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ABSTRACT: Swift discovery of spin-crossover materials for their potential
application in electronic and quantum devices requires techniques that enable
efficient identification of suitable candidates. To this end, we screened the
Cambridge Structural Database to develop a specialized database of 1439 materials
and computed spin-switching energies from density functional theory for each
material. The database was used to train an equivariant graph convolution neural
network to predict the magnitude of the spin-conversion energy. A test mean
absolute error was 360 meV. For candidate identification, we equipped the system
with a relevance-based classifier. This approach leads to a nearly 4-fold

Graph Network

# -+ CRD

improvement in identifying potential spin-crossover systems of interest as

compared to conventional high-throughput screening.

B INTRODUCTION

First transition row 3d* to 3d” metal complexes may exhibit
reversible switching from a low-spin to a high-spin state.””
Unlike high-spin molecular magnets, for these types of
complexes, two dominant effects compete during the spin
conversion, namely, the electronic occupation of the d orbitals
according to Hund’s rule, and the filling of the t,, lowest
energy level. These mutually exclusive contributions result in
two possible ground states that are directly dependent on the
strength of the ligand field. More specifically, for strong ligand
fields, the electrons preferably occupy the t,, orbitals, leading
to a low-spin state. For weak ligand fields, the electrons occupy
the maximum number of orbitals, according to Hund’s rule,
which results in a high-spin state. Interestingly, whenever the
strength of the ligand field and the electron pairing energy
share nearly the same order of magnitude, a small external
perturbation can overcome either effect and switch a metal
complex to a low- or high-spin state.” The attractive feature of
such reversible switching is its potential use in display devices,
mechanical actuators, high-density memory storage, optoelec-
tronics, sensing devices, or spintronics.4_

From a computational perspective, these materials pose a
challenge even to high-level wave function theories.'”~>* There
are many considerations, one of which is that the accuracy
scale of these high-level theories is comparable to the typical
energy difference between the two spin states of approximately
10 kJ mol™, or about 100 meV. This difference, in turn, is
close to the accuracy scale of the electronic structure method
of choice.”**°

From the synthesis perspective, the vast combinatorial
chemical space engendered by the metallic core, ligands,
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coordination number, functional groups, size of the complex,
strength of the intra- and intermolecular interactions, etc.,
poses a major challenge to efficient large-scale screening for the
selection of promising materials suitable for specific
applications.”” "

Development of machine learning strategies for elucidating
the intricacies of the relationships between this vast material
space and the spin-splitting energy is an active area of
research.’’ ~** Reference 34 highlights the complexity of such
endeavors. Additionally, because of limited reports of
experimental spin-crossover pursuits that ended up not finding
spin-switching materials, it is arguable that the diversity of
materials and availability of experimental data limits the extent
to which general trends can be identified and applied.*>”® As a
result, a compromise takes precedence, namely, to restrict data
to experimental observations’’ or use results from high-
throughput computations.”*® Refined learning from experi-
ments may be achieved by considering only specific families of
materials of interest, at the cost of losing transferability to
complexes of varying nature and of not being able to account
for unsuccessful candidate materials. Conversely, high-
throughput calculations of the spin-crossover energy with, for
example, the Kohn—Sham density functional theory, are
feasible. No general protocol exists, however, to select an
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adequate exchange-correlation density functional approxima-
tion, a choice crucial to the accuracy of the results.”” **

Database screening is one of the more popular approaches
for culling material candidates. With numerous samples, each
of which involves large complicated molecules, machine
learning techniques such as decision trees, kernel-based
algorithms, or artificial neural networks, can aid in uncovering
structure—property relationships, thereby accelerating the
identification of candidates with promising physical-chemical
properties.””~** Among these choices, graph neural networks
provide a feasible architecture for encoding relevant physical
and chemical descriptors for molecule-based and atom-based
applications.”” > These advantages make graph models of
particular interest for the description of spin-crossover
materials.

This work thus is focused on assessing the performance of a
specific type of graph model that is capable of learning the
importance of symmetry representations,”” >° namely, an
equivariant graph convolutional neural network.’**” The task
is the prediction of the sometimes elusive energy difference
between the accessible spin states for a modest set of transition
metal complexes. We show that such a network, with only 915
trainable parameters, can learn the relationship between the
structure and the spin-state switching behavior for our data set.
We provide evidence that the model achieves this ability by
learning the importance of the coordination shells surrounding
the metallic core. As proof of concept that the network
provides an efficient instrument for candidate screening, and to
demonstrate its usefulness, we screened a much larger data set
of 11,356 transition metal complexes with between 13 and 280
atoms per molecule to identify 861 systems as promising
candidates.

B METHODOLOGY

We first describe the selection criteria for the material
constituents of the data set obtained from the Cambridge
Structural Database.”® The screening strategy was imple-
mented by identifying molecular structures containing Cr, Mn,
Fe, or Co metal centers and excluding all materials with more
than 50 non-hydrogen atoms in the asymmetric unit. Since a
nontrivial number of the crystallographic files deposited to this
database include disordered structures, missing hydrogen
atoms, and unphysical moieties, among other imperfect
systems, we examined and corrected individually the files to
guarantee the integrity of the crystalline structures. Then the
fundamental properties of the resulting 1439 materials were
computed via Kohn—Sham density functional calculations that
used the r*SCAN exchange-correlation functional approxima-
tion”” since it has been shown to provide reasonable energy
differences for metal complexes.”” The electronic structure
calculations used Vasp 6.2,°" with the set of projector
augmented wave potentials for the outermost electrons as
valence states, except for the transition metals, which were
treated with the potentials that include the 4s semicore states
as valence states. We set the plane wave kinetic energy cutoff to
520 eV and used an auxiliary support grid for the evaluation of
the augmentation charges. The precision tolerance labeled as
accurate was selected, nonspherical corrections were activated,
and 107° and 107 eV were used as thresholds for the
electronic steps and the Gaussian smearing width, respectively.
All geometries were optimized with the conjugate gradient
algorithm until force magnitudes were smaller than 1072 eV
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A~!. The rest of the computational parameters were left at
default values.

With the purpose of targeting materials of interest for
eventual technological applications such as were mentioned
already,4_16’32’34’62_66 it is essential that the spin transition in
our study be characterized uniquely for the structure
relaxations and the crossover energy of a candidate system of
our interest. We required that the relevant spin-switching
complexes satisfy three conditions, namely,

(1) the system ground state is low-spin,
(2) the spin and energy ordering of the states are consistent,
i.e., the first excited state is high-spin, and
(3) the maximum low-spin to high-spin conversion energy
per molecule is bounded to 500 meV, or nearly 4000
-1
cm

The third criterion is generous, considering the error
magnitudes commonly associated with electronic structure
calculations for these materials.®” The resulting distribution of
the crystalline spin transition energies is depicted in Figure 1
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Figure 1. Distribution of the calculated crystalline spin-crossover
energies per molecule for the 1439 species in the data set. Counts for
each interval are depicted for (a) 316 Cr-, (b) 374 Mn-, (c) 372 Fe-,
and (d) 377 Co-containing complexes, and (e) the data set as a
whole. The shaded area illustrates the choice of the region of interest
for spin-state switching candidates.

for 316, 374, 372, and 377 complexes with a Cr, Mn, Fe, and
Co center, respectively. The data set has a mean spin-state
switching energy of 538.5 meV and a standard deviation of
1.68 eV. The full list of entries is included in Table S1. The
aforementioned energy differences are for crystalline compu-
tations that include crystal packing effects and counterions
known for being crucial for proper thermodynamic description
of these systems,”® but to keep with standard spin-crossover
analysis, for the eventual learning step, we isolated the
molecular unit for each material based on the reported
experimental coordinates, and assigned —200 < AEy; < 500
meV as the range of interest for spin-state switching
candidates. Here, AEy; is the spin-crossover energy for the
metal complexes with total spin S increments given by
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152 for3d*ions (Cr** and Mn*")
% N % for 3d° ions (Mn2+ and Fe3+)
5= 0> 2 for3d®ions (Fe’* and Co®")
% - % for 3d’ ion (Co*™") 1)

The transition profile therefore can be represented as the total
energy difference AEy; = Eyg — Epg, where E; and Eyg are the
total energy per molecule for the low-spin and high-spin states,
respectively.

Regarding the choices for the machine learning model, we
used the equivariant graph neural network as designed and
implemented by Satorras, Hoogeboomand, and Welling,Sﬁ’57
but with a modified attention layer, ¢, without coordinate
embeddings, described below. This scheme considers the
system of interest to be represented as a graph G =V + &,
with the set of nodes v; € V and the set of edges ¢, ; € &. We

follow those authors’ notation for clarity. Specifically for our
purposes, for each system with N atoms, the feature node

embeddings h € R™*! list the atomic number z, whereas

x € RV correspond to the 3D Cartesian coordinates. Both h
and x are associated with each of the graph nodes. We
emphasize that, by design, this architecture preserves
equivariance to translations and rotations on x, and
equivariance to permutations on the set V. See Appendix A
of ref 56 for proof.

To distinguish differences across distinct chemical functional

groups, we also included the set of node attributes v € RV*!

and edge attributes e € [RSXI, that list the oxidation state for
each node and bond order for each edge, respectively.”” In
particular, the oxidation state for each atom was determined by
pairwise comparison of the electronegativity between its
heteronuclear bonds, whereas the bond order is the sum of
the products of the corresponding atomic orbital coefficients
over all the occupied bands, rounded to its closest integer. The
data set with these descriptors is available from the authors
upon request. We restricted the model to a single convolu-
tional layer to prevent overfitting due to the limited size of our
data set. As a result, the model has only 915 learnable
parameters. Furthermore, we used the nonlinear activation
function known as tanhshrink, and trained the network for a
maximum of 10* epochs with an early stop during validation.”
The parameters were optimized with the adaptive moment
estimation in stochastic gradient descent,”" with a weight decay
of 1079, considering an initial learning rate of 1072, and
reduced on plateaus during training using a threshold of 1
meV.”” Lastly, the edge attention @;; is defined as

a;; = ¢u(hi’ hjllei‘j) )

where ¢) € R® — R'is a weight matrix applied to every edge
for the pair of nodes i, j, and || denotes the concatenation
operation between h;, h;, and e;;.

To establish a baseline model, we chose the gradient-
boosting decision tree from the scikit-learn library.”” The
optimized hyperparameters using a grid search resulted in a
learning rate of 7 X 107> using the Huber loss for a total
number of 350 estimators.”* The tree consists of a maximum
depth of 64 estimators for a maximum splitting feature equal to
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the square root of the number of features. We also used a
minimum of four samples at a leaf node for a minimum of 52
samples required to split an internal node. The model is
available from the authors upon request.

For both the graph network and baseline model, the whole
data set was divided into 90% training fraction and 10%
holdout fraction for testing. The 90% training set was used to
optimize the hyperparameters using grid search in a 10-fold
cross-validation without overlapping samples to ensure that
each element is tested once. The training and testing splittings
were identical for the two models. The behavior of the loss as a
function of epochs for the neural network is depicted in Figure
2a. The training loss clearly decreases as the number of epochs
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Figure 2. (a) Behavior of the mean signed error loss with a
summation reduction as a function of epochs for the training and
testing sets. (b) Correlation between the reference and predicted
values by using the equivariant graph network for both the testing and
training sets. The measures of central tendency are the root-mean-
square error (RMSE), mean signed error (MSE), and mean absolute
error (MAE). R? is the coefficient of determination.

increases. The testing loss, on the other hand, decreases during
the first 70 epochs and then increases slightly through the
following 130 epochs, followed by a second decrease as the
number of epochs increases. After nearly 2000 epochs, the
testing loss increases marginally and plateaus, showing early
signs of overfitting. It is important to note that this is a
retrospective analysis because, as stated previously, we did not
implement an early stop for the final model. However,
considering that the mean test loss increase with respect to
epoch 2000 is on the order of 107> meV, the overfit can be
safely disregarded.

B RESULTS AND DISCUSSION

We begin with the evaluation of the predictive capability of the
graph model. Comparisons for the agreement between the
reference and predicted AEy; values are reported in Figure 2b
for the testing set. The training sample comparison is given in
the inset. For statistical purposes, we used the interquartile
range between the first and third quartile to characterize the
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spread and variability of the predicted AEyy; for identification
of outliers. The Cr-containing complexes show a total of four
outliers, namely, LORBUQ, CYCPCR, ALUVIN, and
CTNSCR; three for the Mn molecules, CAXTIH, UDOKON,
and VEKFIA; three for Fe complexes, FIXSAH, HEYNEE, and
CITCUD; and two for Co molecules, WIYJEV, and SETJEL
Most of the molecules containing Mn, Fe, and Co correspond
to octahedral complexes and metallocenes. Putting that aside,
although Figure 2a shows early signs of overfitting, we see
reasonable agreement between the testing and training
predictions reported in Figure 2b, indicating that the effects
are minimal.

From an implementation perspective, our goals include
learning chemically relevant features and understanding how
the neural network makes the predictions. We expect the
modified attention layer in eq 2 to be able to provide the
means for distinguishing molecular sites that are more strongly
associated with the spin transition from other sites.

With that in mind, we sampled a series of progressively more
distant coordination shells surrounding the transition metal
center, under the consideration that the largest number of
admissible coordination shells must not exceed the number of
neighboring atoms in a complex. In each case, subgraphs were
built that included the nodes and edges of all the molecules in
that set of shells. Figure 3 shows that both RMSE and R*
converge rapidly as the number of coordination shells
increases. Results remain nearly unchanged after five shells.
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Figure 3. Behavior of the RMSE and R? as a function of graphs built
with nodes and edges for sequentially increased numbers of
coordination shell approximations. Two reference types were chosen,
namely, coordination shells starting at the metallic center or at
random atoms of the molecule. For both cases, the reference atom
was kept fixed once it was picked.

A distinctly different trend is observed when a random atom
is used as the coordination shell center. For that choice, Figure
3 shows that the mean errors roughly double, as does the
number of coordination shells needed to achieve the same
quality results as in the metal-centered case. The R* values also
deteriorate. It must be noted, however, that since the data set
includes medium-sized molecules, using 10 coordination shells
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essentially covers the whole molecule for most of the samples.
The contrasting tendencies for the two approaches nonetheless
show that the network learned the local importance of the
transition metal core dominance for the spin transition.

In addition, examining the characteristics of the element
composition of the complex core may provide insights into the
chemical features that the network learned to determine AEy;.
For that, we focused our attention on the first five coordination
shells that show a more rapidly varying RMSE in Figure 3. For
each progressively larger shell, we counted the total number of
distinct elements and computed their cumulative summation,
we then calculated the relative composition per element by
dividing the element count by the total number of atoms in
that shell. Figure 4 shows the results for such analysis, with

T T
(a) AEg, < —200 meV

BRES

T T T
(b) =200 < AEy, < 500 meV

(c) A‘EHL > 500 ‘me\/ ‘ ‘ \
5 ; :

Coordination shell
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Other

2o o =
= o o o
T

Relative composition

@
)

Figure 4. Relative compositions for carbon, nitrogen, oxygen,
hydrogen, and other atoms, such as B, F, P, S, Cl, and I, as a
function of the number of coordination shells centered on the
transition metal for the species showing (a) high-spin states with
AEy; < —200 meV, (b) spin-switching candidates, with —200 <
AEy; < 500 meV, and (c) low-spin states AEy; > SO0 meV.

particular emphasis on the hydrogen, carbon, nitrogen, and
oxygen atoms that represent the largest compositions across all
coordination shells.

For the purposes of the following discussion, we will omit
the Hydrogen atoms because their relative composition
increases rapidly with the number of coordination shells and
because they do not provide meaningful information regarding
ligand composition. The element decomposition for the
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species identified as high-spin states is shown in Figure 4a.
Here we observe that the O atom is most prominent, followed
by N, and a noticeable presence of other atoms like B, F, P, S,
Cl, or I. This composition agrees with the spectrochemical
series,”>~’? where the weak field of ions such as 0¥, I, Br,
CI", NO3, or F~ results in high-spin states.

For the species identified as spin-crossover candidates
depicted in Figure 4b, on the other hand, we see nearly 3
times fewer weak-field atoms and a large presence of N and O
atoms where N is the slightly more prominent element, as
opposed to the lesser population of C atoms that increases for
larger shell counts. These findings agree with the element
composition of the typical ligands used to synthesize these
metal complexes,””**™*° whereas the C atoms that appear in
the first coordination shell can be attributed to the presence of
metallocenes.

Regarding the low-spin species, Figure 4c shows that the C
atoms account for roughly 75% of the total composition for the
first coordination shell, followed by N, and a nearly equal
composition of the O and other atoms that, however, becomes
more populated by the O atoms for larger coordination shells.
Once again, these findings agree with the spectrochemical
series where the strong fields of ions such as CH;CN, Cp,
CN7, and CO produce low-spin states.

The trends observed for N and O, for both spin-switching
and nonspin-switching complexes depicted in Figure 4, remain
nearly unchanged for a larger number of coordination shells,
whereas the number of C atoms increases rapidly as we sample
a larger subspace of the ligand structure.

The motivation for using coordination shells is to provide
qualitative insight into the effects of ligand field stabilization.
At the same time, the spin transitions of interest are modulated
by a delicate balance between the metal ion properties and the
strength of the ligand field,>>*%%=%% in which vibrational
contributions to the free energy must be taken into account for
detailed representation of thermochemical behavior. Those
considerations are well beyond the scope of the present work.
Here we focus solely on using the energy difference for
elucidating tendencies.

Because the motivation for constructing and training the
network is its subsequent use to search for potential spin-
crossover complexes, we needed to convert the regression into
a classification model. Therefore, establishing the precision-
recall trade-off becomes relevant. The precision measures the
correctness of the model for actual spin-crossover predictions,
whereas the recall is associated with how many relevant
complexes the network recovers. We used the method
proposed by Torgo and Ribeiro’* to turn the continuous
regression into a classification process. To do so, we must
define the importance for the target class, termed relevance,
through the use of a continuous relevance function scale that
maps the original continuous domain to the discrete target
class. Recall that the energy interval of interest, defined
generously, is —200 < AEy; < 500 meV. A basic approach is
to define the relevance f(Y) for a given AE;; by means of two
sigmoid functions, one for the lower and another for the upper
limit, expressed by

A = .

1 + exp[—s-(Y — ¢)] (3)
where ¢ is the center of the sigmoid and defines the threshold
where larger values of the target variable Y start to become
more relevant. By construction, both thresholds have a
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relevance equal to 1/2, as depicted in Figure Sa. The
remaining variable s is related to the slope of the sigmoid
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Figure S. Classification of molecular metal complexes as potential
candidates for spin crossover (a) based on the energy difference
between the high-spin and low-spin states and (b) the precision-recall
curve for the testing set as a function of the choice of relevance for the
graph neural network and the gradient-boosting baseline method.
Identical data splittings were used for both methodologies.

functions. It is fixed by the energy difference resolution, which
we chose at 1 meV. Figure 5a shows clearly how the relevance
is larger for energy differences in between the interval of
interest and tends to zero otherwise.

Having stipulated the mapping between AEy; and its
relevance, the precision-recall curve, depicted in Figure Sb, is
generated readily by determining the combinations between
the true and false classes with positive and negative outcomes.
Once more, we used the testing set for our analysis. Since we
are interested in minimizing the number of redundant
calculations, the optimum value for the relevance f(Y)
threshold is such that it maximizes the precision while
retaining a reasonable recall. This choice is depicted with the
dot in Figure Sb, which corresponds to a precision of nearly
80% and a recall of roughly 35% for a relevance of roughly
0.90. That, in turn, accounts for a difference of 68 meV with
respect to the original lower and upper limits, resulting in the
tighter —132 < AEy; < 432 meV interval and a false positive
rate of just 1.7%.

In addition, use of Bayes’ theorem shows a 56% probability
for finding a predicted AEy; that is within the range of interest.
That corresponds to a 4-fold increase with respect to the 13%
probability for random picking that pertains to the 167 species
that meet the criterion in the training set. See the lower limit in
Figure Sb for the full recall with a relevance of zero and the
Supporting Information for details on the use of Bayes’
theorem. For the sake of completeness, this same analysis can
be extended to the opposite case, in which we measure the
ability of the system to disregard molecules. We obtained a
refusal probability of x94% that corresponds to an
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approximate 17-fold reduction in the number of redundant
Kohn—Sham density functional calculations, as obtained from
the complement of this refusal probability, 1/(6 X 1072).
These two probabilities show that the graph model increases
the chances for finding materials of interest substantially while
rejecting unsuitable complexes with confidence.

The simpler gradient-boosting baseline model results shown
in Figure Sb demonstrate clearly different, inferior performance
for the same testing set. The lower transferability of the
baseline model becomes clear, with an average precision of
approximately 40%. In a broader sense, Figure 5b unveils the
effectiveness of using comparatively simple graph neural
networks.

To test our graph neural network system on a much larger
variety of mononuclear transition metal complexes, we
collected a total of 11,356 such molecules from the Cambridge
Structural Database spanning the range 13 < Ny < 280,
where Ny is the number of atoms per molecule, and used
the graph neural network to predict AEy;. The data are
included in Table S2. The resulting distributions of the spin-
state energy difference are shown in Figure 6a—d for molecules

T (b) Mn (1768)

-2 0 2 4 -2 0 2 4
AEHL [e\/]
2000 \ \
—200 < AEy;, < 500 meV
1500
£ 1000
o
500
0
0.0 0.2 0.4 0.6 0.8 1.0
Relevance

Figure 6. Predicted spin-crossover energies for mononuclear
complexes containing (a) Cr, (b) Mn, (c) Fe, and (d) Co metal
centers obtained from the Cambridge Structural Database, and (e)
the total number of plausible candidates retrieved for increasingly
tightened choices of relevance.

with Cr, Mn, Fe, and Co centers, respectively. Additionally, in
Figure 6e we report the number of potential spin-switching
species for the different metallic centers and extend our
evaluation to the number of candidates retrieved as a function
of the relevance criteria.

There are two asymptotic conditions depicted in Figure Ge,
namely, a relevance equal to zero that essentially recovers all
entries in the data set and a relevance equal to one with the
opposite outcome. As a reminder, the boundary for the interval
—200 < AEy; < 500 meV by construction is located halfway
through. For that threshold, the classification results in 1301
species of interest. As stated previously, however, we may
increase the precision of the neural network by tightening the
relevance to, e.g, 0.9, and expect a decreasing recall because
the model is not a perfect classifier. As a result, the final
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population contains 1076 metal complexes with the potential
to exhibit spin crossover, with the individual counts reported in
Figure 6e. Considering that the test precision shown in Figure
S is 80% for this value of relevance, approximately 861 of the
1076 materials predicted by our model are expected to have a
AEy;; well within the range of interest, thus vastly accelerating
the identification of material candidates. Interestingly, most of
the recovered candidates are Fe-based molecules, independent
of the relevance criteria. This disproportion is somewhat
expectable because 4,461 such molecules constitute nearly 39%
of the data set entries, as well as the majority with —1 < AEy;
< 1 eV. They are followed in prominence by the Mn-based
systems. These observations also fit well with the known
propensity of the Fe(Il) complexes to exhibit spin crossover
behavior, as compared to complexes with other relevant metal

. 82,95
ions.

B CONCLUDING REMARKS

On the basis of a data set of 1439 medium-sized transition
metal complexes extracted from the Cambridge Structural
Database, we have achieved a graph network model for
efficient screening of spin-state-conversion candidates. The
model succeeds by combining descriptors that retain chemi-
cally relevant molecular information with an equivariant graph
neural network and a subsequent classifier by relevance. Our
evaluation shows that use of the neural network approximately
quadruples the chances for finding metal complexes that might
exhibit spin crossover, while confidently rejecting unsuitable
molecules.

In this analysis, we assumed the spin-state conversion energy
interval —200 < AEy; < 500 meV to be a reasonable
compromise in view of the accuracy of the exchange-
correlation approximation used to equip the data set. The
assumption is of course debatable. The interval of interest
depends strongly on the choice of electronic structure method
for the computation of AEy; and the zero-point energy
corrections that were not included in our study. Our work,
however, is not focused on addressing refined electronic
structure calculations but rather on developing high-
throughput alternatives to alleviate the computing burdens
required for materials discovery. To this end, our graph model
exhibits a competitive ability to exclude unsuitable materials
that in turn results in approximately a 17-fold reduction of low-
productivity computations.
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