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Abstract State-of-the-art treatment of nuclei and electrons in nelteusesab
initio molecular dynamics for nuclear motion driven by Born-Ogpsmer forces
from the electrons. Almost universally, those forces ardeutated from density
functional theory in the Kohn-Sham form. The computaticr@dts of the conven-
tional KS implementation scale at least as the cube of thebeurof electrons.
This is a formidable barrier to complex system simulatiorith \wong MD runs on
department-scale machines, since the DFT force calcuoldtioinates the per step
cost. The difficulty arises from the explicit dependencehaf hon-interacting ki-
netic energy on the KS non-interacting orbitals. The coaliisg worsens with use
of explicitly orbital-dependent exchange-correlationdtionals are used. The alter-
native approach, use of DFT in its basic form, dates to TheR@mi-Dirac theory.
The challenge is to have sufficiently accurate orbital-egpressions for the KS
kinetic energy and exchange-correlation functionals. Weuss progress on these
tasks via constraint-based methods, with emphasis onafaveints since the Sept.
2010 “New Approaches to Many-Electron Theory” meeting.

1 Motivation: Modern Relevance of the Old | dea

Recent years have seen density functional theory (DFT)][&@r&rge as the dom-
inant theoretical framework for computing the electrorirasture of materials and
molecules. In our title, the “old idea” refers to the form ofD from the dawn
of quantum mechanics, Thomas-Fermi-Dirac (TFD) theoryl(}—The concep-
tual framework of TFD is direct manipulation of a functioradlthe electron num-
ber densityn(r), without explicit reference to wave functions (many-bodynon-
interacting). In most circumstances, TFD is so oversingaithat it does not provide
predictive treatment of materials properties. As a reshiét,pure DFT conceptual
framework of TFD largely has been supplanted by use of thenigpctions and
eigenvalues of the auxiliary Kohn-Sham (KS) system [11]th outset we must
make a case, therefore, for any new approaches to the old idea

A key example is the equation of state (EOS), which detersninany materials
properties crucial to both basic understanding and tecigical utilization. Often,
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the zero-temperature EOS and crystalline phase transiéilmmg it can be handled
quite accurately with modern DFT alone [12,13]. Beyond,taBambient and higher
temperatures, what is calledb initio MD (AIMD; see [14-18]) generally handles
the nuclear (or ionic) degrees of freedom well. In the Bopp@nheimer approxi-
mation, AIMD with DFT receives the electronic forces on theclei from a DFT
calculation done at each configuration of nuclei. Thus, oqeets AIMD to have
the advantage of explicit quantum mechanical treatmerti@gtectrons combined
with the essentially classical contributions of the nuclei

The computational cost problem comes from having a KS caticul atevery
MD step. Compared to the cost per conventional MD step, K8utations are
quite expensive (typically> 98% of the computational cost of each AIMD step)
and scale badly with system size. A seemingly unrelated$abat, because DFT is
rooted in existence theorems [1-3], computation requipgsaximate functionals
for the exchange (X) and correlation (C) contributions. éality, these two facts
are deeply intertwined as a challenge to DFT-AIMD as a bastdf materials re-
search. Somehow the accuracy and range of applicabilitgmimate functionals
must be balanced with control of computational cost (serwewf algorithms and
their performance in the chapter by Tzanov and Tuckerman).

The problem originates in the DFT variational minimizatiaa the KS decom-
position. That yields (details below) an eigenvalue probler the auxiliary KS
(non-interacting) many-Fermion system at the physicasitem(r) [11], to wit

hes[nlgi = &i¢i n(r)zzfi|¢i(r)|2- 1)

Here thef; are occupation number$, = 0,1,2 (for the non-spin-polarized case)
[19, 20]. Diagonalization implicit in the KS eigenvalue ptem is the computa-
tional bottleneck. Even with the simplest exchange-catieh (XC) functional (no
explicit orbital dependence), KS calculations scale imgigle no better thalg,
with Ne being total number of electrons. AIMD driven by KS DFT thenef also
scales aNg’ or worse per MD step

Unhappily for balancing cost and accuracy, much of the rgopergress on better
XC approximations worsens that scaling. Though the basit Eorems [1-3] do
not invoke the KS orbitals and eigenvalues, most effort yoola better XC func-
tionals involves DFT exact exchange. That has the same fsrin the Hartree-
Fock approximation but with the KS orbitals. Some represtirg references in-
clude [21-34]. All that is important here is that DFT exactlkange, whether by
itself or in so-called hybrid functionals (mixtures of ekaxchange and explicit
density functionals), adds an explicit orbital dependethe¢ worsens the KS cost
scaling, typically taN& or more [35].

The deep irony, of course, is that decomposition of the foretgal density func-
tional into non-interacting (KS) and remainder parts dags@quire explicit use of
the KS orbitals. In addition to defining the exact X energy givehg the density, the
KS orbitals yield the major part of the electronic kineticeegy (KE). That elimi-
nates the need for an explicit KE functioffdh]. But such an explicit functional was
precisely the essence of the “old idea” [4—10]. Pursuit efdld idea never entirely
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died out, but its modern use in AIMD seems to have begun wihirtiplementa-
tion of TF AIMD by Clerouin, Pollock and Zerah [36]. That warsepeded by the
formulation of a non-local KE functional by Cha, Alvarellos, and Tarazona [37]
and, a few years later, the AIMD-oriented functionals by \&and Teter [38] and
Smargiassi, Madden, and collaborators [39—41] and otinevetionsge.g.[42]. The
approach has come to be known as orbital-free DFT (OFDFdugh it might be
as insightful to call it one-orbital DFT.

In what follows, we summarize OFDFT basics and establishtiant, then dis-
cuss progress since the 2010 “New Approaches to Many-etettieory” (NAMET)
meeting, with a focus on priority issues for our researcly@m. This involves im-
provements in both orbital-free kinetic energy (OFKE) and &inctionals. Much
of our work is on orbital-free, free-energy density funotib approximations for
systems at non-zero temperature. A recent review is [43k M@t sometimes, par-
ticularly for T > OK calculations, the term “OFDFT” is used in the literatuce t
be synonymous with a Thomas-Fermi or Thomas-Fermi-von $&leker type KE
functional. One must be alert to this overly restrictivegesaAlso note that we do
not treat the embedding form of OF-DFT [44, 45]. The disiimictis important:
requirements on OF-KE embedding functionals differ suii&fy from those on
approximations for the KS KE functionals on which we work.

2 Basics
2.1 DFT

To be reasonably self-contained, we summarize basic DFoimspin-polarized
form. The spin-polarized extension is generally straigihtfird. The foundational
DFT theorems demonstrate the existence of a functionaleodiémsity alone,

&N =TI[n]+Uedn], 2

which is independent of the external potential on the ebasti(or “universal”). Its
contributions are the total KE and total Coulomb energypeetively. In combina-
tion with the external energex[n], it has the variational property

mnin{é”[n] + Eext[n|} = Eo[Nng] , (3)

whereEg and ng are the ground state total energy and density respectiaatly,
Jdrn(r) = Ne. For AIMD Eex[n] comes from the interaction with nuclei of charge
Zq Situated at siteRy,

Eexln] =~y Za [ or |rrl(2a| . (@)

(We use Hartree a.u. unless noted otherwise.) To approgid#iat] and make
the variational minimization feasible, KS considered arilary system of non-
interacting fermions with the same density as the physioal dhat system has
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eigenfunctions and density given by Eqgs. (1). From those cam define the KS KE
Ts and X energ\Ey, then rearrange the universal functional (2) as

&) = T[n] + En[n] + Ex[n] + {Ueeln] — En [n] — Ex[n] + T[] — Ts[n]}
= Ts[n] + En [n] + Ex[n] + E¢[n] . (5)

In order, the quantities are

n(ryn(ra)
/dr dr |r1—r2| , (6)

Ex[N] := (®s[n]|Vee| Ds[n]) — En[n] , (7)

T =5 Zf./dr D) /dr torb[N ®)

The KS Slater determinant &s[n; Veeis the electron-electron repulsion potential.
Observe that in KS-DFT the interacting part of the KIE;- Tg, is put into the
C functionalE; and thatTs[n] < T[n] by definition {s[n] is the minimum Fermion
expectation of th&ls KE for the specifiedh). Note also that in (8) we have dropped a
usually inconsequential surface term relative to the mamnglfar KS KE definition
in terms of the Laplacian of the orbitals.
The potential in the KS equation (1) is

and

VKs = VH JFVextJFch

B n(r2) 6EXC
VH—/dr2|r_r2‘ s Vext = Z”_Ra‘ n (9)

In the foregoing expressions, the dependence of the deansityf the total energy
upon the nuclear coordinat¢R} has been suppressed. With that in mind, the elec-
tronic force on a given nucleus is0r,, (& + Eext+ Eion—ion). HereEion—ion({R}) is

the inter-nuclear repulsion energy.

2.2 Orbital-free Functional Framework

Until exact and hybrid X functionals (the third rung of theréav-Schmidt XC
functional ladder [26]) became popular, approximate XCcfiomals used in mate-
rials simulations were orbital-free, though not usuallydied as such. Even now,
the most widely used XC functionals, PBE [46] and the localsity approximation
(LDA) [47], are orbital-free. Generically they are

Eyc = /dr ec[n(r),dn,...]. (10)

Dependence of XC approximations upon density derivatiegeibd gradients is not
a focus here. See, however, recent work by Caatad. [48].
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Assuming the use of an OFXC functional, only has explicit orbital depen-
dence. Thus, we seek OF approximations of the form

Ts[n) = ./dr ts[n(r),On,...], (11)

where the exact result would match Eq. 8)n] = torp[n]. A critical reader may
wonder, why not us& [n] rather tharTs[n]? At least two responses are relevant. All
of the roughly 40 years of effort on better XC functionals basn in the KS context.
Indeed, the exadEx [n] in DFT is definedin terms of the KS decomposition, hence
so isEc. Another motivation is the Coulomb virial theorefy[ng] = —T[ng]. This
suggests that finding a useful approximation for the Tyl] might be tantamount
to finding an approximation for the universal functio#gh| [49].

With OF approximations foils and Exc, variation with respect to the density
yields the OF Euler-Lagrange equation

5Ts 6EH 6EXC
on + on + on
Herep is the electron chemical potential.

oT.
+ Vext = 57: +Vks=U. (12)

2.3 Single-point Approximate KE Functionals
The simplest KE approximation would seem to be Thomas-Eermi
To[n] &~ Tre[n] := %(3712)2/3/dr n/3(r) = cT,:/dr n3(r).  (13)

But this is not a good starting approximation, despite itdespread use as such.
The point is that the von Weiasker KE [8],

_ 1o |On(r)?
Tw(n] = 8/dr e (14)
is both a lower bound to the KS KE [50-53],
Tw[n] < Tg[n] , (15)

and is exact for one electron and for a two-electron sin@ee immediately sees
thatTrr cannot be correct in the tail region of a system as simple aarg/+alectron
atom, since the ionization potential theorem [54] shows tdibto be one-electron-
like. These physical arguments lead to adoption of the Ratrti decomposition

Ts[n] =Tw(n[+Te[n] , Tg[n] >0. (16)

Non-negativity of the Pauli terfy is a rigorous requirement [55-59], as is the more
demanding requirement on the corresponding potential,
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. OTy [n]
—on(r)

Vg ! >0, vr. a7)

By invoking this pair of requirements, we have made two cesiegarding ap-
proximate functional development. The first is to work on-@oint functionals,
generically.Z[n] = [dr f[n,On...] rather than two-point functionals. A two-point
or non-local OF-KE functional has the generic form

ThonlodN] :/dfldfz M (r1)K[n(ry),n(rz),ra,rzn’(r2) (18)

with A 4+ y=8/3 for a dimensionless kernkl The kernel typically is constrained to
recovery of the homogeneous electron gas response. Commtorim such as (18)
is used in conjunction witATg + Tyw. An accessible motivation for the non-local
part is in [60]. Essentially the goal is to generate atomid arolecular electronic
shell effects in the density and corresponding Friedelllagicins in solids. While
there is clear progress on this formulation, there are problwhich we prefer to
sidestep. For one, different approximate kernels so fanaegled for semiconduc-
tors, covalent systems, and metals [61-63]. The univéysafliDFT thus is lost.
The six-dimensional form of the kernels also sacrifices sofrtee OFDFT com-
putational cost advantage.§.remarks in [64]). Conceptually, the linear response
formulation implicitly requires a reference uniform ddgsan ill-defined quantity
for any un-enclosed system (an atom or molecule). And, taegenon-linear in-
stabilities with the simplest kernels (called densityepdndent) [65], which forces
use of more intricate, density-dependent kernels.

Secondly, we eschew heavily parametrized functionals aiuith the XC func-
tional, no constructive routee(g.perturbation expansion) to approximate KE func-
tionals is provided in the proofs of the DFT theorems [1-3, &h option to sur-
mount that obstacle is parametrization to a large data sat,the M-06L XC func-
tional [66], for example. But that approach inherently hiasted predictive capa-
bility and limited insight into the physics omitted from tifienctional. The state
of the art for non-empirical functional construction usescéling relations, bounds,
asymptotics, and limiting case behavior as constraintdlowable functional forms
and parameter values. Such functionals are called constrased.

The third author's 2010 NAMET talk summarized our work (withllaborators)
on constraint-based OFKE functionals up to and through. [E@}lier papers are
[68-70]. That talk also summarized constraint-based OFuUf€tional work in [71]
and subsequently in [72]. What follows picks up from there im own work and
touches on work which has influenced us and our collaborators

3 Progress

3.1 Non-empirical KE Functional Parametrization

The first step past the LDA is to include density gradientst tBe second-order
gradient approximation (SGA) is a flawed OFKE functionak $&7]. An analo-
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gous problem in the development of X functionals led to carsion of generalized
gradient approximations (GGAs). The GGA form for the OF KE is

TECN] —cre [ drn 3R (s(). (19)
The enhancement factbr depends on the dimensionless reduced density gradient
5=+ Ion (20)

T 2(3m)Y3 3

From the form offy, the enhancement factor f&§°S* readily is found to be

Fo(s) = R(s)— 35 (21)
Egs. (11), (14), and (16) also yield
2
T[N ::/dr tg[n], to :ts—% ‘D:‘ . (22)

(Note that Eq. (9) of [67] should redg = torp + % v/NO%,/n becauseyy as defined
there differs from Eq. (8), as well as a sign error. The déferdefinition means that
in [67] ts includes a1?n term. The outcomes are unchanged.) Positivithath T
andtg [53, 54, 58] means that the GGA enhancement factor must obey

Fo(s(r)) >0, vr . (23)

Remarks: This is a much stronger constraint than those faund GGA devel-
opment. Second, Levy and Ou-Yang [58] arrivet@t> 0 by the equality of two
integrals. This involves the usual issue of energy demssitiamely, omission of any
terms which would integrate to zero.

Two forms of generalized gradient approximation (GGA) foe IOFKE were
treated in [67,68]. The relevant one here is

1

v—1
(9 =1+ 5 G
=
(The label “PBE” is solely because for= 2 it has the same form as the PBE X
functional enhancement factor [46].) Those papers ingbaibration of the pa-
rametersy; andC; via matching the KS energy surface shape on very small trgini
sets (one to three molecules) rather than matching KE valured calibration fixes
the main problem of prior GGA KE functionals such as from [73}; namely viola-
tion of the Pauli potential non-negativity constraint EgZ) at nuclear sites. Respect
for that constraint was shown in [67,68,78,79] to be resjde$or correct descrip-
tion of attractive forces, hence for prediction of molecwdad solid binding. The
price is a strong overestimation of the KS KE. Though the PRE2tional proved
to be surprisingly transferable, the parametrization tscompliant with constraint-
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based development. (The PBE2 functional is not positivendefeverywhere, but
the violations are in regions which are unimportant in gcac}

Recently we have devised a procedure for non-empiricabieglon of a some-
what more flexible form of the enhancement factor [80]. Wedsw®three require-
ments: (a) recovery of the second-order gradient expar{§é) fors << 1 [81],
hence

R(s) =1+ (5/27)+0(s" , (25)
(b) non-negativity of the Pauli potentiap\as per Eq.(17), and
(c) recovery of vW behavior in the largeimit,

lim Fo(s) =0. (26)

This last constraint follows from the character of chargesitées far from any nu-
cleus and the IP theorem [54]. The form in Eq. (24) cannot @mk#tree constraints,
so we adopted a form which resembles the{84} X enhancement factor [72],

usze—asz
1+ ps?

with m=8,n= 4. (The “F” in VT84F simply denotes the origin of this funatial

as the zero-temperature limit of a new non-interacting &eergy functional.) The

next-to-last term in Eq. (27) meets constraint (c), so thampeatersu anda must
follow from constraints (a) and (b). The smalexpansion gives

FVT84 () — 1 +(1_e—“§“/2)(s‘”/2—1)+232, (27)

FVT8% () = 1+ (5/3+a — u)s+O(s?) (28)

whence constraint (a) yields = u — 5/3+5/27. Evaluation of the Pauli potential
for small+ (from a nuclear site) from the Kato nuclear-cusp condit@®] density

n(r) ~e %" = (1-22r)+0(r?). (29)

gives §A(r) ~ a/r [67] wherea is a constant which depends on the specific en-
hancement factor. For the enhancement factor Eq. (27),itigellar terma/r be-
comes marginally positive fou = 2.778. That givesx = 1.2965. Note that while
we have made several design choices, thene alibration to experiment or to KS
calculations. Initial results from this non-empirical fitional are quite encouraging,
see Subsection 3.3 below.

3.2 OF XC Functionals

We already have emphasized the critical importance of bettstal-free XC func-
tionalsExc[n], even though that is not the focus of most present-day XCltitomel

development. Work in [72,83-85] shows ways to make significaprovements in
GGA Ey energetics. In addition, that collaboration has presebtgk an improved
(relative to B3LYP [22] and revTPSS [86]) meta-GGA and antiaved hybrid X
functional. One of these developments, the PBEmol X funeti@84] is interesting
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both because of what it illustrates about the challengesttébOF XC function-
als and a challenge it brings into play for GGA OFKE functien&Ve discuss the
second item below. Here we sketch the parametrization d?Btemol X functional.

For the exact exchange functional, self-exchange musetartf-repulsion. For
the Hydrogen atom density

mi(r) =1 texp(—2[r|) (30)

this means
En [nl] + Ex[nl] =0, (32)

Furthermore, self-correlation must vanish in a one-eteclystem, so
Ec[m]=0. (32)

However, most approximate XC functionals have neither iena
The PBEmol X functional re-parametrizes the Perdew-Bikezerhoff PBE
X [46]

ESAN] = Cx [ dr n¥3(r) FECA(s)

1/3
Cy = —2 C’T) . (33)

K
FXPBE(S) = l+ K — m . (34)

to satisfy (31). The constart= 0.804 is set to satisfy the Lieb-Oxford bound [87]
and is not at issue here. For PBlirge = 0.21951, chosen to recover LDA linear
response (by combination with the PBE C functional). A rediparametrization,
called PBEsol [88], uses the gradient expansion vgligg, = 10/81, to improve
the quality of calculated surface and crystal properties,ab the cost of lessened
accuracy for finite systems. The PBEmol parametrizatiois gothe other direction.
Enforcement of Eq. (31) yieldgpgemol = 0.27583. This forces a shift in thg
parameter which appears in the PBE C functiofige moi= 0.08384 versufpge =
0.066725 versuBpgesol = 0.046. The result is beneficial in the sense of coming
closer to satisfying Eq. (32),

EcpeEmoln1] = —0.004876 hartree
Ecpee[m] = —0.005976 hartree (35)

However, as expected from the shift downwargiifrom PBE to PBEsol to improve
extended system results, the shift upward in PBEmol im@awest (but not all)

calculated molecular quantities but worsens the extenglstém ones. The PBE
form is just too restrictive. See [89], especially the ahgsiemark.
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3.3 Solution of the OFDFT Euler-Lagrange Equation and Local
Pseudopotentials

Ed. (16) combined withdTw/dn = —3n~1/20%nY/2 converts the Euler-Lagrange
equation (12) into a one-orbital modified KS equation,

{—;D2+(?;‘?+VKS}n1/Z:unl/2. (36)
This is the form which suggests that OFDFT might well be cadlee-orbital DFT. It
also is strongly suggestive that solution would be strédgtard with a standard KS
code. At the time of the NAMET meeting, two of us (VVK and SBBdjust con-
firmed and extended [78] the antecedent finding by Chan, CarmehHandy [90]
that this appealing idea fails. The problem is the peculiéeptial added to the ordi-
nary \ksin Eq. (36). Those GGA OFKE functionals with prop®fg/on=vg > 0
exacerbate the trouble because of their inescapablegoaiticlear site singulari-
ties; recall the discussion at Eq. (29) above. Direct mination algorithms, such
as in the RoFesscode discussed below, are essential.

First, however, we deal with numerical issues related tgttential itself. Many
codes for solving the KS equations in periodic systems udarepvave basis and
pseudopotentials (PPs). We include projector augmented {®AW) methodology
somewhat loosely in the PP category. For driving AIMD cadtioins, plane-wave-
PP approaches have a large advantage over methods whichalsarrsite-centered
basis sets. Such basis sets generate so-called Pulay fehezeas a plane-wave
basis does not. Though OFDFT in principle is an all-electrmthod, efficient im-
plementation of Fourier space methods, including planeewi@asis sets, requires
regularization of the nuclear-electron interaction siagty. The challenge then is
the dominance of non-localg., orbital-dependent, PPs, which clearly are inappli-
cable in OF-DFT calculations. OFDFT requires local psewdemptials (LPPS).

In the absence of normative practice for developing suchsLfePsingle-point
functionals, we devised a new method [78]. The LPP is coottlias a normalized
linear combination of angular momentum componeftsgmponents) of a norm-
conserving non-local PP (NLPP). The linear coefficientsdmtermined by requir-
ing that the LPP reproduce some bulk property as given by #énenp NLPP, for
example, the equilibrium lattice parameter of a solid. @aliion to an equilibrium
property does not, of course, guarantee that the LPP willkebable for treating
crystalline phase transitions. We investigated this i$suki [91] by comparison to
all-electron results for clusters of the same local symynaitrd near-neighbor dis-
tances. Both ordinary norm-conserving PPs and projectomanted wave (PAW)
data sets used with codes such asIMT [92, 93], QUANTUM ESPRESS0[94],
and \AspP [95-98] turn out to have relatively small reliable compressranges.
Depending on detailed criteria, maximum compressionsh(waspect to ambient
density) of 1.5, 4.5, or 7 were found. Some PAW data sets dechuso-called com-
pensation charge density (CCD) contribution. We found ki¢groblematic at high
compressions. Omission of the CCD and use of a cutoff radissrdially half the
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standard value,; = 0.8 bohr vs. 161 bohr, gave Li PAW LDA and GGA data sets
which are reliable to at least 140-fold compression.

An alternative procedure, appropriate for simple cubic tégen (sc-H), is to fit
the parameters of the simple Heine-Abarenkov model [99] $06h that a bulk
property €.g. equilibrium lattice constant) from a more sophisticated B&e-
Coulomb potential calculation is reproduced. Transfditstnf such a model po-
tential was tested up to more than 50-fold compression [1®Yhaterial density
around 25 g/crh The result is a cutoff radiug = 0.25 bohr. Gengt al. [102] re-
cently gave what they characterized as a hard PAW for Hydrage= 0.794 bohr.
They justified this rather largeg by comparison with an all-electron calculation of
Efcc— EpccOver the range & P < 4 TPa. Since PAW data set transferability requires
non-overlap of augmentation regions, one concludes teabtnget al. PAW could
be applicable to sc-H for a lattice constant no less tharetwid.e. 1.588 bohr or an
sc-H density up to about 3 g/éniThis is roughly six-fold compression as compared
to 50-fold for the PAW of [101].

Most of our OFDFT calculations have used a locally modifietsiom of the
PROFESSscode [103, 104]. Originally for use with two-point OFKE fuianals
(recall brief discussion), ROFESs performs periodic OFDFT calculations. For
orbital-free AIMD, we have built an interface betweerd*eEssand QIANTUM
EsPRESSd94] to utilize OFDFT forces in QANTUM ESPRESS105]. As an ex-
ample, we performed static lattice KS and OFDFT calculatiaith the TF, SGA,
recently proposed non-empirical APBEK [106] GGA, and VT&#4é&call Eq. (27))
OFKE functionals for sc-H. The left panel of Figure 1 compakss and OFDFT
total energies per atom as a function of sc lattice constdr®.TF, SGA, and AP-
BEK functionals all fail to produce binding. The new, nonsarical VT84F pre-
dicts binding with a moderately underestimated latticestamt (2.556 bohr vs.
2.773 bohr for KS, about 6%) and a too-stiff bulk modulus (B7GPa vs. 108.4
GPa for KS) [101]. The right panel of Figure 1 shows the pressor sc-H as a
function of material density for the same set of functionalisthe lowest density,
pn = 0.7 glen®, the TF, SGA, and APBEK OFKE pressure errors are about 200%.
The VT84F functional underestimates by about 80 %. Witheasing density, pres-
sures from all the OFKE functionals approach the referer@edlues, with VT84F
pressures doing so most quickly.

4 Some Interesting | ssues

4.1 GGA Functional Form Limits

As mentioned already, XC GGAs cannot meet all the consgalativable for the
exactEy.. Analogously for the KS KE, Wang, Stott, and von Barth [10&}&@argued
that the GGA form is so restrictive that a profgin] cannot be obtained. Though the
argument is worth study, we do not concur with the prioriticohstraints that they
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Fig. 1 Comparison of KS and various OFDFT functionals for sc-H. Allniterdew-Zunger (PZ)
[47] LDA XC. Left: total energy per atom (shifted to zero) asuadtion of lattice constant. Right:
Pressure as a function of material density.

choose. Specifically, requiring recovery of the gradienassion seems unhelpful
for systems with smallNe, the regime in which they tested.

In fact, that regime has a more severe problem. The H-atorsitgen (r), Eq.
(30), used for the PBEmol parametrization discussed aliltwatrates the difficulty.
Becausély [ny] is exact, the exacfy must vanishTg[n;] = 0. But no GGA can do
that and also satisflyg positivity, Eq. (23) and the relategl positivity. The problem
is not just with the GGA form. In essence, one is up againstetjgirement that Eq.
(16) must be revised to read

Ts[n] = Tw[n] + (1 — One,1) (1 — One,2) To[N] , To[n] > 0. (37)

The notation is incomplete for simplicity, since the > applies only folNe = 2 sin-
glets. Itis very difficult to imagine being able to mimic thishavior in an approxi-
mate functional without introducing explicit number-depence (and its attendant
difficulties). This is an example of the explicit number-dagence issue first men-
tioned (we believe) by Lieb [3] as being an inescapable pigpe the universal
density functional and discussed more recently in [108].

Another issue is one we have already encountered, namelsitigularity of
a GGA Pauli potential at nuclear sites. At such sites, theteRauli potential y
calculated by inversion of the KS equations has positivétefimalues [67]. The
Pauli potential from the previously published GGA funcatsmentioned in Sub-
section 3.1, among them APBEK, all have negative nucleasssiigularities. Those
functionals give reasonable values for the KS KE near dgjiilin but they fail, in
general, to predict molecular and solid binding. In coritridie GGA functionals we
have constructed, Egs. (24) and (27), have positive nuslgasingularities. Those
functionals do describe the energy surface shape reagowall] hence predict at
least qualitatively correct binding. But the KE they givesteongly overestimated.

Such nuclear site singularities of the Pauli potential seeb®e an intrinsic prop-
erty of GGA KE functionals. The singularities can be eliniesh by use of di-
mensionless combinations of higher order derivativesuged density derivatives,
RDDs). Definitions and examples are in [67]. The difficulterhis to find appro-
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priate functional forms for use of those RDDs. We have lititeno insight about
such forms at this point. There is also an issue of complicftectional derivatives
arising from functionals that incorporate RDDs, but thisymat be much different
from what already is encountered in meta-GGA XC functiofadg.

4.2 Fitness Tests for OFKE Approximations

Many fitness tests of OFKE approximations have been devismdyears, perhaps
the most common was to evaluate the atomic or molecular ¢otalgy or KE for
an OFDFT expression with a KS-DFT or Hartree-Fock densityngast [109, 110].
Given our focus on AIMD-OFDFT, we have emphasized reprddaaif KS bind-
ing. Specifically, given the KS solution (with a prescribgg) for a molecule or
solid, does a particular OFKE approximation reproduce tieps of the binding
energy curve or curve®(g.energy vs. bond length or lattice parameter) when fed
the KS densities as input? If not, then there is no sensergptiie Euler-Lagrange
equation for that approximation, since it does not get tghtranswer (reproduce
the KS result) when fed the right density (the KS density).

Garda-Aldea and Alvarellos [111] have developed and used ardifft fitness
test. For a given approximate OFKE functiofighprox they define

Tapprox[n] = / dr | tapprox[n(r)’ |:|n7 .. .] . (38)
analogously with Eq. (11). With that, they define a qualitytde

Jdr | ts[n] — tapprox{N] |
Ts[n| '

O[Tappro§ 1= (39)
This allows them to consider OFKE approximations whichetifby Laplacian-
dependent terms that may, in general, afi&ppr0x/On Without altering the value
Tapprox{N] delivered for a particulam. See their work in [112] as well as the work by
Cancioet al. mentioned earlier [48]. In essence they consider the adingixt

tapproxa ‘= tapprox+ aln. (40)

In[111] a was optimized by minimizin@[Tapproxa| OVer Slater-type-orbital atomic
densities for the ten lightest atoms and the resulting tyudctors for 21 OFKE
functionals were compared. The remarkable conclusionas Th, Eq. (13), aug-
mented by a Laplacian term witih= 0.167, is best.

The difficulties with this outcome are evident. The TF fuaotl suffers from the
Teller non-binding theorem [9]. It is clearly wrong fdl; = 1 and singleiNe = 2.
And our calculations on simple cubic H [101] show that it gitetal energy errors
per atom of the order of 40% at roughly 4-fold-compressiahsubstantial pressure
errors (factor of 2 or worse) up to about the same compresReacall Fig. 1 and
associated discussion above. We therefore are unconvtheédhe quality factor
Eq. (39) is useful in functional development.
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4.3 Information Theoretic OFKE Functionals

Two papers [113,114] put forth a novel and intriguing infation-theoretic orbital-
free form for the zero-T KE functional (see the chapters afittmn and Delle Site
for related developments). Its ancestry lies in the SearsdPinur analysis [51].
Consider théNe-fermion wave function and write

NeW (ri...rng )W (r1...rng) =N(ra) f(ra...raellra) - (41)

This decomposition isolates the density, which is the ifientof the equivalence
classes of states in the Levy-Lieb constrained search flation of the universal
functional [2, 3]. Thus one can, for example, do constraisedrch Monte Carlo
calculations [115] on the conditional factbfr,...rn,|r1). The total KE then is

|D1nf\2 / |1 f (Tne-1Ir1) 12
din drdmn_ 11— —— . 42
8/ N () (42)

(The spacen,-—1 is compact notation for all the electron coordinatesrhytin [115]

a model form forf(1y,—1) was constructed by considering necessary conditions
on the Ne-fermion wave function in conjunction with Monte Carlo sding on

the homogeneous electron gas over a finite range of comyelyatiigh (in our
experience) densities®b < rg < 1.81. The result was a proposed KE functional
which, in our notation, is

Tepws[n :TW[n]+/drn(r)[A1+Blln n(r)] (43)

with A1 = 0.8604+:0.022 andB; = 0.224-:0.012. A later, more refined version of the
trial conditional probability function modeled the behavof high-density fermion
pairing [114]. Monte Carlo sampling gave what we called thd3%10 functional,

Tannsoln] :TW+TT|:+/drn(r)[A2+lenn(r)], (44)

with A, = 1.02 andB, = 0.163. Both functionals have an evident information-
theoretic structure.

As proposed, there is an unfortunate flaw in both these fonals if they are
used in the universal sense, namely they violate variousiyitysconstraints out-
side certain density ranges [116]. The analysis in [116}ded proposed modified
information-theoretical form that also is positive defniThe challenge is how to
implement that modified form, since it relies on the use of aimal bounding
function for the density. The examples given in [116] sufficethe mathematical
purposes of that paper but are not practical. A relatedtrestllat the TF functional
can be written

Tre =CrE /.dr <n+§nlnn> +§cTF /‘dr ninnZn| . (45)
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with Z[n] := (2cre/3) fdrninny 5. L1 T J+1 (3 Inn) . With this, the von Weizicker
plus parametrized Thomas-Fermi model,

TwTeln] = Tw[n[+yTre[n , 0<y <1 (46)

can be rewritten as

TwTE = TW+ycTF{Ne+g/drnlnn}+§ycTF/drnInn$[n]
= TGDS)8+AT- (47)

This result is suggestive of a possible route to an improuvedtfonal. One would
combine Monte Carlo data with formal constraints so thatlése line would be
replaced, for example, by an improvement®pgs such that the\ T piece would

be minimized in some sense.§.,for a class of densities). How to give these vague
but appealing ideas a useful form is not apparent to us atithes Notice also the
explicit Ne-dependence in (47), a reminder of our earlier discussion.

4.4 Scale Function and Local-scaling DFT

Uniform scalingr — Ar, with A a constant, is much-used in DFT to establish for-
mal properties of density functionals via the scaled dgmsjtr) = A3n(Ar) [117].
Local-scaling transformation (LST) DFT [118-120] insteagbloits non-uniform,
isotropictransformations

r—g(r):=A()r, (48)
whereA (r) is a local-scaling function. LST generates a set of derdgfyendent
orbitals from an arbitrary initial sty (r ) ¢, by means of a unitary operatm@[J

- 2
A(nir) = Zyw(r) = [3(9(r);in)] 2w (a(r)). (49)
HereJ is the Jacobian of the transformation
o9 ] n(r)
J det = , 50
i) = oot 32 - G 0
with i, j = {x,y,z} andny = 5; fi|¢4|2. The KE corresponding to the set of orbitals

Eqg. (49) is a functional of the density [120, 121]
Ton, {1, = / drn®/3(r)Ang ([nl: 1), (51)

with parametric dependence on the initial set of orbi{aﬁ@(r)}iN:el. Ay, Clearly is
a Pauli term enhancement factor, Eq. (19), constructedrinst@f the densityn,
transformed variablg, and the initial orbital sefy} [118].

Interestingly, Xia and Carter [63] use a scalacal scalingfunction F for a
different purpose, namely to decompose the density intocddired and localized
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parts
n(r) = Ngel(r) + Nioc(r) := F([n];r)n(r) + (1 —F([n[;r))n(r). (52)

This decomposition, together with a simple model for thalaed KE (parametrized
Thomas-Fermi plus von Weiasker) enables them to use the two-point Wang-
Govind-Carter (WGC) functional [122, 123] for the delocelizdensity alone. The
WGC functional is well-adapted to that type of density. ThXis, and Carter con-
struct a broadly useful two-point KE functional.

In the Euler-Lagrange equation for their functional, Xiald@arter neglect the
functional derivativedF /dn, although the form used clearly is a density functional
(it is tabulated numerically with the ratio of the densitythe average delocalized
density as the argument). Instead, they tFeas a simple function af and evaluate
its density dependence by introducing an extra self-ctergidoop. The effect is
that they reach af for which 6F /dn ~ AF /An = 0, with the finite increments
being iteration-to-iteration differences in the extrago&learly their solution is
special, since their functional does not have zero funetiderivative in general.
We have devised an analyticalwhich resembles the Xia-Carter form but uses a
fixed reference delocalized density. Thus it is easy to wdiffgate functionally. At
this writing we have just begun to explore it. More broadigeanay contemplate
reverse engineering of the Xia-Carter KE functional to wecahe local scaling
transformation to which it corresponds.

5 A Few of the Challenges Ahead

One of the most difficult problems faced by the orbital-fregerada at present is
the XC functional. From both the work with our collaboratansMéxico as well
as others€.g, [89] and references therein), it is clear that simple GGA® do
not suffice. Broadly, in simple GGAs for XC what betters molec predictions
worsens those for solids. Whether some quite complicated @&BA exists that is
equally good for both system types is unknown. The convaatiosisdom seems
to be that it does not. But the arguments behind that cormealtiwvisdom tend
to rely either on the operational failure of simple formse(tnolecular properties
versus solid properties issue) or on the observation teat #re rigorous constraints
on the exact,; which give contradictory requirements on a GGA. An example
is the contradictory limiting behavior lign... FE®A(s) discussed in [72, 84]. But
such contradictions so far have not impeded the developofdrgtter functionals
because it has been possible to determine which consti@iatselevant to real-
system properties.

On the KE functional side, we already have mentioned the eratsment of
riches challenge posed by the reduced density derivatihggwvguppress, at least to
some order in the gradient expansion, nuclear site singakaim vg. We reiterate
the challenge here. In [67] there is a set of RDDs which areidartes for indepen-
dent variables in beyond-GGA OFKE functionals. Since theepdy Perdew and
Constantin [124] on a meta-GGA OFKE functional and our ownk§67], there has
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been little progress on conditions and constraints for toong RDD-dependent
OFKE functionals. Although Perdew and Constantin pardiedadly speaking, the
route from a GGA to a meta-GGA for XC, it is not clear that th@mach is best.

In a GGA for the OFKE, there is only one varialdgso the effect of exact con-
straints can be worked out comparatively straightforwar8ince there are many
higher-level RDDs, it appears that one must select somessobthem, then work

out the consequences of exact constraints for a generateamant which depends
on that specific set of RDDs. Perdew and Constantin [124]guisland a reduced

Laplacian, for example. Any choice, of course, leads imiatedly to the issue of the
criteria. We have no new, substantive insight on that at toment.

A different possible route forward is that all current OF-Dfenctionals fail to
satisfy the differential virial relationship between th& lénd XC functional [117].
In principle, OFKE and OFXC functionals should be paired.a¥gently are inves-
tigating whether a useful RDD-dependent OFKE functional lsa generated from
a reasonably good GGA XC functional.

Finally, back at the refinement level of GGA OFKE functionaisw that we
have the breakthrough of one non-empirical parametrigaifca properly positive
definite functional [80], there is an opportunity to improteat scheme. Almost
certainly it is not optimal. Again, routes to improvemerg aot totally obvious.

Acknowledgements We acknowledge, with thanks, the many contributions and intles espe-
cially of Travis Sjostrom and of our other primary collaborataJim Dufty, Frank Harris, Keith
Runge, Alberto Vela, Jose Luis&zquez, and Jorge Mantdel Campo. Thanks also go to Emilio
Orgaz, Victor Medel, @mas @l, and J.C. Pacheco-Kato. Helpful conversations with P. siyer
K. Burke, K. Capelle, E.A. Carter, L. Delle Site, D.a&ia-Aldea, A. @rling, M. Levy, M.M.
Odashima, J.P. Perdew, No&ch, A. Ruzsinszky, and T. Wesolowski are acknowledged with
thasks. We thank Luigi Delle Site and Volker Bach for the oppoity to participate in this volume
and for the opportunity provided to SBT to attend the NAMET tirgein 2010. This work was
supported under U.S. Dept. of Energy BES grant DE-SC 0002139.

References

1. P. Hohenberg and W. Kohn, Phys. RE36, B864 (1964).
2. M. Levy, Proc. Natl. Acad. Sci. USA&6, 6062 (1979).

3. E.H. Lieb, Int. J. Quantum Cher#4, 243 (1983)

4. L.H. Thomas, Proc. Camb. Phil. S@3, 542 (1927).

5. E. Fermi, Rend. Accad. Naz. Lincg&i602 (1927).

6. E.Fermi, Z. Phys48, 73 (1928).

7. P.AM. Dirac, Proc. Cambridge Phil. S&§, 376 (1930).
8. C.F.von Weizacker, Z. Phys96, 431 (1935).

9. E. Teller, Rev. Mod. Phy$4, 627 (1962).

10. E.H. Lieb, Rev. Mod. Phy$&3, 603 (1981).

11. W. Kohn and L.J. Sham, Phys. R&40, A1133 (1965).

12. J.C. Boettger and S.B. Trickey, Phys. Re%b1B15623(R) (1995).

13. J.C. Boettger and S.B. Trickey, Phys. Re63 3007 (1996).

14. R.N. Barnett and U. Landman, Phys. Revid& 2081 (1993).

15. D. Marx and J. Hutter, iModern Methods and Algorithms of Quantum ChemijsiryGro-
tendorst, ed., J. von Neumann Inst. for Computingli¢h, NIC Series, Vol. 1, 2000) p. 301
and refs. therein.

16. J.S. Tse, Annu. Rev. Phys. Ches8, 249 (2002).



18

17.

18.
19.

20.
21.
22.

23.
24.
25.
. J.P. Perdew and K. Schmidt, A.l.P. Conf. P@¢Z, 1 (2001).
27.

28.

36.
37.
38.
. M. Foley, E. Smargiassi and P.A. Madden, J. Phys.: Condens.8/18231(1993).
40.
41.
42.

43.

44.
45.

46.

47.
48.
49.
. M. Hoffmann-Ostenhof and T. Hoffmann-Ostenhof, Phys. Re\6AL782 (1977); see Eq.

51.
52.
583.
54.
55.
56.

Karasiev, Chakraborty, and Trickey

D. Marx and J. HutteAb Initio Molecular Dynamics: Basic Theory and Advanced Meshod
(Cambridge University Press, Cambridge, 2009) and refs. therein.

T.D. Kilhne,arXiv:1201.5945.

R.G. Parr and W. Yandpensity Functional Theory of Atoms and Molecu{@sxford, NY,
1989).

R.M. Dreizler and E.K.U. GrosBensity Functional Theor§Springer-Verlag, Berlin, 1990).
A.D. Becke, J. Chem. Phy@8, 1372 (1993).

P.J. Stephens, F.J. Devlin, C.F. Chabalowski, and M.J. FrisdPhys. Chem98, 11623
(1994).

A. Gorling and M. Levy, J. Chem. Phy%06, 2675 (1997).

A. Gorling, Phys. Rev. B3, 7024 (1996); erratunibid. 59, 10370 (1999).

S. lvanov, S. Hirata, and R.J. Bartlett, Phys. Rev. 188{t5455 (1999).

E. Engel inA Primer in Density Functional TheoryC. Fiolhais, F. Nogueira, and
M.A.L. Marques eds. (Springer, Berlin, 2003) p. 56 and refsrem.

J. Heyd, G.E. Scuseria, and M. Ernzerhof, J. Chem. RAl$s.8207 (2003); erratunibid.
124, 219906 (2006).

. A.V. Krukau, O.A. Vydrov, A.F. Izmaylov, and G.E. ScusedaChem. Physl25, 224106

(2006).

. A.HeRelmann, A.W. Gz, F. Della Sala, and A. @ling, J. Chem. Phy4.27, 054102 (2007).

. S. Kimmel and L. Kronik, Rev. Mod. Phy80, 3 (2008) and refs. therein.

. V.V. Karasiev, and E.V. Lud®&, Phys. Rev. /45, 062510 (2002).

. . Gonalez, C. Gonalez, V.V. Karasiev, E.V. Lud&, and A.J. Herandez, J. Chem. Phys.

118, 8161 (2003).

. V.V. Karasiev, J. Chem. Phykl8, 8576 (2003).
. T. Grabo, T. Kreibach, S. Kurth, and E.K.U. Gros$irong Coulomb Correlations in Elec-

tronic Structure: Beyond the Local Density Approximafivt. Anisimov ed. (Gordon and
Breach, Tokyo, 2000) p. 203 and refs. therein.

J. Clerouin, E.L. Pollock, and G. Zerah, Phys. Re¥6A5130(1992)

E. Chabn, J.E. Alvarellos, and P. Tarazona, Phys. Re82B7868 (1985).

L.W. Wang and M.P. Teter, Phys. Rev48 13196(1992).

M. Pearson, E. Smargiassi and P.A. Madden, J. Phys.: Condens5\8221(1993).

E. Smargiassi and P.A. Madden, Phys. Re49B5220(1994).

M.D. Glossman, L.C. &8bas, A. Rubio, and J.A. Alonso, Int. J. Quantum Chéf.171
(1994).

V.V. Karasiev, T. Sjostrom, D. Chakraborty, J.W. Dufty, Flfarris, K. Runge, and
S.B. Trickey, inComputational Challenges in Warm Dense Matter Grazianiet al. eds.
(Springer Verlag, Heidelberg) in press.

T.A. Wesotowski, Phys. Rev. A7, 012504 (2008) and refs. therein.

J.W. Kaminski, S. Gusarov, T.A. Wesotowski, and A. KovalenkBhys. Chem. A 14, 6082
(2010) and refs. therein.

J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. [[&t3865 (1996); erraturiid. 78,
1396 (1997).

J.P. Perdew and A. Zunger, Phys. Re2335048 (1981).

A.C. Cancio, C.E. Wagner, and S.A. Wood, Int. Quant. CHerd, 3796 (2012).

SBT is indebted to So Hirata for this observation (2005).

(2.20). Also see E. Romera and J.S. Dehesa, Phys. R&, 266 (1994).
S.B. Sears, R.G. Parr, and U. Dinur, Isr. J. ChE9n165 (1980).

J.E. Harriman, J. Chem. Phg8, 6283 (1985).

C. Herring, Phys. Rev. 84, 2614 (1986).

M. Levy, J.P. Perdew, and V. Sahni, Phys. Re@0A2745 (1984).

Y. Tal and R.F.W. Bader, Int. J. Quantum Ch&12, 153 (1978).

L.J. Bartolotti and P.K. Acharya, J. Chem. Ph§/&.4576 (1982).



Progress on New Approaches to Old Ideas: Orbital-free Densitgtfonals 19

57.

89.
90.

. V.V. Karasiev, T. Sjostrom, and S.B. Trickey, Phys. Re86F056704 (2012).
92.

93.

J.E. Harriman, ilDensity Matrices and Density FunctionaR. Erdahl and V.H. Smith Jr.
eds. (D. Reidel, Dordrecht, 1987), p. 359.

. M. Levy and H. Ou-Yang, Phys. Rev.38, 625 (1988).
. R. Baltin, J. Chem. Phy86, 947 (1987).
. Y.A. Wang and E.A. Carter, Chap. 5Tiheoretical Methods in Condensed Phase Chemistry

S.D. Schwartz, ed. (Kluwer, NY 2000), p. 117 and refs. therein

. B.J. Zhou, V.L. Ligeres, and E.A. Carter, J. Chem. Phi22, 044103 (2005).

. C. Huang and E.A. Carter, Phys. Re\8B 045206 (2010).

. J. Xiaand E.A. Carter, Phys. Rev8B, 235109 (2012).

. M. Hodak, W. Lu, and J. Bernholc, J. Chem. P28, 014101 (2008).

. X. Blanc and E. Cances, J. Chem. PHy2, 214106 (2005).

. Y. Zhao and D G. Truhlar, J. Chem. Ph$85, 194101 (2006).

. V.V. Karasiev, R.S. Jones, S.B. Trickey, and F.E. HarrissPRgv. B80, 245120 (2009).

. V.V. Karasiev, S.B. Trickey, and F.E. Harris, J. Computetteli Mat. Design]3, 111 (2006).

. V.V. Karasiev, R.S. Jones, S.B. Trickey, and F.E. Harrif\éw Developments in Quantum

Chemistry J.L. Paz and A.J. Heamdez, eds. (Transworld Research Network, Kerala, India,
2009) p. 25.

. S.B. Trickey, V.V. Karasiev, and R.S. Jones, Int. J. QuantbenC109, 2943 (2009).
. A. Vela, V. Medel, and S.B. Trickey, J. Chem. Phi0, 244103 (2009);
. A. \Vela, J.C. Pacheco-Kato, J.Laguez, J.M. del Campo, and S.B. Trickey, J. Chem. Phys.

136, 144115 (2012).

. J.P. Perdew, Phys. Lett. 185, 79 (1992).

. D.J. Lacks and R.G. Gordon, J. Chem. Pi@§, 4446 (1994).

. A.E. DePristo and J.D. Kress, Phys. Re\8% 438 (1987).

. AJ. Thakkar, Phys. Rev. 46, 6920 (1992).

. F. Tran and T.A. Wesotowski, Int. J. Quantum Ch&/.441 (2002).

. V.V. Karasiev and S.B. Trickey, Comput. Phys. Comnii#3, 2519 (2012).

. A. Borgoo and D.J. Tozer, J. Chem. Theory Comput. doi 10.£0210129d (2013).
. V.V. Karasiev, D. Chakraborty, O.A. Shukruto, and S.BcKey, arXiv 1308.2193.

. C.H. Hodges, Can. J. Phyd, 1428 (1973).

. T. Kato, Commun. Pure Appl. Math0, 151 (1957).

. J.M. del Campo, J.L.&quez, R.J. Alvarez-Mendez, S.B. Trickey, and A. Vel& amcepts

and Methods in Modern Theoretical Chemistry, VQISIK. Ghosh and P.K. Chattaraj eds.
(CRC Press, Boca Raton, 2013) p. 295 and refs. therein.

. J.M. del Campo, J.L.&zquez, S.B. Trickey, and A. Vela, J. Chem. Pi3§, 104108 (2012).
. J.M. del Campo, A. Vela, J.L.&2quez, and S.B. Trickey, Chem. Phys. L848, 179 (2012).
. J.P. Perdew, A. Ruzsinszky, G.l. Csonka, L.A. Constantin,JaWW Sun, Phys. Rev. Lett.

103, 026403 (2009). erratuiibid. 106, 179902 (2011).

. E.H. Lieb and S. Oxford, Int. J. Quantum Che®,.427 (1981); E.H. Lieb, Phys. Leff0OA,

444 (1979).

. J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.Hs8ga, L.A. Constantin, X.L.

Zhou, and K. Burke, Phys. Rev. Let00, 136406 (2008).

P. Haas, F. Tran, P. Blaha, L.S. Pedroza, A.J.R. da Silvd, Kddashima, and K. Capelle,
Phys. Rev. B31, 125136 (2010).

G.K-L. Chan, A.J. Cohen, and N.C. Handy, J. Chem. P14.631 (2001).

X. Gonze, B. Amadon, P.-M. Anglade, J.-M. Beuken, F. BofinBoulanger, F. Bruneval,
D. Caliste, R. Caracas, M. Cote, T. Deutsch, L. Genovese, Ph. GhiekeGiantomassi,
S. Goedecker, D.R. Hamann, P. Hermet, F. Jollet, G. Jomard, Sux,ekb Mancini, S.
Mazevet, M.J.T. Oliveira, G. Onida, Y. Pouillon, T. Rangek!®. Rignanese, D. Sangalli, R.
Shaltaf, M. Torrent, M.J. Verstraete, G. Zerah, and J.W. ZvgerzComput. Phys. Commun.
180, 2582 (2009);

X. Gonze, G.-M. Rignanese, M. Verstraete, J.-M. Beuken,o¥illdn, R. Caracas, F. Jol-
let, M. Torrent, G. Zerah, M. Mikami, Ph. Ghosez, M. \eithenY.JRaty, V. Olevano, F.
Bruneval, L. Reining, R. Godby, G. Onida, D.R. Hamann, and.B@n, Zeit. Kristallogr.
220, 558 (2005).



20

94.

95.
96.
97.
98.
99.
100.
101.
102.
103.
104.

105.

106.

107.
108.
109.

110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.

121.

122.

123.

124.

Karasiev, Chakraborty, and Trickey

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. CarQavazzoni, D. Ceresoli, G.L.
Chiarotti, M. Cococcioni, |. Dabo, A. Dal Corso, S. de Girolic&. Fabris, G. Fratesi,
R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. LazzerMartin-Samos, N.
Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello Paulatto, C. Sbraccia, S.
Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. UaratiR.M. Wentzcovitch, J.
Phys.: Condens. Mat21, 395502 (2009).

G. Kresse and J. Hafner, Phys. Re¥ /3558 (1993).

G. Kresse and J. Hafner, Phys. Revi®14251 (1994).

G. Kresse and J. Furtlidker, Comput. Mat. Sci6, 15 (1996).

G. Kresse and J. Furtliter, Phys. Rev. B54, 11169 (1996).

V. Heine and I. Abarenkov, Phil. Mag, 451 (1964).

L. Goodwin, R.J. Needs, and V. Heine, J. Phys.: Condens. R8%1 (1990).

V.V. Karasiev, T. Sjostrom, and S.B. Trickey, Phys. Re86B115101 (2012).

H.Y. Geng, H.X. Song, J.F. Li, and Q. Wu, J. Appl. PHyd, 063510 (2012).

G.S. Ho, V.L. Ligeres, and E.A. Carter, Comput. Phys. Comniin9, 839 (2008).

L. Hung, C. Huang, I. Shin, G.S. Ho, V.L. Ligres, and E.A. Carter, Comput. Phys. Com-
mun.181, 2208 (2010).

V.V. Karasiev, T. Sjostrom, and S.B. Trickey, “Orbitaddr Density Functional Molecular
Dynamics: Coupling RoFEssand QUANTUM ESPRESSY, in preparation.

L.A. Constantin, E. Fabiano, S. Laricchia, and F. Dedé&aSPhys. Rev. Lettl06, 186406
(2011).

B. Wang, M.J. Stott, and U. von Barth, Phys. Re63A052501 (2001).

S.B. Trickey and A. Vela, J. Mex. Chem. SB€, 105 (2013).

P.K. Acharya, L.J. Bartolotti, S.B. Sears, and R.G. FRno¢c. Natl. Acad. Sci. (USAY7,
6978 (1980).

W. Yang, R.G. Parr, and C. Lee, Phys. Re@4A4586 (1986).

D. Garcia-Aldea and J.E. Alvarellos, J. Chem. PH\&/, 144109 (2007).

D. Garcia-Aldea and J.E. Alvarellos, Phys. Chem. Chem. P14sl756 (2012).

L. Delle Site, Eur. Phys. Let6, 40004 (2009); erraturibid. 88, 19901 (2009).

L.M. Ghiringhelli, I.P. Hamilton, and L. Delle Site, J. &h. Phys132, 014106 (2010).

L.M. Ghiringhelli and L. Delle Site, Phys. Rev./8, 073104 (2008).

S.B. Trickey, V.V. Karasiev, and A. Vela, Phys. Re\88 075146 (2011).

M. Levy and J.P. Perdew, Phys. Re\32 2010 (1985).

E.V. Ludéa and R. lbpez-Boada, Top. Curr. Cherd80, 169 (1996).

M.V. Stoitsov and |.Zh. Petkov, Annals Ph{85, 121 (1988).

E.V. Luddéa, V. Karasiev, R. bpez-Boada, E. Valderrama, and J. Maldonado, J. Chem. Phys.
20, 155 (1999).

E.V. Ludéa and V.V. Karasiev, InReviews of Modern Quantum Chemistry: a Celebration
of the Contributions of Robert ParK.D. Sen (Ed.), (World Scientific, Singapore, 2002) p.
612.

Y.A. Wang, N. Govind, and E.A. Carter, Phys. Re\o® 13465 (1998); erraturibid. 64,
129901 (2001).

Y.A. Wang, N. Govind, and E.A. Carter, Phys. Rev6® 16350 (1999); erraturibid. 64,
089903 (2001).

J.P. Perdew and L.A. Constantin, Phys. Re¥5B8155109 (2007).



