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Abstract State-of-the-art treatment of nuclei and electrons in materials usesab
initio molecular dynamics for nuclear motion driven by Born-Oppenheimer forces
from the electrons. Almost universally, those forces are calculated from density
functional theory in the Kohn-Sham form. The computationalcosts of the conven-
tional KS implementation scale at least as the cube of the number of electrons.
This is a formidable barrier to complex system simulations with long MD runs on
department-scale machines, since the DFT force calculation dominates the per step
cost. The difficulty arises from the explicit dependence of the non-interacting ki-
netic energy on the KS non-interacting orbitals. The cost scaling worsens with use
of explicitly orbital-dependent exchange-correlation functionals are used. The alter-
native approach, use of DFT in its basic form, dates to Thomas-Fermi-Dirac theory.
The challenge is to have sufficiently accurate orbital-freeexpressions for the KS
kinetic energy and exchange-correlation functionals. We discuss progress on these
tasks via constraint-based methods, with emphasis on developments since the Sept.
2010 “New Approaches to Many-Electron Theory” meeting.

1 Motivation: Modern Relevance of the Old Idea

Recent years have seen density functional theory (DFT) [1–3] emerge as the dom-
inant theoretical framework for computing the electronic structure of materials and
molecules. In our title, the “old idea” refers to the form of DFT from the dawn
of quantum mechanics, Thomas-Fermi-Dirac (TFD) theory [4–10]. The concep-
tual framework of TFD is direct manipulation of a functionalof the electron num-
ber densityn(r), without explicit reference to wave functions (many-body or non-
interacting). In most circumstances, TFD is so oversimplified that it does not provide
predictive treatment of materials properties. As a result,the pure DFT conceptual
framework of TFD largely has been supplanted by use of the eigenfunctions and
eigenvalues of the auxiliary Kohn-Sham (KS) system [11]. Atthe outset we must
make a case, therefore, for any new approaches to the old idea.

A key example is the equation of state (EOS), which determines many materials
properties crucial to both basic understanding and technological utilization. Often,
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the zero-temperature EOS and crystalline phase transitions along it can be handled
quite accurately with modern DFT alone [12,13]. Beyond that, at ambient and higher
temperatures, what is calledab initio MD (AIMD; see [14–18]) generally handles
the nuclear (or ionic) degrees of freedom well. In the Born-Oppenheimer approxi-
mation, AIMD with DFT receives the electronic forces on the nuclei from a DFT
calculation done at each configuration of nuclei. Thus, one expects AIMD to have
the advantage of explicit quantum mechanical treatment of the electrons combined
with the essentially classical contributions of the nuclei.

The computational cost problem comes from having a KS calculation atevery
MD step. Compared to the cost per conventional MD step, KS calculations are
quite expensive (typically≥ 98% of the computational cost of each AIMD step)
and scale badly with system size. A seemingly unrelated factis that, because DFT is
rooted in existence theorems [1–3], computation requires approximate functionals
for the exchange (X) and correlation (C) contributions. In reality, these two facts
are deeply intertwined as a challenge to DFT-AIMD as a basic tool of materials re-
search. Somehow the accuracy and range of applicability of approximate functionals
must be balanced with control of computational cost (see review of algorithms and
their performance in the chapter by Tzanov and Tuckerman).

The problem originates in the DFT variational minimizationvia the KS decom-
position. That yields (details below) an eigenvalue problem for the auxiliary KS
(non-interacting) many-Fermion system at the physical density, n(r) [11], to wit

hKS[n]ϕi = εiϕi , n(r) = ∑
i

fi |ϕi(r)|2 . (1)

Here the fi are occupation numbers,fi = 0,1,2 (for the non-spin-polarized case)
[19, 20]. Diagonalization implicit in the KS eigenvalue problem is the computa-
tional bottleneck. Even with the simplest exchange-correlation (XC) functional (no
explicit orbital dependence), KS calculations scale in principle no better thanN3

e ,
with Ne being total number of electrons. AIMD driven by KS DFT therefore also
scales asN3

e or worse,per MD step.
Unhappily for balancing cost and accuracy, much of the recent progress on better

XC approximations worsens that scaling. Though the basic DFT theorems [1–3] do
not invoke the KS orbitals and eigenvalues, most effort today on better XC func-
tionals involves DFT exact exchange. That has the same form as in the Hartree-
Fock approximation but with the KS orbitals. Some representative references in-
clude [21–34]. All that is important here is that DFT exact exchange, whether by
itself or in so-called hybrid functionals (mixtures of exact exchange and explicit
density functionals), adds an explicit orbital dependencethat worsens the KS cost
scaling, typically toN4

e or more [35].
The deep irony, of course, is that decomposition of the fundamental density func-

tional into non-interacting (KS) and remainder parts does not require explicit use of
the KS orbitals. In addition to defining the exact X energy andgiving the density, the
KS orbitals yield the major part of the electronic kinetic energy (KE). That elimi-
nates the need for an explicit KE functionalT[n]. But such an explicit functional was
precisely the essence of the “old idea” [4–10]. Pursuit of the old idea never entirely
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died out, but its modern use in AIMD seems to have begun with the implementa-
tion of TF AIMD by Clerouin, Pollock and Zerah [36]. That was preceded by the
formulation of a non-local KE functional by Chacón, Alvarellos, and Tarazona [37]
and, a few years later, the AIMD-oriented functionals by Wang and Teter [38] and
Smargiassi, Madden, and collaborators [39–41] and other innovations,e.g.[42]. The
approach has come to be known as orbital-free DFT (OFDFT), though it might be
as insightful to call it one-orbital DFT.

In what follows, we summarize OFDFT basics and establish notation, then dis-
cuss progress since the 2010 “New Approaches to Many-electron Theory” (NAMET)
meeting, with a focus on priority issues for our research program. This involves im-
provements in both orbital-free kinetic energy (OFKE) and XC functionals. Much
of our work is on orbital-free, free-energy density functional approximations for
systems at non-zero temperature. A recent review is [43]. Note that sometimes, par-
ticularly for T > 0K calculations, the term “OFDFT” is used in the literature to
be synonymous with a Thomas-Fermi or Thomas-Fermi-von Weizsäcker type KE
functional. One must be alert to this overly restrictive usage. Also note that we do
not treat the embedding form of OF-DFT [44, 45]. The distinction is important:
requirements on OF-KE embedding functionals differ substantially from those on
approximations for the KS KE functionals on which we work.

2 Basics

2.1 DFT

To be reasonably self-contained, we summarize basic DFT in non-spin-polarized
form. The spin-polarized extension is generally straightforward. The foundational
DFT theorems demonstrate the existence of a functional of the density alone,

E [n] = T[n]+Uee[n] , (2)

which is independent of the external potential on the electrons (or “universal”). Its
contributions are the total KE and total Coulomb energy, respectively. In combina-
tion with the external energyEext[n], it has the variational property

min
n
{E [n]+Eext[n]} = E0[n0] , (3)

whereE0 and n0 are the ground state total energy and density respectively,and
∫

drn(r) = Ne. For AIMD Eext[n] comes from the interaction with nuclei of charge
Zα situated at sitesRα ,

Eext[n] = −∑
α

Zα

∫

dr
n(r)

|r−Rα |
. (4)

(We use Hartree a.u. unless noted otherwise.) To approximate E [n] and make
the variational minimization feasible, KS considered an auxiliary system of non-
interacting fermions with the same density as the physical one. That system has
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eigenfunctions and density given by Eqs. (1). From those, one can define the KS KE
Ts and X energyEx, then rearrange the universal functional (2) as

E [n] = Ts[n]+EH [n]+Ex[n]+{Uee[n]−EH [n]−Ex[n]+T[n]−Ts[n]}
:= Ts[n]+EH [n]+Ex[n]+Ec[n] . (5)

In order, the quantities are

EH [n] :=
1
2

∫

dr1dr2
n(r1)n(r2)

|r1− r2|
, (6)

Ex[n] := 〈Φs[n]|V̂ee|Φs[n]〉−EH [n] , (7)
and

Ts[{ϕi}] =
1
2

Ne

∑
i=1

fi

∫

dr |∇φi(r)|2 :=
∫

dr torb[n(r)] . (8)

The KS Slater determinant isΦs[n]; V̂ee is the electron-electron repulsion potential.
Observe that in KS-DFT the interacting part of the KE,T −Ts, is put into the

C functionalEc and thatTs[n] ≤ T[n] by definition (Ts[n] is the minimum Fermion
expectation of theNe KE for the specifiedn). Note also that in (8) we have dropped a
usually inconsequential surface term relative to the more familiar KS KE definition
in terms of the Laplacian of the orbitals.

The potential in the KS equation (1) is

vKS = vH +vext+vxc

vH =
∫

dr2
n(r2)

|r− r2|
, vext = −∑

α

Zα
|r−Rα |

, vxc =
δExc

δn
. (9)

In the foregoing expressions, the dependence of the densityand of the total energy
upon the nuclear coordinates{R} has been suppressed. With that in mind, the elec-
tronic force on a given nucleus is−∇Rα (E +Eext+Eion−ion). HereEion−ion({R}) is
the inter-nuclear repulsion energy.

2.2 Orbital-free Functional Framework

Until exact and hybrid X functionals (the third rung of the Perdew-Schmidt XC
functional ladder [26]) became popular, approximate XC functionals used in mate-
rials simulations were orbital-free, though not usually labeled as such. Even now,
the most widely used XC functionals, PBE [46] and the local density approximation
(LDA) [47], are orbital-free. Generically they are

Exc =
∫

dr exc[n(r),∇n, . . .] . (10)

Dependence of XC approximations upon density derivatives beyond gradients is not
a focus here. See, however, recent work by Cancioet al. [48].
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Assuming the use of an OFXC functional, onlyTs has explicit orbital depen-
dence. Thus, we seek OF approximations of the form

Ts[n] =
∫

dr ts[n(r),∇n, . . .] , (11)

where the exact result would match Eq. (8),ts[n] = torb[n]. A critical reader may
wonder, why not useT[n] rather thanTs[n]? At least two responses are relevant. All
of the roughly 40 years of effort on better XC functionals hasbeen in the KS context.
Indeed, the exactEX[n] in DFT is definedin terms of the KS decomposition, hence
so isEc. Another motivation is the Coulomb virial theorem,E0[n0] = −T[n0]. This
suggests that finding a useful approximation for the fullT[n] might be tantamount
to finding an approximation for the universal functionalE [n] [49].

With OF approximations forTs and Exc, variation with respect to the density
yields the OF Euler-Lagrange equation

δTs

δn
+

δEH

δn
+

δExc

δn
+vext ≡

δTs

δn
+vKS = µ . (12)

Hereµ is the electron chemical potential.

2.3 Single-point Approximate KE Functionals

The simplest KE approximation would seem to be Thomas-Fermi,

Ts[n] ≈ TTF[n] :=
3
10

(3π2)2/3
∫

dr n5/3(r) ≡ cTF

∫

dr n5/3(r) . (13)

But this is not a good starting approximation, despite its widespread use as such.
The point is that the von Weizsäcker KE [8],

TW[n] :=
1
8

∫

dr
|∇n(r)|2

n(r)
, (14)

is both a lower bound to the KS KE [50–53],

TW[n] ≤ Ts[n] , (15)

and is exact for one electron and for a two-electron singlet.One immediately sees
thatTTF cannot be correct in the tail region of a system as simple as a many-electron
atom, since the ionization potential theorem [54] shows that tail to be one-electron-
like. These physical arguments lead to adoption of the Pauli-term decomposition

Ts[n] = TW[n]+Tθ [n] , Tθ [n] ≥ 0. (16)

Non-negativity of the Pauli termTθ is a rigorous requirement [55–59], as is the more
demanding requirement on the corresponding potential,
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vθ :=
δTθ [n]

δn(r)
≥ 0 , ∀r . (17)

By invoking this pair of requirements, we have made two choices regarding ap-
proximate functional development. The first is to work on one-point functionals,
genericallyF [n] =

∫

dr f [n,∇n. . .] rather than two-point functionals. A two-point
or non-local OF-KE functional has the generic form

Tnonloc[n] =
∫

dr1dr2 nλ (r1)K[n(r1),n(r2),r1,r2]n
γ(r2) (18)

with λ +γ = 8/3 for a dimensionless kernelK. The kernel typically is constrained to
recovery of the homogeneous electron gas response. Commonly a form such as (18)
is used in conjunction withTTF + TW. An accessible motivation for the non-local
part is in [60]. Essentially the goal is to generate atomic and molecular electronic
shell effects in the density and corresponding Friedel oscillations in solids. While
there is clear progress on this formulation, there are problems which we prefer to
sidestep. For one, different approximate kernels so far areneeded for semiconduc-
tors, covalent systems, and metals [61–63]. The universality of DFT thus is lost.
The six-dimensional form of the kernels also sacrifices someof the OFDFT com-
putational cost advantage (e.g.remarks in [64]). Conceptually, the linear response
formulation implicitly requires a reference uniform density, an ill-defined quantity
for any un-enclosed system (an atom or molecule). And, thereare non-linear in-
stabilities with the simplest kernels (called density-independent) [65], which forces
use of more intricate, density-dependent kernels.

Secondly, we eschew heavily parametrized functionals. Just as with the XC func-
tional, no constructive route (e.g.perturbation expansion) to approximate KE func-
tionals is provided in the proofs of the DFT theorems [1–3, 11]. An option to sur-
mount that obstacle is parametrization to a large data set, as in the M-06L XC func-
tional [66], for example. But that approach inherently has limited predictive capa-
bility and limited insight into the physics omitted from thefunctional. The state
of the art for non-empirical functional construction use ofscaling relations, bounds,
asymptotics, and limiting case behavior as constraints on allowable functional forms
and parameter values. Such functionals are called constraint-based.

The third author’s 2010 NAMET talk summarized our work (withcollaborators)
on constraint-based OFKE functionals up to and through [67]. Earlier papers are
[68–70]. That talk also summarized constraint-based OF XC functional work in [71]
and subsequently in [72]. What follows picks up from there in our own work and
touches on work which has influenced us and our collaborators.

3 Progress

3.1 Non-empirical KE Functional Parametrization

The first step past the LDA is to include density gradients. But the second-order
gradient approximation (SGA) is a flawed OFKE functional; see [67]. An analo-
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gous problem in the development of X functionals led to construction of generalized
gradient approximations (GGAs). The GGA form for the OF KE is

TGGA
s [n] = cTF

∫

drn5/3(r)Ft(s(r)) . (19)

The enhancement factorFt depends on the dimensionless reduced density gradient

s :=
1

2(3π2)1/3

|∇n|
n4/3

(20)

From the form ofTW, the enhancement factor forTGGA
θ readily is found to be

Fθ (s) = Ft(s)−
5
3

s2 . (21)

Eqs. (11), (14), and (16) also yield

Tθ [n] :=
∫

dr tθ [n] , tθ = ts−
1
8
|∇n|2

n
. (22)

(Note that Eq. (9) of [67] should readtθ = torb+ 1
2

√
n∇2√n becausetorb as defined

there differs from Eq. (8), as well as a sign error. The different definition means that
in [67] ts includes a∇2n term. The outcomes are unchanged.) Positivity ofboth Tθ
andtθ [53,54,58] means that the GGA enhancement factor must obey

Fθ (s(r)) ≥ 0 , ∀r . (23)

Remarks: This is a much stronger constraint than those foundin X GGA devel-
opment. Second, Levy and Ou-Yang [58] arrive attθ > 0 by the equality of two
integrals. This involves the usual issue of energy densities, namely, omission of any
terms which would integrate to zero.

Two forms of generalized gradient approximation (GGA) for the OFKE were
treated in [67,68]. The relevant one here is

FPBEν
t (s) = 1+

ν−1

∑
i=1

Ci

[

s2

1+a1s2

]i

, ν = 2,3,4 . (24)

(The label “PBE” is solely because forν = 2 it has the same form as the PBE X
functional enhancement factor [46].) Those papers involved calibration of the pa-
rametersai andCi via matching the KS energy surface shape on very small training
sets (one to three molecules) rather than matching KE values. That calibration fixes
the main problem of prior GGA KE functionals such as from [73–77], namely viola-
tion of the Pauli potential non-negativity constraint Eq. (17) at nuclear sites. Respect
for that constraint was shown in [67,68,78,79] to be responsible for correct descrip-
tion of attractive forces, hence for prediction of molecular and solid binding. The
price is a strong overestimation of the KS KE. Though the PBE2functional proved
to be surprisingly transferable, the parametrization is not compliant with constraint-
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based development. (The PBE2 functional is not positive definite everywhere, but
the violations are in regions which are unimportant in practice.)

Recently we have devised a procedure for non-empirical calibration of a some-
what more flexible form of the enhancement factor [80]. We impose three require-
ments: (a) recovery of the second-order gradient expansion(GE) for s<< 1 [81],
hence

Ft(s) = 1+(5/27)s2 +O(s4) , (25)

(b) non-negativity of the Pauli potential vθ as per Eq.(17), and
(c) recovery of vW behavior in the large-s limit,

lim
s→∞

Fθ (s) = 0 . (26)

This last constraint follows from the character of charge densities far from any nu-
cleus and the IP theorem [54]. The form in Eq. (24) cannot meetall three constraints,
so we adopted a form which resembles the VT{84} X enhancement factor [72],

FVT84F
t (s) = 1− µs2e−αs2

1+ µs2 +(1−e−αsm/2
)(s−n/2−1)+

5
3

s2 , (27)

with m= 8, n = 4. (The “F” in VT84F simply denotes the origin of this functional
as the zero-temperature limit of a new non-interacting freeenergy functional.) The
next-to-last term in Eq. (27) meets constraint (c), so the parametersµ andα must
follow from constraints (a) and (b). The small-sexpansion gives

FVT84F
t (s) = 1+(5/3+α −µ)s2 +O(s4) (28)

whence constraint (a) yieldsα = µ −5/3+5/27. Evaluation of the Pauli potential
for small-r (from a nuclear site) from the Kato nuclear-cusp condition [82] density

n(r) ∼ e−2Zr = (1−2Zr)+O(r2) . (29)

gives vGGA
θ (r) ∼ a/r [67] wherea is a constant which depends on the specific en-

hancement factor. For the enhancement factor Eq. (27), the singular terma/r be-
comes marginally positive forµ = 2.778. That givesα = 1.2965. Note that while
we have made several design choices, there isnocalibration to experiment or to KS
calculations. Initial results from this non-empirical functional are quite encouraging,
see Subsection 3.3 below.

3.2 OF XC Functionals

We already have emphasized the critical importance of better orbital-free XC func-
tionalsExc[n], even though that is not the focus of most present-day XC functional
development. Work in [72,83–85] shows ways to make significant improvements in
GGA Ex energetics. In addition, that collaboration has presentedboth an improved
(relative to B3LYP [22] and revTPSS [86]) meta-GGA and an improved hybrid X
functional. One of these developments, the PBEmol X functional [84] is interesting
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both because of what it illustrates about the challenges of better OF XC function-
als and a challenge it brings into play for GGA OFKE functionals. We discuss the
second item below. Here we sketch the parametrization of thePBEmol X functional.

For the exact exchange functional, self-exchange must cancel self-repulsion. For
the Hydrogen atom density

n1(r) = π−1exp(−2|r|) (30)

this means
EH [n1]+Ex[n1] = 0 , (31)

Furthermore, self-correlation must vanish in a one-electron system, so

Ec[n1] = 0 . (32)

However, most approximate XC functionals have neither behavior.
The PBEmol X functional re-parametrizes the Perdew-Burke-Ernzerhoff PBE

X [46]

EGGA
x [n] = Cx

∫

dr n4/3(r)FGGA
x (s)

Cx := −3
4

(

3
π

)1/3

. (33)

FPBE
x (s) := 1+κ − κ

1+ µs2/κ
. (34)

to satisfy (31). The constantκ = 0.804 is set to satisfy the Lieb-Oxford bound [87]
and is not at issue here. For PBE,µPBE = 0.21951, chosen to recover LDA linear
response (by combination with the PBE C functional). A revised parametrization,
called PBEsol [88], uses the gradient expansion value,µGE = 10/81, to improve
the quality of calculated surface and crystal properties, but at the cost of lessened
accuracy for finite systems. The PBEmol parametrization goes in the other direction.
Enforcement of Eq. (31) yieldsµPBEmol = 0.27583. This forces a shift in theβ
parameter which appears in the PBE C functional:βPBEmol= 0.08384 versusβPBE =
0.066725 versusβPBEsol = 0.046. The result is beneficial in the sense of coming
closer to satisfying Eq. (32),

Ec,PBEmol[n1] = −0.004876 hartree

Ec,PBE[n1] = −0.005976 hartree. (35)

However, as expected from the shift downward inµ from PBE to PBEsol to improve
extended system results, the shift upward in PBEmol improves most (but not all)
calculated molecular quantities but worsens the extended system ones. The PBE
form is just too restrictive. See [89], especially the closing remark.
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3.3 Solution of the OFDFT Euler-Lagrange Equation and Local
Pseudopotentials

Eq. (16) combined withδTW/δn = −1
2n−1/2∇2n1/2 converts the Euler-Lagrange

equation (12) into a one-orbital modified KS equation,
{

−1
2

∇2 +
δTθ
δn

+vKS

}

n1/2 = µ n1/2 . (36)

This is the form which suggests that OFDFT might well be called one-orbital DFT. It
also is strongly suggestive that solution would be straightforward with a standard KS
code. At the time of the NAMET meeting, two of us (VVK and SBT) had just con-
firmed and extended [78] the antecedent finding by Chan, Cohen, and Handy [90]
that this appealing idea fails. The problem is the peculiar potential added to the ordi-
nary vKS in Eq. (36). Those GGA OFKE functionals with properδTθ /δn≡ vθ ≥ 0
exacerbate the trouble because of their inescapable positive nuclear site singulari-
ties; recall the discussion at Eq. (29) above. Direct minimization algorithms, such
as in the PROFESScode discussed below, are essential.

First, however, we deal with numerical issues related to thepotential itself. Many
codes for solving the KS equations in periodic systems use a plane-wave basis and
pseudopotentials (PPs). We include projector augmented wave (PAW) methodology
somewhat loosely in the PP category. For driving AIMD calculations, plane-wave-
PP approaches have a large advantage over methods which use nuclear-site-centered
basis sets. Such basis sets generate so-called Pulay forceswhereas a plane-wave
basis does not. Though OFDFT in principle is an all-electronmethod, efficient im-
plementation of Fourier space methods, including plane wave basis sets, requires
regularization of the nuclear-electron interaction singularity. The challenge then is
the dominance of non-local,i.e., orbital-dependent, PPs, which clearly are inappli-
cable in OF-DFT calculations. OFDFT requires local pseudopotentials (LPPs).

In the absence of normative practice for developing such LPPs for single-point
functionals, we devised a new method [78]. The LPP is constructed as a normalized
linear combination of angular momentum components (ℓ-components) of a norm-
conserving non-local PP (NLPP). The linear coefficients aredetermined by requir-
ing that the LPP reproduce some bulk property as given by the parent NLPP, for
example, the equilibrium lattice parameter of a solid. Calibration to an equilibrium
property does not, of course, guarantee that the LPP will be reliable for treating
crystalline phase transitions. We investigated this issuefor Li [91] by comparison to
all-electron results for clusters of the same local symmetry and near-neighbor dis-
tances. Both ordinary norm-conserving PPs and projector-augmented wave (PAW)
data sets used with codes such as ABINIT [92, 93], QUANTUM ESPRESSO[94],
and VASP [95–98] turn out to have relatively small reliable compression ranges.
Depending on detailed criteria, maximum compressions (with respect to ambient
density) of 1.5, 4.5, or 7 were found. Some PAW data sets include a so-called com-
pensation charge density (CCD) contribution. We found it tobe problematic at high
compressions. Omission of the CCD and use of a cutoff radius essentially half the
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standard value,rc = 0.8 bohr vs. 1.61 bohr, gave Li PAW LDA and GGA data sets
which are reliable to at least 140-fold compression.

An alternative procedure, appropriate for simple cubic Hydrogen (sc-H), is to fit
the parameters of the simple Heine-Abarenkov model [99, 100] such that a bulk
property (e.g. equilibrium lattice constant) from a more sophisticated KSbare-
Coulomb potential calculation is reproduced. Transferability of such a model po-
tential was tested up to more than 50-fold compression [101], a material density
around 25 g/cm3. The result is a cutoff radiusrc = 0.25 bohr. Genget al. [102] re-
cently gave what they characterized as a hard PAW for Hydrogen, rc = 0.794 bohr.
They justified this rather largerrc by comparison with an all-electron calculation of
Ef cc−Ebccover the range 0≤P≤ 4 TPa. Since PAW data set transferability requires
non-overlap of augmentation regions, one concludes that the Genget al.PAW could
be applicable to sc-H for a lattice constant no less than twice rc, i.e.1.588 bohr or an
sc-H density up to about 3 g/cm3. This is roughly six-fold compression as compared
to 50-fold for the PAW of [101].

Most of our OFDFT calculations have used a locally modified version of the
PROFESScode [103, 104]. Originally for use with two-point OFKE functionals
(recall brief discussion), PROFESS performs periodic OFDFT calculations. For
orbital-free AIMD, we have built an interface between PROFESSand QUANTUM

ESPRESSO[94] to utilize OFDFT forces in QUANTUM ESPRESSO[105]. As an ex-
ample, we performed static lattice KS and OFDFT calculations with the TF, SGA,
recently proposed non-empirical APBEK [106] GGA, and VT84F(recall Eq. (27))
OFKE functionals for sc-H. The left panel of Figure 1 compares KS and OFDFT
total energies per atom as a function of sc lattice constant.The TF, SGA, and AP-
BEK functionals all fail to produce binding. The new, non-empirical VT84F pre-
dicts binding with a moderately underestimated lattice constant (2.556 bohr vs.
2.773 bohr for KS, about 6%) and a too-stiff bulk modulus (175.3 GPa vs. 108.4
GPa for KS) [101]. The right panel of Figure 1 shows the pressure for sc-H as a
function of material density for the same set of functionals. At the lowest density,
ρH = 0.7 g/cm3, the TF, SGA, and APBEK OFKE pressure errors are about 200%.
The VT84F functional underestimates by about 80 %. With increasing density, pres-
sures from all the OFKE functionals approach the reference KS values, with VT84F
pressures doing so most quickly.

4 Some Interesting Issues

4.1 GGA Functional Form Limits

As mentioned already, XC GGAs cannot meet all the constraints derivable for the
exactExc. Analogously for the KS KE, Wang, Stott, and von Barth [107] have argued
that the GGA form is so restrictive that a properTs[n] cannot be obtained. Though the
argument is worth study, we do not concur with the priority ofconstraints that they



12 Karasiev, Chakraborty, and Trickey

2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1 3.2
a (Bohr)

0

0.1

0.2

0.3

0.4

T
ot

al
 e

ne
rg

y 
pe

r 
at

om
 (

eV
) KS

TF
SGA
APBEK
VT84F

1 1.5 2 2.5
ρ

H 
(g/cm

3
)

1

10

100

1000

P
 (

G
P

a)

KS
TF
SGA
APBEK
VT84F

Fig. 1 Comparison of KS and various OFDFT functionals for sc-H. All with Perdew-Zunger (PZ)
[47] LDA XC. Left: total energy per atom (shifted to zero) as a function of lattice constant. Right:
Pressure as a function of material density.

choose. Specifically, requiring recovery of the gradient expansion seems unhelpful
for systems with smallNe, the regime in which they tested.

In fact, that regime has a more severe problem. The H-atom density n1(r), Eq.
(30), used for the PBEmol parametrization discussed above,illustrates the difficulty.
BecauseTW[n1] is exact, the exactTθ must vanish,Tθ [n1] = 0. But no GGA can do
that and also satisfyFθ positivity, Eq. (23) and the relatedtθ positivity. The problem
is not just with the GGA form. In essence, one is up against therequirement that Eq.
(16) must be revised to read

Ts[n] = TW[n]+ (1−δNe,1)(1−δNe,2)Tθ [n] , Tθ [n] ≥ 0. (37)

The notation is incomplete for simplicity, since theδNe,2 applies only forNe = 2 sin-
glets. It is very difficult to imagine being able to mimic thisbehavior in an approxi-
mate functional without introducing explicit number-dependence (and its attendant
difficulties). This is an example of the explicit number-dependence issue first men-
tioned (we believe) by Lieb [3] as being an inescapable property of the universal
density functional and discussed more recently in [108].

Another issue is one we have already encountered, namely, the singularity of
a GGA Pauli potential at nuclear sites. At such sites, the exact Pauli potential vθ
calculated by inversion of the KS equations has positive, finite values [67]. The
Pauli potential from the previously published GGA functionals mentioned in Sub-
section 3.1, among them APBEK, all have negative nuclear site singularities. Those
functionals give reasonable values for the KS KE near equilibrium but they fail, in
general, to predict molecular and solid binding. In contrast, the GGA functionals we
have constructed, Eqs. (24) and (27), have positive nuclearsite singularities. Those
functionals do describe the energy surface shape reasonably well, hence predict at
least qualitatively correct binding. But the KE they give isstrongly overestimated.

Such nuclear site singularities of the Pauli potential seemto be an intrinsic prop-
erty of GGA KE functionals. The singularities can be eliminated by use of di-
mensionless combinations of higher order derivatives (reduced density derivatives,
RDDs). Definitions and examples are in [67]. The difficulty then is to find appro-
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priate functional forms for use of those RDDs. We have littleor no insight about
such forms at this point. There is also an issue of complicated functional derivatives
arising from functionals that incorporate RDDs, but this may not be much different
from what already is encountered in meta-GGA XC functionals[86].

4.2 Fitness Tests for OFKE Approximations

Many fitness tests of OFKE approximations have been devised.For years, perhaps
the most common was to evaluate the atomic or molecular totalenergy or KE for
an OFDFT expression with a KS-DFT or Hartree-Fock density asinput [109, 110].
Given our focus on AIMD-OFDFT, we have emphasized reproduction of KS bind-
ing. Specifically, given the KS solution (with a prescribedExc) for a molecule or
solid, does a particular OFKE approximation reproduce the shape of the binding
energy curve or curves (e.g.energy vs. bond length or lattice parameter) when fed
the KS densities as input? If not, then there is no sense solving the Euler-Lagrange
equation for that approximation, since it does not get the right answer (reproduce
the KS result) when fed the right density (the KS density).

Garćıa-Aldea and Alvarellos [111] have developed and used a different fitness
test. For a given approximate OFKE functionalTapprox, they define

Tapprox[n] =
∫

dr | tapprox[n(r),∇n, . . .] . (38)

analogously with Eq. (11). With that, they define a quality factor

σ [Tapprox] :=

∫

dr | ts[n]− tapprox[n] |
Ts[n]

. (39)

This allows them to consider OFKE approximations which differ by Laplacian-
dependent terms that may, in general, alterδTapprox/δn without altering the value
Tapprox[n] delivered for a particularn. See their work in [112] as well as the work by
Cancioet al.mentioned earlier [48]. In essence they consider the admixture

tapprox,α := tapprox+α∇2n . (40)

In [111] α was optimized by minimizingσ [Tapprox,α ] over Slater-type-orbital atomic
densities for the ten lightest atoms and the resulting quality factors for 21 OFKE
functionals were compared. The remarkable conclusion is that TF, Eq. (13), aug-
mented by a Laplacian term withα = 0.167, is best.

The difficulties with this outcome are evident. The TF functional suffers from the
Teller non-binding theorem [9]. It is clearly wrong forNe = 1 and singletNe = 2.
And our calculations on simple cubic H [101] show that it gives total energy errors
per atom of the order of 40% at roughly 4-fold-compression and substantial pressure
errors (factor of 2 or worse) up to about the same compression. Recall Fig. 1 and
associated discussion above. We therefore are unconvincedthat the quality factor
Eq. (39) is useful in functional development.
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4.3 Information Theoretic OFKE Functionals

Two papers [113,114] put forth a novel and intriguing information-theoretic orbital-
free form for the zero-T KE functional (see the chapters of Hamilton and Delle Site
for related developments). Its ancestry lies in the Sears-Parr-Dinur analysis [51].
Consider theNe-fermion wave function and write

NeΨ ∗(r1 . . .rNe)Ψ(r1 . . .rNe) = n(r1) f (r2 . . .rNe‖r1) . (41)

This decomposition isolates the density, which is the identifier of the equivalence
classes of states in the Levy-Lieb constrained search formulation of the universal
functional [2, 3]. Thus one can, for example, do constrainedsearch Monte Carlo
calculations [115] on the conditional factorf (r2 . . .rNe‖r1). The total KE then is

T[Ψ ] =
1
8

∫

dτNe

|∇1n f |2
n f

= TW[n]+
1
8

∫

dr1dτNe−1
|∇1 f (τNe−1‖r1)|2

f (τNe−1‖r1)
. (42)

(The spaceτNe−1 is compact notation for all the electron coordinates butr1.) In [115]
a model form for f (τNe−1) was constructed by considering necessary conditions
on theNe-fermion wave function in conjunction with Monte Carlo sampling on
the homogeneous electron gas over a finite range of comparatively high (in our
experience) densities 0.55≤ rs ≤ 1.81. The result was a proposed KE functional
which, in our notation, is

TGDS08[n] = TW[n]+
∫

drn(r)[A1 +B1 lnn(r)] (43)

with A1 = 0.860±0.022 andB1 = 0.224±0.012. A later, more refined version of the
trial conditional probability function modeled the behavior of high-density fermion
pairing [114]. Monte Carlo sampling gave what we called the GHDS10 functional,

TGHDS10[n] = TW +TTF +
∫

drn(r)[A2 +B2 lnn(r)] , (44)

with A2 = 1.02 andB2 = 0.163. Both functionals have an evident information-
theoretic structure.

As proposed, there is an unfortunate flaw in both these functionals if they are
used in the universal sense, namely they violate various positivity constraints out-
side certain density ranges [116]. The analysis in [116] ledto a proposed modified
information-theoretical form that also is positive definite. The challenge is how to
implement that modified form, since it relies on the use of a maximal bounding
function for the density. The examples given in [116] sufficefor the mathematical
purposes of that paper but are not practical. A related result is that the TF functional
can be written

TTF = cTF

∫

dr
(

n+
2
3

nlnn

)

+
2
3

cTF

∫

drnlnnL [n] . (45)
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with L [n] :=(2cTF/3)
∫

drnlnn∑∞
j=1

1
( j+1)!

(

2
3 lnn

) j
. With this, the von Weizs̈acker

plus parametrized Thomas-Fermi model,

TWTF[n] = TW[n]+ γTTF[n] , 0≤ γ ≤ 1. (46)

can be rewritten as

TWTF = TW + γcTF

{

Ne+
2
3

∫

drnlnn

}

+
2
3

γcTF

∫

drnlnnL [n]

= TGDS08+∆T . (47)

This result is suggestive of a possible route to an improved functional. One would
combine Monte Carlo data with formal constraints so that thelast line would be
replaced, for example, by an improvement onTGDS08 such that the∆T piece would
be minimized in some sense (e.g.,for a class of densities). How to give these vague
but appealing ideas a useful form is not apparent to us at thistime. Notice also the
explicit Ne-dependence in (47), a reminder of our earlier discussion.

4.4 Scale Function and Local-scaling DFT

Uniform scaling, r → λr, with λ a constant, is much-used in DFT to establish for-
mal properties of density functionals via the scaled density nλ (r) = λ 3n(λr) [117].
Local-scaling transformation (LST) DFT [118–120] insteadexploitsnon-uniform,
isotropictransformations

r → g(r) := λ (r)r , (48)

whereλ (r) is a local-scaling function. LST generates a set of density-dependent
orbitals from an arbitrary initial set{ψi(r)}Ne

i=1 by means of a unitary operation̂Ug

φi([n];r) = Ûgψi(r) :=
[

J(g(r);r)
]1/2ψi(g(r)) . (49)

HereJ is the Jacobian of the transformation

J(g(r);r) = det

[

∂gi

∂ r j

]

=
n(r)

nψ(g(r))
, (50)

with i, j = {x,y,z} andnψ = ∑i fi |ψi |2. The KE corresponding to the set of orbitals
Eq. (49) is a functional of the density [120,121]

Ts[n,{ψi}Ne
i=1] = TW[n]+

1
2

∫

drn5/3(r)ANe([n];r) , (51)

with parametric dependence on the initial set of orbitals{ψi(r)}Ne
i=1. ANe clearly is

a Pauli term enhancement factor, Eq. (19), constructed in terms of the densityn,
transformed variableg, and the initial orbital set{ψ} [118].

Interestingly, Xia and Carter [63] use a scalarlocal scaling function F for a
different purpose, namely to decompose the density into delocalized and localized
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parts
n(r) = ndel(r)+nloc(r) := F([n];r)n(r)+(1−F([n];r))n(r) . (52)

This decomposition, together with a simple model for the localized KE (parametrized
Thomas-Fermi plus von Weizsäcker) enables them to use the two-point Wang-
Govind-Carter (WGC) functional [122, 123] for the delocalized density alone. The
WGC functional is well-adapted to that type of density. Thus,Xia and Carter con-
struct a broadly useful two-point KE functional.

In the Euler-Lagrange equation for their functional, Xia and Carter neglect the
functional derivativeδF/δn, although the form used clearly is a density functional
(it is tabulated numerically with the ratio of the density tothe average delocalized
density as the argument). Instead, they treatF as a simple function ofr and evaluate
its density dependence by introducing an extra self-consistent loop. The effect is
that they reach anF for which δF/δn ≈ ∆F/∆n = 0, with the finite increments
being iteration-to-iteration differences in the extra loop. Clearly their solution is
special, since their functional does not have zero functional derivative in general.
We have devised an analyticalF which resembles the Xia-Carter form but uses a
fixed reference delocalized density. Thus it is easy to differentiate functionally. At
this writing we have just begun to explore it. More broadly, one may contemplate
reverse engineering of the Xia-Carter KE functional to uncover the local scaling
transformation to which it corresponds.

5 A Few of the Challenges Ahead

One of the most difficult problems faced by the orbital-free agenda at present is
the XC functional. From both the work with our collaboratorsin México as well
as others (e.g., [89] and references therein), it is clear that simple GGA forms do
not suffice. Broadly, in simple GGAs for XC what betters molecular predictions
worsens those for solids. Whether some quite complicated GGAform exists that is
equally good for both system types is unknown. The conventional wisdom seems
to be that it does not. But the arguments behind that conventional wisdom tend
to rely either on the operational failure of simple forms (the molecular properties
versus solid properties issue) or on the observation that there are rigorous constraints
on the exactExc which give contradictory requirements on a GGA. An example
is the contradictory limiting behavior lims→∞ FGGA

x (s) discussed in [72, 84]. But
such contradictions so far have not impeded the developmentof better functionals
because it has been possible to determine which constraintsare relevant to real-
system properties.

On the KE functional side, we already have mentioned the embarrassment of
riches challenge posed by the reduced density derivatives which suppress, at least to
some order in the gradient expansion, nuclear site singularities in vθ . We reiterate
the challenge here. In [67] there is a set of RDDs which are candidates for indepen-
dent variables in beyond-GGA OFKE functionals. Since the paper by Perdew and
Constantin [124] on a meta-GGA OFKE functional and our own work [67], there has
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been little progress on conditions and constraints for constructing RDD-dependent
OFKE functionals. Although Perdew and Constantin parallel, broadly speaking, the
route from a GGA to a meta-GGA for XC, it is not clear that the approach is best.
In a GGA for the OFKE, there is only one variables, so the effect of exact con-
straints can be worked out comparatively straightforwardly. Since there are many
higher-level RDDs, it appears that one must select some subset of them, then work
out the consequences of exact constraints for a general enhancement which depends
on that specific set of RDDs. Perdew and Constantin [124] pickeds and a reduced
Laplacian, for example. Any choice, of course, leads immediately to the issue of the
criteria. We have no new, substantive insight on that at the moment.

A different possible route forward is that all current OF-DFT functionals fail to
satisfy the differential virial relationship between the KE and XC functional [117].
In principle, OFKE and OFXC functionals should be paired. Wecurrently are inves-
tigating whether a useful RDD-dependent OFKE functional can be generated from
a reasonably good GGA XC functional.

Finally, back at the refinement level of GGA OFKE functionals, now that we
have the breakthrough of one non-empirical parametrization of a properly positive
definite functional [80], there is an opportunity to improvethat scheme. Almost
certainly it is not optimal. Again, routes to improvement are not totally obvious.
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112. D. Ǵarcia-Aldea and J.E. Alvarellos, Phys. Chem. Chem. Phys.14, 1756 (2012).
113. L. Delle Site, Eur. Phys. Lett.86, 40004 (2009); erratumibid. 88, 19901 (2009).
114. L.M. Ghiringhelli, I.P. Hamilton, and L. Delle Site, J. Chem. Phys.132, 014106 (2010).
115. L.M. Ghiringhelli and L. Delle Site, Phys. Rev. B77, 073104 (2008).
116. S.B. Trickey, V.V. Karasiev, and A. Vela, Phys. Rev. B84, 075146 (2011).
117. M. Levy and J.P. Perdew, Phys. Rev. A32, 2010 (1985).
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