s2s 1s2p0 1s2p
 1 1s3d

 1 1s3d
 2 1s4f

 2 1s4f
 3 1s5g

 3

0  1(0.3) 1(0.4) 20(9.3) 5(2.4) 0(0.2) 0(0.2) 1(0.5) 0(0.2) 31(15)

0.1 0(0.0) 0(0.0) 25(11) 8(3.7)  5(2.5) 7(3.4)  8(3.9)  13(5.9)  27(13)

0.2 0(0.1) 4(1.8) 39(17) 19(8.1) 10(4.7) 18(7.9) 7(3.0) 7(3.2) 5(2.1)

0.5 1(0.4) 13(5.2) 53(21) 49(19) 11(4.6) 12(4.8) 7(2.8) 8(3.4) 20(8.5)

1 2(0.6) 11(4.2) 34(13) 61(21) 17(6.6) 18(6.4) 18(7.0) 13(4.9) 46(18)

2 2(1.1) 9(3.0) 27(8.6) 62(18) 19(6.3) 16(4.9) 9(2.9) 19(6.0) 6(2.0)

5 2(4.4) 7(1.8) 11(2.9) 45(9.7) 19(5.0) 17(3.9) 7(1.8) 27(6.6) 1(0.2)

10 20(6.6) 4(0.8) 8(1.7) 29(4.9) 17(3.5) 29(5.5) 8(1.7) 53(10) 3(0.6)

20 17(1.5) 0(0.1) 4(0.6) 38(5.1) 10(1.6) 30(4.4) 4(0.7) 40(6.0) 3(0.5)

50 27(0.7)  3(0.4) 11(1.3) 65(6.3) 19(2.4) 35(3.7) 9(1.2) 33(3.6) 7(0.8)

100 43(0.5) 0(0.0) 16(1.6) 101(7.7) 20(2.0) 48(4.0) 14(1.4) 36(3.1) 12(1.2)

200 72(0.4)  6(0.4) 13(1.1) 133(8.0) 16(1.3) 67(4.3) 12(1.0) 46(3.1) 11(0.9)

500 123(0.3)  4(0.3) 23(1.4) 178(7.9) 11(0.7) 89(4.3) 10(0.6) 62(3.1) 10(0.6)

1000 179(0.2)  1(0.1) 22(1.1) 204(7.3) 18(0.9) 105(4.0) 17(0.8) 74(3.0) 18(0.9)

2000 189(0.1) 1(0.1) 25(1.0) 220(6.3) 25(1.0) 111(3.4) 24(1.0) 85(2.7) 24(0.9)

MAE 45(1.1) 4(1.2) 22(6.2) 81(9.0) 14(2.9) 40(4.3) 10(2.0) 34(4.3) 15(4.3)

aReference values used to deduce basis set errors are from Ref. 23, in which very large basis sets including multiple sequences of

Eq. (5) were used. Recalculation slightly improved over our earlier published results in the low B-field region, 0 ≤ B ≤ 1 a.u.
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TABLE IV. Basis set errors for the Li singly positive ion and Li atom in B fields.a (Absolute errors are in mH,

numbers in parentheses are the relative errors in millionth, and B is in a.u.)

Li+ Li

B (a.u.) 1s2 1s2p
 1 1s22s 1s22p

 1 1s2s2p
 1 1s2p02p

 1 1s2p
 13d

 2

0 0.01(0.8) 0.02(4.3) 0.00(0.1) 0.01(1.7) 0.03(4.7) 0.01(2.4) 0.04(6.9)

0.1  0.00(0.3) 0.03(5.8) 0.01(1.4) 0.02(3.2) 0.04(7.4) 0.02(3.7) 0.07(13)

0.2 0.00(0.3) 0.03(5.9) 0.00(0.6) 0.03(4.5) 0.11(20) 0.02(3.8) 0.10(18)

0.5 0.00(0.3) 0.04(6.6) 0.01(1.7) 0.05(6.2) 0.03(5.1) 0.06(10) 0.07(11)

1 0.00(0.4) 0.06(10) 0.02(2.1) 0.09(11) 0.05(8.3) 0.15(23) 0.09(14)

2 0.01(1.1) 0.07(10) 0.01(1.1) 0.10(13) 0.11(15) 0.20(27) 0.10(14)

5 0.02(2.7) 0.07(7.7) 0.01(2.3) 0.11(16) 0.01(1.5) 0.19(21) 0.11(12)

10 0.11(36) 0.03(2.9)  0.07(21) 0.14(30) 0.05(4.2) 0.15(14) 0.10(8.5)

20 0.10(25) 0.04(3.0)  0.00(0.4) 0.13(74) 0.08(6.1) 0.09(6.1) 0.07(4.6)

50 0.10(3.6) 0.13(7.1)  0.26(9.3) 0.15(6.1) 0.13(7.0) 0.15(7.7) 0.08(4.0)

100 0.04(0.5) 0.14(6.0) 0.65(9.1) 0.21(3.1) 0.85(35) 0.01(0.4) 0.14(5.4)

200 0.05(0.3) 0.20(6.6)  0.75(4.5) 0.25(1.6) 0.33(11)  1.25(40) 0.34(9.7)

500 0.09(0.2) 0.32(7.7)  1.96(4.3) 0.39(0.9) 3.14(75) 0.83(20) 0.52(11)

1000 0.13(0.1) 0.33(6.2) 12.32(13) 0.74(0.8) 0.92(18) 0.93(18) 0.61(10)

2000 0.23(0.1) 0.36(5.6) 0.00(0.0) 0.94(0.5) 0.33(5.0) 0.43(6.5) 0.66(8.8)

MAE 0.06(4.8) 0.13(6.4) 1.07(4.7) 0.22(12) 0.41(15) 0.30(14) 0.21(10)

aReference values used to deduce basis set errors are from Ref. 4. For B = 2000 a.u., reference data are taken from our calculation

with very large basis sets which include multiple sequences of Eq. (5).23

For those three instances, the references are taken from our own

calculations by using very large basis sets including multiple

sequences.23 We also supplemented the reference data points

for the Li atom at B = 2000 a.u.

Basis set errors in these calculations range from a few

hundredths to a few mH. As mentioned before, negative values

signify that we obtained lower HF energies with our new basis

sets than those from our chosen references. Although absolute

errors vary a lot, relative errors are not very different from

those for the H and He atoms and do not change much with

increasing B field strength (except when the total energy of

the atom or ion happens to be close to zero) or for different

atoms. This is evidence for the uniformity of the quality of our

newly constructed basis sets for different atoms in different B

field strengths, a welcome feature. Inspection of data in Tables

IV–VII shows a few irregularities of error distribution. For

example, in the Li atom, the error for the 1s2s2p
 1 state at

B = 500 a.u. is 3.14 mH, much larger than the errors at B

= 200 a.u. (0.33 mH) and at B = 1000 a.u. (0.92 mH). We

surmise that the reason is that our chosen reference data have

non-uniform accuracies. Using our own results from multiple

sequence calculations,23 the basis set errors are much more

uniform: 0.24 mH, 0.30 mH, 0.28 mH, for B = 200, 500, 1000

a.u., respectively (not included in the table). Another example

is the 1s2p02p
 1 state at B = 200 a.u., for which we got a

total HF energy 1.25 mH lower than the reference result. The

TABLE V. Basis set errors for the Be singly positive ion and Be atom in B fields.a (Absolute errors are in mH,

numbers in parentheses are the relative errors in millionths, and B is in a.u.)

Be+ Be

B (a.u.) 1s22s 1s22p
 1 1s2p

 13d
 2 1s22s2 1s22s2p

 1 1s22p
 13d

 2 1s2p
 13d

 24f
 3

0 0.01(0.6) 0.02(1.1) 0.05(5.8)  0.00(0.1) 0.03(1.7) 0.04(2.8) 0.08(8.7)

0.5 0.02(1.3) 0.05(3.1) 0.11(10) 0.01(1.0) 0.03(2.1) 0.07(4.7) 0.08(7.5)

1 0.03(2.2) 0.09(6.1) 0.09(7.7) 0.05(3.4) 0.05(3.3) 0.11(7.1) 0.10(8.2)

2 0.05(3.7) 0.13(8.9) 0.10(7.9) 0.07(5.2) 0.06(4.0) 0.18(12) 0.11(8.4)

5 0.05(3.4) 0.18(12) 0.11(7.2) 0.09(10) 0.07(4.7) 0.25(15) 0.18(11)

10 0.03(2.8) 0.16(12) 0.12(6.5) 0.07(44) 0.12(8.7) 0.27(18) 0.14(6.8)

20 0.04(7.0) 0.22(24) 0.11(4.7) 0.07(5.2) 0.12(12) 0.33(30) 0.16(6.2)

50  0.06(3.6) 0.34(32) 0.24(7.2) 0.06(0.9) 0.30(29) 0.39(50) 0.29(8.3)

100  0.05(0.9) 0.25(5.1) 0.30(7.1) 0.07(0.4) 0.57(12) 0.40(8.6) 0.40(8.9)

200 0.15(1.1) 0.31(2.3) 0.41(7.5)  0.07(0.2)  0.60(4.4) 0.54(4.1) 0.62(11)

500  2.91(6.8) 0.56(1.4) 0.66(8.8)  0.41(0.4) 1.23(3.0) 1.19(2.9) 0.94(12)

1000 12.09(13) 0.74(0.8) 0.83(8.7)  0.92(0.5)  1.88(2.1) 0.60(0.7) 1.22(12)

2000  18.31(9.7) 0.95(0.5) 0.93(7.7)  3.09(0.8)  30.10(16)  2.53(1.4) 1.30(10)

MAE 2.60(4.3) 0.31(8.4) 0.31(7.5) 0.38(5.6) 2.70(8.0) 0.53(12) 0.43(9.1)

aReference values used to deduce basis set errors are from Ref. 4. For the 1s22s2 state of Be atom, reference values are from our

own calculation by using very large basis sets including multiple sequences.23 See text for details.
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TABLE VI. Basis set errors for the B singly positive ion and B atom in B fields.a (Absolute errors are in mH, numbers in parentheses are the relative errors in

millionths, and B is in a.u.)

B+ B

1s2 1s2 1s2p
 1 1s22s2 1s22s 1s22s 1s22p0 1s22p

 1 1s22p
 1

B (a.u.) 1s22s2 2s2p
 1 2p

 13d
 2 3d

 24f
 3 2p

 1 2p02p
 1 2p

 13d
 2 2p

 13d
 2 3d

 24f
 3 3d

 24f
 35f

 4

0.0 0.00(0.0) 0.15(6.4) 0.06(2.8) 0.10(6.7) 0.11(4.5) 0.10(4.0) 0.18(7.4) 0.07(2.7) 0.14(6.0) 0.14(9.1)

0.1  0.00(0.0) 0.25(10) 0.17(7.2) 0.29(19) 0.20(8.3) 0.17(7.1) 0.43(18) 0.23(9.4) 0.38(16) 0.21(13)

0.2  0.00(0.2) 0.37(15) 0.23(9.6) 0.20(12) 0.49(20) 0.33(13) 0.40(16) 0.20(8.1) 0.23(9.6) 0.19(12)

0.5 0.01(0.4) 0.11(4.6) 0.10(4.2) 0.17(10) 0.17(7.0) 0.22(8.9) 0.13(5.2) 0.19(7.5) 0.15(6.2) 0.14(8.1)

1 0.04(1.8) 0.05(2.1) 0.15(6.1) 0.14(7.8) 0.12(5.0) 0.18(7.1) 0.08(3.3) 0.22(8.8) 0.17(6.8) 0.13(7.0)

2 0.10(4.4) 0.07(2.7) 0.19(7.3) 0.13(6.6) 0.25(10) 0.18(6.8) 0.10(3.7) 0.23(8.8) 0.21(7.9) 0.14(7.1)

5 0.19(10) 0.13(5.1) 0.34(13) 0.15(6.1) 0.23(11) 0.24(9.1) 0.16(5.8) 0.26(9.4) 0.35(13) 0.29(12)

10 0.11(8.7) 0.13(4.9) 0.41(15) 0.18(6.1) 0.21(13) 0.21(7.9) 0.28(10) 0.22(8.0) 0.47(17) 0.21(7.2)

20 0.10(47) 0.19(8.5) 0.56(22) 0.20(5.5) 0.37(135) 0.21(8.8) 0.33(13) 0.33(13) 0.68(26) 0.29(7.8)

50 0.20(4.0) 0.51(77) 0.86(81) 0.46(9.3) 0.89(21) 0.33(41) 0.76(69) 0.74(66) 0.97(74) 0.61(12)

100 0.08(0.5) 0.42(15) 0.67(29) 0.58(9.1) 0.88(6.9) 2.15(79) 1.19(53) 0.72(32) 0.82(42) 0.80(12)

200 0.03(0.1) 0.02(0.2) 0.67(6.6) 0.77(9.3) 0.78(2.5)  2.84(26)  0.58(5.8) 0.48(4.8) 0.93(9.6) 1.11(13)

500  0.06(0.1)  0.27(0.7) 1.12(3.1) 1.18(10) 0.84(1.0) 27.7(74) 23.4(64) 0.62(1.7) 1.50(4.2) 1.59(13)

1000  0.11(0.1) 5.78(6.9) 1.47(1.8) 1.45(9.8)  0.36(0.2)  63.1(75)  63.6(77) 2.48(3.0) 2.10(2.6) 2.04(13)

2000  0.52(0.1)  25.9(14) 1.99(1.1) 1.69(9.0) 0.36(0.1) 0.34(0.2) 0.94(0.5)  13.3(7.5) 2.82(1.6) 2.80(14)

MAE 0.10(5.2) 2.29(12) 0.60(14) 0.51(9.1) 0.42(16) 6.55(25) 6.17(23) 1.35(13) 0.80(16) 0.71(11)

aReference values used to deduce basis set errors are from Ref. 4. For the 1s22s2 state of the B+ ion and the 1s22s22p
 1 state of the B atom, reference values are from our own

calculation by using very large basis sets including multiple sequences.23 See text for details.

TABLE VII. Basis set errors for the C atom in B fields.a (Absolute errors are in mH, numbers in parentheses are

the relative errors in millionths, and B is in a.u.)

1s22s2 1s22s 1s22s 1s22p02p
 1 1s22p

 13d
 2 1s22p02p

 1 1s2p
 13d

 2

B (a.u.) 2p02p
 1 2p02p

 12p1 2p02p
 13d

 2 3d
 24f

 3 4f
 35f

 4 4f
 35f

 4 4f
 35g

 46h
 5

0 0.35(9.4) 0.04(1.2) 0.35(9.5) 0.18(5.0) 0.22(6.1) 0.21(8.7) 0.33(14)

0.1 0.50(13) 0.18(4.8) 0.55(15) 0.38(10) 0.34(9.5) 0.20(8.0) 0.48(20)

0.2 0.77(20) 0.06(1.6) 0.81(21) 0.16(4.5) 0.31(8.5) 0.18(7.2) 0.41(17)

0.5 0.56(15) 0.32(8.4) 0.66(17) 0.32(8.5) 0.32(8.7) 0.37(14) 0.38(15)

1 0.41(11) 0.38(9.8) 0.38(9.6) 0.32(8.4) 0.30(8.0) 0.42(15) 0.37(14)

2 0.54(14) 0.40(10) 0.38(9.4) 0.26(6.5) 0.40(10) 0.49(16) 0.38(13)

5 0.89(25) 0.46(12) 0.64(15) 0.39(9.3) 0.45(11) 1.36(38) 0.62(18)

10 0.56(18) 0.56(16) 0.43(9.9) 0.24(5.5) 0.73(16) 0.52(12) 0.60(14)

20 0.28(14) 0.18(7.1) 0.43(9.9) 0.46(10) 1.08(24) 0.60(12) 0.61(12)

50 1.12(52) 0.68(48) 1.02(31) 0.95(26) 1.27(34) 1.07(15) 1.39(19)

100 1.27(12) 0.96(10) 0.95(199) 0.70(79) 1.63(143) 1.22(14) 1.51(16)

200 1.29(4.6) 1.27(4.9) 1.25(19) 5.71(94) 1.73(30) 3.68(32) 2.08(17)

500 2.22(2.7) 2.15(2.7) 1.84(5.8) 3.25(11) 2.37(7.9) 3.53(22) 3.11(18)

1000 2.23(1.2) 2.12(1.2) 1.77(2.3) 0.72(1.0) 3.15(4.2)  3.52(17) 3.29(15)

2000 1.14(0.3) 1.85(0.5) 1.54(0.9) 0.90(0.5) 4.89(2.9) . . . b 4.32(16)

MAE 0.94(14) 0.78(9.3) 0.87(25) 1.00(19) 1.28(22) 1.24(16) 1.33(16)

aReference values used to deduce basis set errors are from Ref. 4.
bConvergence was not reached.

MAEs for each atom also vary considerably, but the rel-

ative errors for each atom are always a few to 25 parts

in a million, again suggesting that our new basis set con-

struction provides relatively uniform accuracy for different

atoms.

We did not find enough benchmarked energies in the lit-

erature for atoms with Z ≥ 7 in an arbitrary B field to provide

a meaningful test, hence those atoms are not included in this

study, nor did we test our newly constructed basis sets for

molecules because our current code can only do single-center

systems, i.e., atoms.

IV. SUMMARY AND CONCLUSIONS

AGTO basis functions are well adapted to the treatment

of atoms and molecules in arbitrarily strong magnetic fields.15

But the complexity and high cardinality of existing AGTO

sets has impeded their use in such calculations. This criticism
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is valid for our earlier scheme,23 even though it provided the

substantial advantage of a fixed, prescribed basis set rather

than case-by-case optimization. The present work represents

a significant technical advance based upon detailed physical

analysis and extensive numerical exploration. The combina-

tion enables establishment of a few key principles to guide

basis set construction. Those principles are as follows: (1) The

more diffuse the function (smaller exponents), the larger the

asphericity (relative difference between the transverse and lon-

gitudinal exponents of the basis function), with the limit of

B/4 for the most diffuse functions, which is actually a Lan-

dau orbital; (2) more densely spaced functions are put in the

range of exponents across which asphericities change most

rapidly; (3) when more than one atomic shell is occupied by

electrons for a single kind of orbital, a second sequence of

basis functions is required, but the second sequence can be

limited to the range over which asphericities change rapidly,

e.g., [0.03B, 0.225B]; (4) the interaction of a 1s electron

with other electrons, or the interaction between two elec-

trons when the 1s orbital is doubly occupied, can slightly

reduce the asphericity of the tight basis functions in the basis

set.

With these guidelines, we first investigated, in detail,

the hydrogen iso-electronic sequence in an arbitrary B field.

Exploration of the transverse exponent parameter space {αj}
with full numerical optimization leads to fitting the results

with a newly designed expression which takes into account

the orbital quantum numbers. By fine tuning the constants in

the expression, we obtained Eqs. (10)–(15). The residual basis

error from this newly constructed AGTO basis sets is no more

than a few µhartrees, while the relative error is only a few

millionths.

For light multiple-electron atoms and ions, we further

considered the strong electron-electron repulsion at the vicin-

ity of nucleus, the aforementioned point (4), and slightly

modified the basis sets of single-electron systems, leading to

Eqs. (16) and (17), which depend on orbital quantum num-

bers and electron occupation numbers, as well as on the B

field strength and nuclear charge Z. If more than one shell

of a kind of orbital is occupied, we find it necessary to

supplement the main sequence with a second basis function

sequence in the exponent range of rapidly changing aspheric-

ity of primitives, Eqs. (18). While absolute basis set errors

vary noticeably, from a few hundredths to a few of mH,

the relative errors are similar for different atoms and ions

in a wide range of B field strengths, indicating that our cur-

rently constructed basis sets have satisfactorily near-uniform

accuracy.

We have not studied contraction of the newly constructed

basis primitives but believe it could be done without any signif-

icant difficulty. Contracting primitives can reduce the number

of basis functions, a desirable step for correlated wavefunction

calculations and one which can be helpful in DFT calculations.

Without contraction, the residual basis set errors in the newly

constructed basis sets are two to three orders of magnitude

smaller than the electron correlation energies in the atomic and

ionic systems investigated here. Hence our basis sets should

be sufficiently accurate for correlated wavefunction or DFT

calculations.

SUPPLEMENTARY MATERIAL

See supplementary material for (under GPL) our computer

code (written in C) which generated all the AGTO basis sets

used in this work. A few examples are also included. They are

also available to download from www.qtp.ufl.edu/ofdft.
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