) &%, PURPOSE-LED
Electronic Structure “f# PUBLISHING™

TOPICAL REVIEW « OPEN ACCESS You may also like

Free-energy orbital-free density functional theory: Gitiionimeicon wbitice

and mixed-stochastic-deterministic density

recent developments, perspective, and outlook functional theory

Alexander J White

- Orbital-free approach for large-scale
electrostatic simulations of guantum
nanoelectronics devices

Waldemar Svejstrup, Andrea Maiani,
Kevin Van Hoogdalem et al.

To cite this article: Valentin V Karasiev et al 2025 Electron. Struct. 7 013001

- Discovery of magnesium-aluminum alloys
by generative model and automatic
differentiation approach
Shuwei Cheng, Zhelin Li, Hongfei Zhang
etal.

View the article online for updates and enhancements.

This content was downloaded from IP address 128.227.251.1 on 12/02/2025 at 18:27


https://doi.org/10.1088/2516-1075/adadd4
/article/10.1088/2516-1075/adad24
/article/10.1088/2516-1075/adad24
/article/10.1088/2516-1075/adad24
/article/10.1088/2516-1075/adad24
/article/10.1088/1361-6641/acbb9a
/article/10.1088/1361-6641/acbb9a
/article/10.1088/1361-6641/acbb9a
/article/10.1088/1361-651X/ad38d0
/article/10.1088/1361-651X/ad38d0
/article/10.1088/1361-651X/ad38d0

10P Publishing

@ CrossMark

OPEN ACCESS

RECEIVED
17 September 2024

REVISED
12 December 2024

ACCEPTED FOR PUBLICATION
23 January 2025

PUBLISHED
10 February 2025

Original Content from
this work may be used
under the terms of the
Creative Commons

Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOL.

Electron. Struct. 7 (2025) 013001 https://doi.org/10.1088/2516-1075/adadd4

Electronic Structure

TOPICAL REVIEW

Free-energy orbital-free density functional theory: recent
developments, perspective, and outlook

Valentin V Karasiev"* (), Katerina P Hilleke' ©® and S B Trickey’

1 Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, NY 14623, United States of America

2 Quantum Theory Project, Departments of Physics and of Chemistry, University of Florida, Gainesville, FL 32611, United States of
America

* Author to whom any correspondence should be addressed.

E-mail: vkarasev@lle.rochester.edu

Keywords: noninteracting free-energy, exchange-correlation free-energy, pseudo-potentials, orbital-free density functionals

Abstract

By summarizing the constraint-based development of orbital-free free-energy density functional
approximations, we provide a perspective on progress over the last 15 years, the limitations of
existing functionals, and the challenges awaiting resolution. We outline the chronology of the
development of noninteracting and exchange-correlation free-energy orbital-free functionals and
summarize the theoretical basis of existing local density approximation, second-order
approximation, generalized gradient approximation (GGA), and meta-GGAs. We discuss
limitations and challenges such as problems with thermodynamic derivatives, free-energy
nonadditivity and the closely related issue of all-electron versus valence-only local
pseudo-potential performance.

1. Setting

For predictive computational treatment of materials and their molecular ingredients, it is hardly an
exaggeration to say that density functional theory [1-7] has been the single most influential theoretical
innovation. This is not to denigrate explicit wave-function methods such as coupled-cluster theory and
configuration interaction [8—12] but to emphasize the well-known fact that the scaling of their
computational costs with the number of electrons N, is quite high, typically O(N¢) or worse. There are
better-scaling versions but, to our knowledge, they all exploit the existence of a gap or of sparsity, either
explicitly or implicitly. For studies involving both metallic materials and molecular (or atomic) constituents,
such improved scaling is of no avail. Explicit wave-function methods thus are almost always prohibitively
costly unless the scope of the study is restricted severely.

It is perhaps less-well appreciated that somewhat the same issue increasingly distinguishes DFT usage in
materials physics from quantum chemistry. In quantum chemistry applications it is common to use
exchange-correlation (XC) density functional approximations (DFAs) that depend upon the Kohn—-Sham
(KS) orbitals (or generalized KS orbitals; the distinction does not matter here). The B3LYP [13] DFA is the
molecular exemplar. Use of DFAs with more complicated orbital-dependencies is not rare in chemistry. A
careful discussion of the distinct computer cost disadvantage of such DFAs for materials simulations is in
sections 2.2.21-23 of [14]. Essentially the issue is the cost scaling of orbital-independent DFAs. In ordinary
KS calculations it is oc O(N?). Even single-determinant orbital dependence pushes that to oc O(N?). This
sort of cost scaling is, of course, a well-known motivation for orbital-free DFT [15].

In the usual electronic structure context, state conditions typically go undiscussed. Almost all ordinary
chemistry and much of materials physics is done at temperature T < 2000 K (2 0.172 V) and P < 1 kbar,
i.e. at near-ambient conditions. A practical consequence is that the Fermi—Dirac occupation number
distribution is a step function (f; = 1 for ¢; < er and f; = 0 otherwise). DFT calculations with electronic
temperature equal to 0 K at such near-ambient conditions therefore generally are adequate.

Dramatically higher T and P occur, however, in some important system types. Giant planet and
exo-planet interiors are one example [16]. Another is warm dense matter (WDM), a material regime on the

© 2025 The Author(s). Published by IOP Publishing Ltd
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pathway to inertial confinement fusion (ICF) [17]. WDM can have a wide range of temperatures T ~ 1—100
eV (with 1 eV = 11604.5 K) and P up to several Mbar. Clearly this is a completely different state-condition
domain.

High T and P implicates electron populations that are highly excited compared to the ground state but
not so highly as to be treatable as a classical two-component plasma with quantum corrections. Given the
success of ab initio molecular dynamics (AIMD) at chemically ordinary T and P, the obvious step for high T
and P is to go to free-energy DFT [18] as the electronic structure driver of the AIMD. For simplicity, here we
assume the ion temperature, Tj, is set independently and is irrelevant to the discussion.

With respect to ground-state DFT, it suffices to say that free-energy DFT differs in three basic ways. First,
there are non-zero Fermi—Dirac occupations for bands above the Fermi level (f; > 0, for €; > €5). Thus, the
minimizing number density becomes temperature-dependent n(r, T). Second, the noninteracting kinetic
energy Ts[n] defined by the KS decomposition becomes the noninteracting free energy F[n; T] = T;[n; T]]
—T&;([n;T], with 75 and S, the temperature-dependent noninteracting kinetic energy and entropy
respectively. Third, the XC energy becomes the XC free energy Fx.[n; T| with explicit T dependence as well as
implicit from the density n(T). Though the finite-T KS equation has the same form as in the ground-state,
the XC potential obviously is the functional derivative of Fy [n; T].

For computational studies, the addition of T to P and V (system volume) as system state parameters
necessitates more simulations than in the ground state. Inexorably, however, going to free-energy DFT in
conventional KS form worsens the cost-scaling because the number of numerically significant non-zero f i
and associated number of thermally occupied bands N, that must be taken into account typically is much
larger than the number of electrons, Ny, > N.. That leads to the high-T limit scaling o« O(N>T?). Here N is
the system size in terms of number of electrons, number of atoms, or system volume [19]. There have been
and continue to be attempts to get around that enlarged burden [20-23]. The close structural and conceptual
kinship of free-energy DFT and the ground-state form make it obvious that orbital-free DFT would bestow
the same kind of near-linear scaling & O(NIn N) benefits, irrespective of temperature [23, 24].

This paper focuses on progress in free-energy OF-DFT since 2012. For the earlier record see [25]. We
write from the perspective of being developers of useful, constraint-based free-energy and OF-DFT
functionals. Formal theory development, in that perspective, is largely motivated by or required by the
functional development process [26]. Section 2 introduces the background and basis of free-energy OF-DFT.
Section 3 describes approximate noninteracting free-energy orbital-free functionals starting from the
simplest, Thomas—Fermi, and continuing with the generalized gradient approximation (GGA) and
meta-GGA frameworks based on the second- and fourth-order finite-T gradient expansions respectively.
That section is focused mostly on one-point (or semi-local) functionals. Non-local (two-point) functionals
are discussed briefly at the beginning. The section also includes an example of the comparative performance
of semi-local orbital-free functionals applied to the dense deuterium equation of state. Section 4 reviews
progress on the development of XC free-energy orbital-free functionals compatible with both orbital-free
and conventional (orbital-based) KS schemes. Three subsections review the development and status of
free-energy local density approximation (LDA), GGA, and meta-GGA XC functionals, including some
aspects and additional considerations not covered by the respective original publications. Section 5 discusses
two issues for free-energy OF-DFT that are especially relevant for WDM applications: use of all-electron (AE)
local pseudo-potentials (LPPs) as required at very high temperatures, and the related issue of nonadditivity
of orbital-free noninteracting kinetic-/free-energy density functionals. Section 6 concludes the survey.

2. Basics

As with the ground state, there are two distinct tasks facing free-energy OF-DFT, to get adequate
approximations for the noninteracting free energy J and for the XC free energy Fy.. This implicates the
obvious requirement that one either has appropriate ground-state OF-DFT T and E,. functionals or else one
must make the free-energy versions have accurate ground-state limits. Either way, ground-state OF-DFT
development is directly involved. We proceed in that context.

Consider a system of N, electrons in the external potential ve,({R};r) of ions at positions {R}. At T =0
K, assuming the conventional KS decomposition of the total electronic kinetic energy into the noninteracting
term, T[n], plus a remainder included in the XC Ex[n] term, the DFT total energy orbital-free density
functional has the form

E[n] = Ts[n] + Eu [n] + Exc [n] + /n (1) Vext (r) dr + Eion ({R}) , (1)

where Ey[n] is the Hartree repulsion, and E;o, ({R}) is the ion-ion electrostatic repulsion.

2



10P Publishing

Electron. Struct. 7 (2025) 013001 V V Karasiev et al

At finite-T, the total energy equation (1) is replaced by the grand canonical potential of the system
(explicit T-dependence is suppressed for simplicity)

) = F (1] + [ 1) (s () = i)+ Eun (R)). @
with p the chemical potential, and F[n] the universal free-energy functional
Fn] = Fs[n]+ Eu[n] + Fx[n] . (3)

The variational minimization of £2[n] with respect to the electron density gives the single Euler-Lagrange
equation

0Fs[n]  OEuln] dFx[n]
on(r)  dn(r) on(r)

0F[n
on(r)

+ Vext (1) = + ks ([n];1) = p. (4)

The first critical ingredient is a suitable approximation for Fs, the counterpart to Ts[#] in the ground
state. The most widely used approximations have been finite-T Thomas—Fermi [27] and the second-order
gradient approximation (SGA). Both are local (one-point) approximations based upon the homogeneous
electron gas (HEG). The T = 0 K second-order gradient correction to TF was generalized to finite-T by
Perrot [28] more than 40 years ago, while TF-based finite-T AIMD studies first appeared almost 30 years ago
[42, 43]. Despite the fact that TF and SGA obviously are far from satisfactory on fundamental grounds, they
continue to be used [44—47]. The deficiencies are non-trivial. Teller [48] proved that the zero-T limit of the
TF functional has no bound systems. The SGA functional may fail to predict detectable energy minima for
extended systems; examples are provided in [29, 49]. Moreover, the SGA functional may introduce
divergences or numerical instabilities in the interstitial and asymptotic regions where the electron density
decays exponentially, leading to exponential increase of the SGA effective enhancement factor. It is
proportional to the square of the reduced density gradient s defined in equation (14) below. (Remark:
Peculiarly, many finite-T TF or SGA-based papers state, incorrectly, that OF-DFT is defined by the use of
those functionals.)

In 2012, Karasiev et al [29] presented a framework for generalizing a ground-state GGA KE density
functional (KEDF) into a gradient-dependent F, thereby connecting with modern ground-state OF-DFT.
They demonstrated the workings and effectiveness of that scheme by use on their semi-empirical PBE2 GGA
KEDFE. A bit over a year later, VT84F, the first non-empirical, constraint-based finite-T GGA KEDF, was
presented [30]. By construction it has both proper T = 0 K limiting behavior and large-T behavior. Below we
discuss progress since.

The second critical ingredient in equations (2)—(4) is an orbital-free approximation to F.. A common
approach is to use the ground-state approximation (GSA). In it, the XC free energy is evaluated by use of a
ground-state T-independent functional evaluated with the finite-T density Fy [n; T] = Exc[#(T)]. The
approach obviously has only an implicit T dependence. Lacking explicit XC thermal effects, the GSA is a
demonstrably unreliable approach in a range of thermodynamic conditions across the warm dense regime.
See [36, 40, 50, 51] among others. Such discrepancies arise in part because the GSA completely misses the XC
entropic contribution. The total entropy of the system therefore is given, incorrectly, by the noninteracting
term alone. Poor description of other XC temperature effects can lead to large errors (up to 20% or so) in, for
example, predicted equations of state (EOS), depending on the system and state conditions. See examples in
[36]. The consequence is that such DFT/GSA data are thermodynamically inconsistent, for example, with
path integral Monte Carlo (PIMC) results. In short, there can be qualitatively different behavior from a GSA
as compared to a properly thermal XC approximation of the same level of refinement as to functional
variables.

Below we describe developments of the thermal LDA, GGA, and additive meta-GGA XC functionals, and
summarize recent efforts to remove orbital dependence from modern ground-state meta-GGA E. forms
(‘de-orbitalize’ them) as the predicate to generalizing them to T > 0 K.

As guidance to the discussion that follows, the essential chronology of development of T =0 K
orbital-free free-energy functionals, F; and F, is displayed in table 1. With recent developments of the
meta-GGA formalism for noninteracting free-energy and XC free-energies, finite-T OF-DFT has reached the
same level of structural refinement as ground-state OF-DFT.

3. Noninteracting free energy orbital-free functionals

As in the zero-T case, the noninteracting free-energy density functionals fall into three classes (i) one-point
functionals consisting of local (i.e. Thomas—Fermi) and semi-local (GGA, meta-GGA); (ii) non-local
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Table 1. Time line of modern noninteracting and XC orbital-free free-energy density functional development.

Year Functional Reference

1949 Thomas—Fermi Feynman et al [27]

1979 Second-order gradient expansion F Perrot [28]

2012 GGA formalism for constructing F Karasiev et al [29]

2013 VT84F GGA F; Karasiev et al [30]

2013 Non-local (2-point) F Sjostrom and Daligault [31]
2020 LKT GGA F; Luo et al [32]

2024 Non-local (2-point) XWME F; Ma et al [33]

2024 meta-GGA formalism for constructing F; Karasiev et al [34]

& DEL and PGSLr meta-GGA F;

2014 KSDT LDA Fic Karasiev et al [35]
(see [36] for the corrected corrKSDT version)
2014 Additive GGA Fyc Sjostrom and Daligault [37]
2017 GDSMFB LDA, minor corrections of KSDT LDA? Groth et al [38, 39]
2018 KDT16 GGA Fx. Karasiev et al [36]
2022 Additive meta-GGA Fxc Karasiev et al [40]

2 Refinement of KSDT XC to match improved Monte Carlo data for the homogeneous electron gas (HEG) at finite-T and correct a
minor fitting error. The practical equivalence of GDSMFB to KSDT is discussed in detail in [41].

(two-point) functionals; and (iii) emerging machine-learnt free-energy functionals [52]. Besides their
explicit temperature dependence, local and semi-local functionals depend on density (LDA rung), density
and density gradient (GGA rung), and density, density gradients and density Laplacian (meta-GGA rung).
(Remark: The ‘rung’ typology parallels the ground-state XC ‘Jacob’s ladder’ introduced by Perdew and
Schmidt [53].)

Here we focus discussion mostly upon one-point functionals. They have received far more attention
because their form provides both ready enforcement of constraints and computational simplicity (which
thereby broadens their applicability). However, a brief review of two-point finite-T functionals is provided in
section 3.4. Detailed treatment of ground-state two-point functionals is in [15].

3.1. Thomas—Fermi noninteracting free-energy
The grand potential equation (2), evaluated for the noninteracting HEG of constant density # in volume V,
gives the HEG noninteracting free-energy in terms of the Fermi-Dirac integrals I, (1) [27, 29, 54]

HOHEG N
FIEG (n, T) = Q6 (n) — o (au(n))TV: 2FR {—313/2 (Bu) + Buly 2 (Br) | (5)

)

where 3 = (kgT) ™. I is the FD integral [54]

oo X
Ia('f]):/ov &m, a>—1
1d
Ia—1(n) = ad*nfa (n) - (6)

The chemical potential  is determined from

109 V2

Vo v = 77T253/211/2 (Bu) - (7)

The LDA noninteracting free-energy, i.e. the finite-T TF density functional, is obtained by integrating the TF
free-energy density corresponding to equation (5) with the local density substitution #n — s(r):

Ft ol = [ £ ) D). ®)
Here

fE(n(r),T) = 7r2\ﬂ/§/2 [— 213/2 (Bu) + Budy /2 (Bu) ) 9)

n=n(r)
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Figure 1. Behavior of functions x(t), £(#) and {(¢). Reprinted figure with permission from [29], Copyright (2012) by the
American Physical Society.

and the local chemical potential 1 is defined by n(r) through equation (7). After some algebra, equation (9)
takes the factorized form

L5, T) = 76" (n) 5 (Bp) (10)
with 77 (1) = 0.3(37%)%/*1*/% and

5(3 A
w0 =3 (3na) | -2natn+ but2 0. 1)

In terms of the reduced temperature, t = T/Ty = 2/3[37>n]*/> (with T = 2kg/[37°n]>/? the Fermi
temperature), equation (7) can be transformed to

nm?pi 2

V2 T o3p/27

Given that I, /,(B) is a strictly increasing function as (31) increases and taking into account that I, /, (B) is
a function of t (equation (12)), we conclude that (S1) is a function of ¢ also. Hence () in equation (11) is
a function of ¢ as well (further details are in [29]). The noninteracting entropic and kinetic energy densities
can be found from equation (10) by invoking the standard thermodynamic relations

ol (n,t) = —0ffF /OT|, = 74F (n)((¢) and where the kinetic and entropic t-dependent dimensionless factors
& and ( are related by the standard thermodynamic relation leading to the following relations between ¢
dependent functions, £(t) = k(t) — t0k(t) /Ot and ((t) = —t0k(t) /Ot.

Figure 1 shows &, &, and ( as functions of the reduced temperature. The kinetic energy ¢t-dependent
factor £ reduces to unity in the zero-T limit, hence the finite-T Thomas—Fermi kinetic energy reduces
properly to the ground-state TF kinetic energy density 7, F (1). As expected, the entropic ¢ factor vanishes in
the zero-T limit. Both £ and ¢ functions are non-negative, so both the kinetic and entropic terms are
non-negative. The noninteracting free-energy function x becomes negative at t ~ 0.54 when the entropic
term becomes dominant.

(12)

Ly (Bu) =

3.2. Second-order gradient expansion and GGA framework
The second-order gradient correction to the Thomas—Fermi functional equation (10), developed by Perrot
[28], takes the form of the zero-T correction scaled by a function of the reduced temperature

5 ~
£ (m, V1) = 7 (n) =B(1), (13)

where
s:=|Vnl|/2 (371'2)1/3n4/3 (14)
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is the dimensionless reduced density gradient that is used as a variable in both ground-state GGA
noninteracting kinetic energy functionals and XC functionals. The dimensionless function B is a
combination of Fermi—Dirac integrals (also see [54]). As such B is a function of Sy or a function of ¢:

_ Ly (Bp) 132 (Bp) .

B(t)=-3 2, () (15)

The result is the second-order gradient expansion (or second-order gradient approximation)

£ (1,9, ) = 7% () (1) (1+s (8) /x )) , (16)

Equation (16) can be rendered in the usual GGA form, namely as the LDA energy density times an
enhancement factor which is a function of another dimensionless variable

fSGE2 (n,Vn,T) = STF (n, T) Fe (s¢) (17)
with
s:= " B(t) /(1) (18)

being the temperature dependent noninteracting free-energy reduced density gradient. As is evident from
figure 1, s¢ defined in this way has a pole when £(#) crosses zero. This bit of analysis led to construction of the
finite-T GGA framework in [29], with the kinetic and entropic contributions treated separately, to wit

L ¢ 5, ¢t dB(1)
n:fTo (n)¢(1) <1 27 C() i > (19)

OfEE (n,Vn,T)
oT

o S¥ (n,Vn,T) = —

With 7,582 = fGE2 4 T GE2 one then has

755 (n,Vn,T) = 7. (n) £ (¢) x <1+27 gz)[ﬁ(t) tdB()D. (20)

Then by defining the kinetic and entropic T-dependent reduced density gradients as

B(t) —tdB(t) /d
5 (L, T) = s(n, W) | 2B ~14B() /dt
£(1)
tdB (t) /dt
5o (1, Vn,T) =s(n,Vn) ﬁ, (21)
(1)
one has the noninteracting free-energy composed of generalizations of the SGA kinetic and entropic
contributions equations (19)—(20)
FON )= [ ()€ () (5,
- [ COF () dr. @)

In these expressions, F, and F, are the noninteracting kinetic energy and entropic enhancement factors
dependent on the reduced density gradients s and se respectively. The two enhancement factors are not
independent. In the GE2 case, F¢"(s;) = (14 55s2), F¥(s,) = (1 — 2s%), thus the two factors have the
simple relationship

ES® (x) =2—ES® (x). (23)

In fact, equation (23) is an accurate approximation in the general case [29], so that for a specified F, (s, ), the
entropic enhancement factor is

Fy(ss) =2 —F; (o) - (24)
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A consequence of this approximation is that the two terms in equation (22) do not preserve a strict
interpretation as the kinetic and entropic contributions. However, the difficulty is resolved by invocation of
the standard thermodynamic relation, such that the two contributions are given by

SGGA _ OF A
s oT Inyv
TN = FOOA + TSN (25)

Equations (15), (21), (22), (24) and (25) define the framework for constructing noninteracting
free-energy density functionals at the GGA level of refinement that was developed in [29]. By use of that
procedure, virtually any ground-state GGA noninteracting kinetic energy functional can be extended to
finite T. Three steps are required, (i) select a ground-state functional with its kinetic energy enhancement
factor given by F,(s); (ii) construct the finite-T kinetic energy enhancement factor as F, (s, ) = Fy(s, ); (iii)
construct the entropic enhancement factor as F, (s5) =2 — F- (s, ).

In addition to the functionals presented in [29], there are two successful examples of construction of
noninteracting free-energy functionals obtained from the constraint-based ground-state kinetic energy via
the foregoing procedure. One is VT84F. It is constrained to satisfy various positivity conditions on the
so-called Pauli potential, including for densities that have a proper Kato cusp [55]. Its form is

2 —asi
FYTSF (g y =1 — Hs7€

m/2 5
1 — e ) ( —n/2 _ 1) 22 26
s +(1-e s, +12, (26)

withm=8,n=4, u=2.778 and a = u — 5/3 + 5/27. The other is LKT [32], specifically adapted to use with
local pseudopotentials. It has the very simple enhancement factor

5 1
FRT (5,) = =42

—_— 2
371 oh (as;)’ @7

with a =1.3.

3.3. Fourth-order gradient expansion and meta-GGA functionals

The fourth-order gradient expansion (GE4) for the noninteracting free-energy density of a weakly
inhomogeneous electron density at any T, {55 (1, Vi, V2, T) = fO2(n, Vi, T) + £V (n, Vi, V21, T), was
derived by Geldart and Sommer [56, 57], and Bartel e al [54]. The Laplacian-dependent fourth-order
correction is

8§ ,~ 1, ~ 8 4~
i (n,Vn,V?n,T) = 77" (n) aqzC— §squ—|— %54E . (28)

In it, the dimensionless reduced density Laplacian is given by
q:=V2n/a (322)" w3, (29)

(Remark: In a few of the orbital-free KE papers what is denoted here as g was denoted as p. But in most of the
DFT literature, p := s> and q is as in equation (29), so we have used those definitions here.) As in the GE2
case, C, D, and E are combinations of Fermi-Dirac 7-dependent integrals, making them functions of the
reduced temperature ¢

N 5x31/3 o0 [125,0)  11.5,(n)
C=— 0| 3 : (30)
211/3 1/2 913,1/2 (77) 51271/2 <77)
Bn) = 5% 23 g ) EREVAC) L BLsp (M52 (n) B (31)
il B 10 ) E,,m|’
and
E(n) = 5x3"° s )| =L e () 1 Esplspt) 1 I,0
22/3 7172 96 14,1/2 (m) 15 1(11/2 (n) 72 17*1/2 ()
VIspmIgnm) 1 12*5/2 (n)
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where 7 = Sp. In parallel with equations (19)—(22), by invoking the standard thermodynamic relation, the
fourth-order entropic and kinetic terms are defined as [34]

1 8 1 8
(4) 2 _ 1 85 1, _ 4
o (1,90 T0T) = 1 ()0 [ (O 300 sder 0] . 09
and
78 (1, Vn,V?n,T) = 70" (n) € (1) x iqzc (t) — lszqd (1) + 8 g (t) (34)
S ) ) 9 0 81 T 9 T 243 T .

Two sets of t-dependent functions in equations (33) and (34) involve derivatives of the functions C,D,and E,
and define temperature dependences of the fourth-order gradient term

(1) = C(tt)dff)
o (1) = C(tt)‘“ift) ,
e (1) = C(tt)dit) (35)
and
¢ 0= 20 - diﬁ”] ,
40 = 55 [P0 - D0
er (1) = ?10 _E(t)—tdﬁdﬂ , (36)

for the entropy and kinetic energy densities respectively.

The ground-state noninteracting kinetic energy meta-GGA enhancement factor 5,q)
depends on the dimensionless reduced density gradient and Laplacian variables, s, equation (14), and g,
equation (29). The meta-GGA noninteracting free-energy functional, by analogy with equation (22), has the
kinetic and entropic terms with respective second- and fourth-order temperature dependencies incorporated
via dimensionless variables equations (21), (35) and (36)

MGGA—GSA
F; (

]_-SMGGA [n] — 7;MGGA [n] _ TSSMGGA [1’!] =
[ A WEOF. (a. (b drer ) dr-

/ T (1) C (1) Fy (5, {bors sl 0 ) d, (37)

where the second-order kinetic and entropic temperature dependent functions b, (¢) = [B(t) — tB'(1)] /£(1)
and b, (1) = tB(t) /¢ (t) are introduced such that s, and s, equation (21) can be represented as
s¢(n,Vn,T) =s(n,Vn),/b,(t) and.

The kinetic and entropic enhancement factors in equation (37) are related as

FD' (Sapv{bavcovd07eo}) R.‘JZ_P“I' (S,Pa{baacaadcraea}) . (38)

Equations (37) and (38) represent generalizations of the finite-T GE4 which can be presented in the form of
equation (37) with the kinetic and entropic enhancement factors defined by

E4 _ iz i 2 71 2 i 4
F? (S?qv{bT;CT;dTaeT}) - 1+ 275 bT (t) + 81q CT (t) 95 da (t)+ 2435 eT (t) ? (39)

and
FSE4 (5,q:{bo,Cr:d5,65}) =2 — FSFA (5,4,{bs,¢o,ds,65}) (40)
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Figure 2. Comparison of performance of four noninteracting free energy functionals. Shown is the pressure for D at p =3.11814
gcm 2 relative to the pressure from the combined conventional KS (T < 86 eV) and PIMC (T > 86 eV) values [58]. Both
OF-DFT and conventional KS calculations used the KDT16 GGA [36] XC free energy.

(compare to a sum of the GE2, and the individual fourth-order term, defined by equations (19)—(20)
and (33)—(34)). The approximate relation equation (38) is, as in the GGA case equation (24), implied by the
fourth-order gradient expansion (see further details in [34]). The kinetic and entropic contributions can be
calculated from equation (25) with use of the FMSSA[n] functional.

Within the foregoing framework, a density-Laplacian-level noninteracting free-energy functional was
reported in [34]. The double exponent Laplacian-dependent functional (DEL) is defined by the kinetic
energy enhancement factor

1

5
FEEL (qua{a‘rv"ae'r}) = gssz + D)

{efzuszb.r + 672,u254b2¢ +2vste, } + anCT . ﬂszda ’ (41)
with p =40/27, v = 8/243, a = 8/81, 8 = 1/9, and the entropic enhancement factor defined by

equation (38). One of the important constraints that the DEL functional satisfies is that it reduces to the
fourth-order gradient expansion equations (16) and (28) in the slowly-varying density limit.

Figure 2 compares the behavior of the LDA, GGA, and meta-GGA rungs of the Perdew—Schmidt ladder
by showing AIMD results from the TF, LKT, GE4, and DEL noninteracting free-energy functionals for dense
deuterium at material density pp = 3.118 14 gcm™? (r, = 1.20 bohr) in the temperature range between 1.35
and 345 eV. We followed reference [34] for these AIMD simulations.The relative pressure is calculated with
respect to combined conventional KS and PIMC reference data [58]. Both the orbital-free and conventional
KS simulations were performed in combination with the KDT16 GGA free energy XC functional (see
section 4.2) to provide compatibility with the PIMC data. The simplest TF approximation has the largest
error at T below ~ 20 eV. (Remark: The TF simulations did not converge for T< 8 eV.) The LKT GGA-level
functional has relative error close to 6% at T = 1.34 eV. That decreases to about 2% or less for T above 10 eV.
The finite-T fourth-order gradient expansion provides poorer low-T results compared to the LKT GGA. The
relative error at the lowest T exceeds 8% and goes down to the level of 2% and below at T > 8.21 eV. The
meta-GGA level DEL functional provides the most accurate results with relative error not exceeding 2%. This
comparison illustrates the improvement of accuracy expected to accompany the introduction of more
ingredient functional variables in constraint-based density functionals.

3.4. Non-local noninteracting free-energy functionals
The non-local (two-point) noninteracting free-energy functional developed in [31] has the form

Fs2[n] =p Tyw [n] + Fre [n] + / drdr’ n® (r)w(|r —r'[) n® (r') (42)
with a = b = 5/6. It has a novel modified von Weizsicker term

sTew [n] : = / drdr'{(Vn (£)? - (Va (")} {5 (x—t') + B(r —1'|)}. (43)

The functional equation (43) is constrained to reproduce the exact density response of the HEG at finite-T, a
requirement which yields a relation between the w and /3 kernels. This results in the T-dependent
Wang-Teter-like [59] kernel. A prior version of this functional was developed in [60].

Quite recently Ma et al [33] presented a line-integral derivation of a counterpart two-point
noninteracting free-energy functional that, in principle, is more general. It has the form of equation (43)
without the modification to the von Weizsdcker term and with the non-local contribution

FME ] = / drdr’ "% (r)w; (r,r')n" e (r') + / drdr’ "t (D), (5, ) T8 (). (44)
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The expression combines the zeroth-order term (that reduces to the Wang-Teter non-local term for the
HEG) and first-order term (that accounts for the density inhomogeneity) of the Taylor expansion of the
density-dependent function G that arises in the second derivative of the non-local free-energy for the
inhomogeneous electron gas along the line-integral path (see details in [33]).

This non-local functional works very well for (semi-)conducting systems such as warm dense
hydrogen/deuterium and liquid Al. So far the functional has been applied only to those two systems.
Comparison between the finite-T semilocal and this non-local functional for warm dense deuterium
demonstrated that the one-point meta-GGA/DEL equations (37)—(41) and the two-point non-local
functionals have very similar performance. The relative total pressure error of the two with respect to the
reference data for deuterium along the 4.048 g cm ™ isochore never exceeds 2%. However, the transferability
of such two-point functionals to semiconductors and insulators is poor [23, 61] because of the strict
adherence to the HEG response. That is suitable only for systems with weakly inhomogeneous electron
densities.

The non-local XWMF noninteracting free-energy functional (with the two-point non-local part defined
by equation (44)) was applied to static lattice calculations of Al and Si with employment of valence-only
LPPs, and to AIMD simulations of warm dense H, He, and H-He mixtures (for two densities, 10 and 160
gcm™?). Some of those results were compared to results from the one-point LKTF GGA noninteracting
free-energy functional. Figure 1 in [33] suggests that except for Al at relatively low T, LKTF is fully
competitive with XWMFE. Furthermore, table 1 in the same reference shows that the one-point LKTF GGA is
almost as good as the non-local XWMF on dense hydrogen.

With AE LPPs, so far the XWMF non-local functional has been applied only to H (in the range of
material densities between 0.6 and 8 g cm™?), and to H, He, and H-He mixtures at relatively high material
densities, 10 and 160 gcm >, In that regime, all these systems are expected to be metallic with relatively
smooth electron density. Though the XWMEF kernel is based on the first-order Taylor expansion that takes
density inhomogeneity into account to some extent, its performance for highly inhomogeneous systems such
as He at material densities below 1 gcm~> and/or LiD with AE LPPs (see examples in [34]) is unknown yet.

4. XC orbital-free free-energy functionals

In this section we provide a brief description of recent progress in development of non-empirical XC
free-energy density functionals at the LDA, GGA, and meta-GGA levels of complexity. Such XC functionals
are required both for conventional KS-DFT and OF-DFT simulations of matter under extreme conditions.
Development of XC free-energy functionals essentially follows the finite-T analog of the Perdew—Schmidt
ladder [53] with the first two rungs (LDA and GGA) fully developed in [35] (with modest refinements using
the same approach in [38]) and [36] respectively.

For both T=0 and T> 0, the third, or meta-GGA rung of the Perdew—Schmidt ladder has two versions,
orbital-dependent and orbital-independent. The orbital-dependent form is dominant in ground-state
development and applications, hence is obviously problematic for OF-DFT. The orbital-independent forms
typically depend on #, the reduced density gradient s defined at equation (14), and the reduced density
Laplacian g defined at equation (29). We return to this distinction in more detail below. For perspective, here
it suffices to say that meta-GGA free-energy XC functionals have been developed in a straightforward,
orbital-dependent way [62], as well as an orbital-free version as a universal additive thermal correction using
a perturbation-like approach [40]. The second rung is represented by the fully-thermal KDT16 GGA with
temperature dependent reduced density gradients, and by two rather more approximate schemes that take
thermal XC effects into account at the LDA level via additive [37] or multiplicative [63] corrections to the
ground-state PBE XC expression.

4.1.LDA

The first accurate analytical representation for the XC free energy of the HEG was the
Karasiev—Sjostrom—Dufty—Trickey (KSDT) parametrization [35] of restricted path integral Monte Carlo
(RPIMC) data for the HEG at finite temperature [64] and the T = 0 K data of [65]. The KSDT
parametrization constitutes the local spin density approximation for the XC free-energy. The corrected
KSDT representation (corrKSDT), based on improved quantum Monte Carlo (QMC) data [66], was
published in [36]. The essentially equivalent representation (with slight differences in MC data and analysis
detail) was published in [38]. The equivalence of the two as well as limitations of the representation (see
below also) are discussed in [41].
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Figure 3. Comparison between fi. values from the corrKSDT parametrization and QMC data from [66] for the unpolarized HEG
at r; = 0.25, 0.5, 1, 2, and 4. The ground-state limit (¢t =0, [65]) QMC values also are shown. Reprinted figure with permission
from [41], Copyright (2019) by the American Physical Society.

The KSDT XC free-energy per particle, for the spin-unpolarized case, has the form of a [2,2] Padé
approximant [67] in the " /2 variable (rs=(3/4rm n)l/ %) with ¢-dependent coefficients

DA () ) Cla()+b(1) 24 c(t)ry . (45)

X o 1+d(O)n* +e(t)r

The XC internal energy per particle is evaluated via the standard thermodynamic relation (analogous with
equation (25)) for XC

OfLPA (1t
AP (1) = 3P () — B0 (0
t rs
The X free-energy per particle LDA has the factorized form [28]
LM (1) = PR () Ax (1) (47)
~ 2 B R
N RO (18)
With the help of equations (45) and (47), the LDA correlation free-energy per particle is defined as
P (1) = M () = P (1) (49)

(Remarks: The r; and n dependencies can be used interchangeably. Also the ¢-dependence implicates both n
and T dependencies.)

In addition to demonstrating that the corrKSDT parametrization matches the available finite-T and T=0
K data essentially perfectly, figure 3 also shows how the XC free-energy magnitude decreases with increasing
temperature for all 7. For example, it drops approximately twofold at t = 2 for r; = 0.5 as compared to the
T= 0 K value, namely decreasing from | — 0.990| to | — 0.512] hartree. That highlights the importance of
finite-T XC approximations for simulations at elevated temperature. It also is important to notice that the
XC free-energy remains almost flat for values of ¢t up to a few tenths of the Fermi temperature. In terms of the
actual temperature T, a value of t = 0.2 for example, corresponds to T~ 7.3, 29, 116, 465, and 1860 kK for
rs =4, 2,1, 0.5, and 0.25 respectively.

A detailed study of the significance of going beyond the ground-state approximation for XC appeared
recently [68]. The focus system was warm dense hydrogen. Those authors had new PIMC data available for
both H and H; as benchmarks. A direct comparison of free-energy LDA (GDSMEFB in this case, but recalling
the above discussion about equivalence), LDA, and PBE (both in the ground-state approximation) results
with their PIMC data is not a facile way to detect the differences. A much clearer analysis emerges from use of
their definition of a generalized reduced density gradient:

S(a) = Ni /dns[n] (:())a . (50)

In it, s is as defined at equation (14) and ny is the average density. Examination of S(«) shows very clearly
that free-energy LDA outperforms all of the ground-state GGA functionals they examined. Perhaps more
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remarkably, free-energy LDA provides S(«) results of similar quality to those of the meta-GGA SCAN [69]
used in the ground-state approximation.

This behavior of SCAN can be rationalized by recognizing that one of its key ingredients is the KS kinetic
energy density 7;. It is dependent on the orbitals and Fermi—Dirac occupations,

Ts ::%Zf,'\Vgo,-F. (51)

Usually it is assumed, implicitly, that the only thermal information in the ground-state approximation is
provided by n(r, T). But when SCAN is used as an approximation to Fy, i.e. the ground-state
approximation, the T-dependence in the Fermi-Dirac occupations introduces thermal information beyond
that supplied by n(r, T). It is quite plausible that the portion of the XC free energy taken into account thereby
is greater than for a ground-state approximation by an E. that does not depend upon 7;. See further
discussion at the end of section 4.3.

Other important aspects of the corrKSDT (and GDSFMB [38, 39]) parametrization are discussed in [41].
In particular, we point out that the HEG specific heat,

-1 azf(rsa )

TF Ot Ty (52)

e (rot) =
displays increasingly large and unphysical oscillations as 5 increases. Those are a consequence of the delicate
balance between the parametrized X and C contributions. To our knowledge, no progress has been made to
date on a revised parametrization with a more physically reliable second thermodynamic derivative.

4.2. GGA: fully thermalized and LDA-level corrected
The strategy for development of the GGA XC free-energy is similar to the development of the GGA
noninteracting free-energy framework given in section 3.2: analyze the second-order finite-T gradient
expansion for XC, define dimensionless reduced density variables with explicit temperature dependence for
X and C, and construct a functional in the usual GGA spirit. Thus, to preserve proper density scaling, the
GGA X and C are given by the LDA X and C free-energy densities multiplied by a function (enhancement
factor) of X and C ¢-dependent variables. Obviously, those enhancement factors must reduce to accurate
representations at zero-T of some well-tested zero-T counterpart so that the finite-T GGA XC will be
accurate across the entire temperature regime.

The second-order gradient correction to the XC free-energy is the central ingredient for the development
of the thermal GGA. It resembles the ground-state gradient coefficient, but with a T- and n-dependent
coefficient [1, 70-73]

2
O (.9 1) = 1@ (1) VL (53)
n
Equation (53) can be partitioned into X and C contributions in the form
(2 (1, Vn,T) = CPe PA (1) $? (n,Vn) By (1) + C P n'*? (n,Vn) B (n,1) | (54)

where B, is a combination of Fermi-Dirac integrals. The gradient correction coefficient was evaluated
numerically in [37] with use of a relation to the static local field correction [74, 75] and QMC data for the
finite-T HEG [64]. The second-order gradient expansion for the X free energy, 2 = fLPA + ff) can be
written as [1, 70—73]

fSE2 (1, Vn,T) = f-P2 (n,T) (1 + 881%; 8 52 (n,Vn)) . (55)

Equation (55) enables the definition of the appropriate dimensionless reduced density gradient variable with
explicit T-dependence for the X free energy as

$x (1, Vn, T) = 5> (n, Vn) ZX (56)

Additionally, numerlcally evaluated gXc data in combination with equatlon (34) allow numerical evaluation
of the function B.(n,1). Accurate analytic fits for the functions A(t), By (), and B(n, t) with properly
incorporated asymptotic behavior were presented in [36, 76].
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Figure 4. Comparison of the PBE and KDT16 exchange enhancement factors.

The correlation term in equation (54) is proportional to Q2B (r,,t) with Q(n, Vn) = |Vn|/2kn the
ground-state reduced density gradient for correlation and k; = 2(3n/m)'/® the Thomas—Fermi screening
wave number. (Remark: To avoid notational overload, what is denoted here as Q is  in the original PBE
paper [77] and denoted g in the KDT16 paper [36].) This motivated definition of the T-dependent reduced
density gradient for correlation

Q. (n,Vn,T) = Q(n,Vn) (n £). (57)

The fully thermal GGA exchange and correlation functional then was formulated in the form
];-GGA[ ] = /n LDA(mt)FX (s2)dr, (58)
and
FSCGA ) / nfSGA (n,Vn,t)dr. (59)

The exchange enhancement factor and correlation free-energy per particle for the spin unpolarized case,
(spin polarization function { = 0) are defined as
VxSox

Fo(spy) = 1+ —25% 60
(52 ) + 1+Oé|52xl ( )

with vy = 0.21951, @ = v/ (Fymax — 1)> Fxmax = 1.804, and

S5 (n, Vi, 1) = IO (m, )+ H (£P4,6 = 0,00 ) (61)

In the last expression, the PBE correlation function H is as defined in [77]. The KDT16 XC functional
defined by equations (58)—(61) reduces by construction (with a minor difference) to the ground-state PBE
functional in the zero-T limit

%1m FEDTIE (] ~ EPBE (1] (62)

Figure 4 compares the KDT16 and PBE exchange enhancement factors shown as functions of s* and s,y
variables respectively. Both exchange functionals satisfy the Lieb—Oxford bound enforced locally
(Fx < 1.804). Moreover, equation (60) recovers the PBE enhancement factor in the zero-T limit, given that
s»x — s*. Notably, the thermal X enhancement factor crosses zero and becomes negative at t > 1 (see figure 1
in [36]).

A few years before KDT16 was published, an interesting approximate GGA XC free energy was built via
an additive thermal LDA XC correction to a ground-state GGA [37]. Again with respect to the ground-state
PBE functional, the scheme takes the ‘subtract and add’ form
addPBE (ﬂ,Vﬂ,t) PBE (T’l Vﬂ) _&_LDA( )+fLDA( ) (63)

XC
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PBE
F X

where the PBE XC energy per particle is defined via the X enhancement factor and correlation function

H as
exe (n,Vn) =P (n) FPF (s7) + el (n) + H (.74, Q) (64)
In rather the same spirit, Kozlowski et al [63] recently produced a multiplicative rather than additive
thermal correction. In it, the ground-state PBE XC is scaled by thermal corrections at the LDA level via a

‘divide and multiply’ approach. This yields what those authors call the locally thermal PBE (‘ItPBE’)
approximation

LDA
WPBE (1) T, £) = ePBE (1, Vi) L (n,t) = ¢ LDA () FIPBE () 7y ) (65)
XC ? ? XC I (E:X]EDA (n) - TXC XC ’ ? ’

where the second line in equation (65) defines an XC ‘enhancement factor’ introduced in [63]. It is a
dimensionless function that depends on the ground-state X and C reduced density gradients (hidden in
ePBE(1n,Vn)) and on t via the LDA XC free-energy density f-P4

C

et (n,Vn) (P2 (n,1)

elPrh(n) ePr(n)

FIPPE (0, Vn, 1) = (66)

The foregoing expressions are valid for the specific case of uniform spin-polarization (( =0 or { =1).

We emphasize that in both the additive equation (63) and multiplicative equation (65)—(66) schemes,
there is an additional approximation beyond what is intrinsic to the GGA level of refinement. Both schemes
account for thermal XC corrections at the LDA level only. The spatial inhomogeneity effects are described by
the ground state PBE gradient-dependent functions without any explicit temperature dependence, namely
through the functions FFBE(s?) and H(e ['PA, Q) with ground-state variables s and Q for exchange and
correlation respectively; see equation (64). In general such schemes therefore miss the temperature
dependences defined by the gradient expansion term equation (54) and thus do not reproduce the
second-order finite-T gradient expansion in the limit of weakly varying density.

The KDT16 XC free-energy does reproduce T-dependences consistent with the gradient expansion. That
is important especially in the WDM regime. There the temperature approaches neither the low-T nor high-T
limit. It is to be expected that KDT16 is more accurate than either the addPBE or the ItPBE approximations
for weakly inhomogeneous systems at such intermediate temperatures. Because all three functionals reduce
to the same limits (ground-state PBE and the finite-T LDA for the low-T and high-T cases respectively), in
both the low- and high-T limits all three functionals should converge to the same accuracy. Preliminary
results show that for selected density-temperature conditions of dense deuterium, when the ItPBE relative
pressure errors are around 2% (same magnitude as for the thermal LDA XC), the KDT16 relative errors are
1% or less. At least in that example, the ItPBE XC does not improve upon the thermal LDA XC, confirmation
that the thermalization is done only at the LDA level of refinement.

4.3. Meta-generalized gradient XC approximations
Development of orbital-free meta-GGA XC functionals has taken such a different path from the
noninteracting case that it is valuable to summarize the ground-state case first.

As mentioned at the outset of this section, even for the ground state, the meta-GGA rung of the
Perdew—Schmidt refinement ladder has an ambiguity. Our earlier discussion (section 3.3) of the
noninteracting contribution might lead one to expect the meta-GGA rung of XC functionals to involve
introduction of V2n dependence through the dimensionless variable q defined at equation (29). But
historically, the development of ground-state meta-GGA XC functionals, which preceded the noninteracting
meta-GGA development, took a different route. Instead of q dependence, ground state meta-GGA XC
development almost exclusively exploits the information in the orbital-dependent KS kinetic energy density
T, equation (51).

Most, but not all, ground-state meta-GGA XC DFAs use the ‘iso-orbital indicator’

Te — Ty
a(r) = — W (67)
To

to detect chemically different regions. In it, 7w and 7] " are the von Weizsicker

[Vn]?
Tow =
vW Sn

(68)
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and Thomas—Fermi
3 2/3
TOTF = 0 (371'2) / n/? = c()if’/3 (69)

kinetic energy densities respectively. Details of other indicators (e.g. z := Tyw/7;) [78] are un-needed in this
discussion.

Putting aside the orbital-dependence itself for a moment, generalization to T > 0 K raises obvious
questions. In «, for example, should the ground state TF KE density be retained or should it be replaced by
7X¥(1,t) defined below equation (12)? One can argue that « is supposed to sense chemically different
regions, so it does not matter whether the density is ground-state or thermal. The contrary argument is that
7IF(n, ) is the more appropriate sensor for the thermal cases since it has intrinsic T dependence as well as the
dependence from n(r, T). Defining @ with the thermal TF kinetic energy density preserves the property of
the ground-state definition, that is & ~ 1 correctly recognizing metallic regions. Moreover, it is inherently
consistent with the noninteracting free-energy (and its components) functional concept. This is an example
of the choices faced by functional developers.

Still in the ground-state context, the establishment of orbital-free meta-GGA XC approximations has
proceeded entirely by ‘de-orbitalization’ of the orbital-dependent forms. In essence, that replaces the 7;
orbital dependence with an approximate pure density functional, dependent for numerical stability reasons
(high-order spatial derivatives in the KS potential) upon n, Vn (specifically p := s*), and V?n (specifically,
q). After early versions [79, 80], Mejia—Rodriguez and Trickey (‘M-RT’) [81-83] introduced and
demonstrated a de-orbitalization protocol. Basically it is to select a high quality one-point orbital-free KEDF
[15], 7[n, {¢ }] ~ 7L[n,s%, q] and reparametrize it to give a good approximation to an orbital-dependent
indicator such as a,

ay [1,Vn, Vn] = a[{p}] (70)

for isolated atoms. (Recently the M-RT scheme was extended by Francisco et al [84] to treat two-indicator
functionals.) (Remarks: The subscript ‘L’ denotes density-Laplacian dependence. As a cautionary note, both
the orbital-dependent and de-orbitalized ground-state meta-GGAs have non-trivial numerical stability
issues [85-87].)

Once one has a de-orbitalized ground-state meta-GGA XC functional, extension to T > 0 is, at least in
principle, possible by exploiting the T > 0 gradient expansion for X and C. Only a little has been done on
that.

With these contextual matters in hand, we turn to specifics. One route around some of the challenges of
orbital-dependence and de-orbitalization is to consider an additive modification of a ground-state
functional, conceptually the same approach as in equation (63) for f244PBE_ For virtually any meta-GGA

ground-state XC functional, one can define a general additive thermal correction [40] at the GGA level of
refinement, to wit

AFE T = R0 [0, T = ELZF [n] (71)
Then the simple T-dependent meta-GGA is constructed as
Fee OO [0, T] = EEOM ] + AFE [, T] (72)

Recall from equation (62), that AFSCA[n, T] a2 0 at low-T, and that both the ground-state PBE and any
properly constrained ground-state meta-GGA reduce to the ground-state LDA XC in the high-T limit (i.e. in
the homogeneous density limit)

lim E®* [n] ~ E;>A [n] (73)
T—oo
and
lim EFBE[n] ~ ELPA (1] . (74)
T—oo

The implication of these two equations is that EXSGA[n] ~ EPBE[n] at high T. That yields the following
limiting behavior of the additive thermal MGGA given in equation (72): FMGCGA[n T) ~ EMSGA ] at low-T
and FMOCA[n, T] ~ FEPT[n, T] at high-T.

To be useful in the OF-DFT context, this thermalization scheme has to be applied to an
orbital-independent meta-GGA. The specific example [40] is the thermal adaptation of the de-orbitalized
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version, (SCAN-L) [81, 83], of the ground-state strongly constrained and appropriately normed SCAN
functional. Denoted T-SCAN-L, an example application of orbital-free simulations employing it in
conjunction with the noninteracting free-energy meta-GGA FPEL given in equation (41) is given in [34]. For
He at py, = 0.387 gcm ™2, the pressure error was less than 2% with respect to the combined KS and PIMC
reference data for the range 7 < T < 200 eV. The additive thermalization scheme equation (72), applied to
the de-orbitalized, regularized restored r’SCAN-L functional [83, 88], reduces the number of SCF iterations
compared to T-SCAN-L by as much as a factor of three, depending upon the material and state conditions.
Such a reduction typically is related to improved numerical stability.

A technical point closely related to one we already made is relevant. The issue is avoidance of double
counting of thermal contributions. For that, the additive thermal correction, equations (71) and (72), is
designed to be applied to a ground-state XC functional E.. That excludes explicitly orbital-dependent
functionals such as SCAN [69], and 2 SCAN [88] unless their Fermi—Dirac occupations (recall
equation (51)) are set to T = 0. Otherwise, use of the orbital-dependent SCAN or r>’SCAN in conjunction
with the additive thermal correction AFSA would have an uncontrolled and uncorrectable double counting
of XC thermal effects. An advantage of using the de-orbitalized versions [81, 83] is that they automatically
avoid this problem because they do not depend upon 7.

At this writing, the development of a full XC free-energy meta-GGA is being undertaken by the authors.
The analysis and construction is the XC counterpart of the noninteracting meta-GGA development surveyed
in section 3.3. However, there are subtle and sometimes difficult differences. Initial indications suggest that
the change in calculated results relative to those from the additive meta-GGA just described may not be large.
Whatever the case, when completed, the product will be an orbital-dependent XC free-energy functional.
De-orbitalization or some related orbital-free conversion will be required for use in T > 0 OF-DFT
simulations.

5. Limitations and challenges

There are two significant issues for free-energy OF-DFT that are comparatively undiscussed. One,
non-additivity, is implicated by the other, the virtually inescapable use of LPPs.

5.1. AELPPs

Most of the popular conventional-KS and OF-DFT codes for extended system calculations use a plane-wave
basis. Compelling reasons include the freedom from Pulay forces in AIMD and the systematic
straight-forwardness by which the basis may be enriched. As has long been known, the singular
bare-Coulomb electron-nuclear attraction cannot be treated efficiently in the plane-wave basis. The problem
is alleviated by use of pseudo-potentials. They have a long, rich history, including ‘non-local’
pseudo-potentials which in fact introduce an orbital dependence in otherwise ordinary ground-state KS
calculations. OF-DFT, however, requires pseudo-potentials without any orbital dependence, i.e. LPPs that
describe the electron—ion interaction by a local multiplicative function. (Remark: Some more sophisticated
approaches, such as the projector augmented-wave (PAW) based [89] and angular-momentum-dependent
OF-DFT [90] have been proposed. But they remain largely exploratory and not used widely. There is,
however, an important PAW result that we discuss below.)

Simulations at high T and or P necessitate AE LPPs. The reasoning begins with near-ambient conditions.
For them, deep core electron densities ([He]- and [Ne]-core for second and third row elements respectively)
can be considered frozen and excluded from consideration. That leads to smooth LPPs, hence rather smooth
weakly-inhomogeneous valence-electron pseudo-densities. As was noticed in several references [15, 23, 34],
many semi-local and non-local orbital-free functionals are tied to or constructed with respect to HEG
properties. Those functionals should be reasonably accurate for systems with such valence pseudo-densities.

But clearly such valence-only (or frozen-core) LPPs are not transferable to high T and P conditions. In
such state conditions, temperature and/or pressure-induced ionization is inescapable, hence even the deep
core electrons cannot be approximated as frozen. Two questions therefore arise: how to construct reliable AE
LPPs and what is their effect when used with approximate free-energy OF-DFT functionals?

About the first question, we summarize two procedures. First, [44] provides a norm-conserving (NC)
regularization that preserves the electronic density normalization inside and outside the cutoff volume, and
provides a smooth AE LPP. Its first step is numerical solution of the Thomas—Fermi equation with a
bare-Coulomb electron—nucleus potential for an atom in a spherical cavity (with volume corresponding to
the specified material density) at given temperature. That yields a radial electron density n(r). A
pseudo-density 71(r) then is constructed by imposing a smooth analytic form inside the cutoff volume, and
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requiring # = n outside that volume, to wit

A(r _{;Texp(a+br2+cr4), r<re o3)

n(r), r>re.

The coefficients a, b and ¢ are determined by enforcing the continuity of 71(r) and its radial derivative 7’ (r) at
r = rc and enforcing density conservation, [ drr*n(r) = [ drr*n(r). The screened electron—ion potential is
computed by inversion of the TF equation, and the NC LPP (‘NC’ LPP) is extracted by subtracting the
Hartree term (and the XC term as well if it was included initially).

These AE NC LPPs are expected to be accurate for circumstances in which both valence electrons and
typically some core electrons are totally or partially ionized. However, the well-known inability of the TF
functional to reproduce atomic shell structure suggests that the procedure might be unreliable at lower-
and/or P. (Remark: We are unaware of any investigation of the suitability of the NC-LPPs for use with
functionals with density Laplacian q dependence.)

A more refined local pseudopotential introduced by Hartwigsen, Goedecker, and Hutter (HGH) [91]

uses the so-called dual-space Gaussian form
F\2 O\ N
() ra(l) va(l) ] |
Noc Toc Toc

()]

For the AE case, Zin equals the physical atomic number Z, 1, is a parameter set by hand according to the
required hardness (and eventual accuracy), and C;, C;, C4, and Cy are found by minimization of the
differences between eigenvalues and charges within an atomic sphere for the bare-Coulomb atom and the AE
pseudo-atom. A convenient special property of the dual-space Gaussian form for plane-wave codes is that
there also is an analytic reciprocal space representation.

The majority of OF-DFT simulations employ valence-only LPPs. We are aware of comparatively few
exceptions. AE NC LPPs were employed for OF-DFT (with the Thomas—Fermi functional) simulations of
dense boron plasmas [45] and dense He-Fe and D-Cu mixtures [92]. A combination of conventional KS and
OF-DFT methodology was used to generate a wide range of EOS tables for materials relevant to ICF [93-95].
The conventional KS calculations used PAW data sets and the OF-DFT used NC LPPs.

It also can be useful to represent the numerical NC LPP in the HGH analytical form. A fitting procedure
that provides such a representation was developed recently. A combined set of soft and hard AE LPPs (NC
and HGH LPPs respectively) transferable to extreme conditions was employed in OF-DFT AIMD
simulations to establish a wide-range EOS table for a CHON quaternary compound, a new ablator material
developed for laser-direct-drive targets [96].

The qualitative differences in LPPs can be quite striking. Figure 5 compares a one-electron (le™)
bulk-derived local pseudopotential (BLPS) [97], two HGH 3e™ LPPs with different cutoffs (1, = 0.40 and
Toc = 0.28, details in [91]), and an AE NC LPP for Li. The valence-only BLPS is repulsive at r < 0.7 bohr,
then approaches —1/r Coulomb behavior at r 2 2 bohr. Thereby the valence pseudo-orbitals are assured to
match the AE valence orbitals in the interstitial region of a bulk system. In contrast, the AE LPPs are negative
in the core region. That provides smooth regularization of the Coulomb singularity. They approach the —3/r
bare-Coulomb behavior at r 2 1 (soft HGH) and r 2 0.6 (hard NC and HGH) bohr.

Figure 6 compares the electron density from orbital-free calculations with the one-electron BLPS and the
AE soft HGH LPP (both as shown in figure 5). The calculations used the LKT GGA noninteracting
free-energy functional, equation (27), combined with the ground-state LDA XC for bec-Li with two atoms in
the simulation cell, p; = 0.60 gcm ™ (lattice constant 3.3743 A) at room temperature. The density is shown
along the line connecting two Li atoms (body diagonal).

In the high-T (or high P) limit, the electron density from calculations with AE LPPs becomes smooth
(weakly-inhomogeneous) because of ionization processes. In the near-ambient conditions applicable to
figure 6 however, the core-electron contribution to the total electron density is sharp. As expected therefore,
in these calculations, the AE density has sharp peaks that correspond to core-electron contributions at the
atomic positions. But the one-electron LPP pseudo-density is very smooth, with largest values up to
10~2 A3 primarily in the interstitial region, and almost vanishing contributions near the ion locations. The
repulsive part of the BLPS LPP at r < 0.7 bohr shown in figure 5 causes this, with a very small magnitude in
the extended valence region not exceeding 0.0085 A~>. Such a smooth pseudo-density can be characterized
as weakly-inhomogeneous, a property not true for the AE density.

_Zion £ ( r ) +
er exp
r ﬂrloc

Vloc (1‘) =
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Figure 5. Local pseudopotentials for Li: one-electron bulk derived local pseudopotential (BLPS) [97], two
Hartwigsen—Goedecker—Hutter (HGH) all-electron local pseudopotentials [91] with 7, = 0.40 bohr, and 7, = 0.28, and an
all-electron norm conserving (NC) with . = 0.20 bohr derived for near-ambient conditions, pr; = 0.60 gcm™2 and T = 0.5 eV.
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Figure 6. Electron density n for bee-Li (cubic cell, p=0.60 gcm—?) along the line connecting two atoms on the body diagonal
from OFDFT/LKT/LDA calculations with 1e™ and 3e™ LDA local pseudopotentials shown in figure 5—BLPS and HGH with
Toc = 0.40 bohr respectively.

Before proceeding, it is fitting to note that there have been at least a few efforts to accommodate the
orbital-dependence of non-local pseudo-potentials within the OF-DFT context. Three papers are particularly
relevant.

In the first, [98] a core-like region is defined around each ionic site and the density is partitioned spatially
in those spheres and the interstitial region. The sphere radii are chosen such that the non-local part of the
pseudo-potential vanishes inside or at the sphere surfaces. (This is akin in concept to muffin-tin methods but
without their priority on touching spheres.) A small basis expansion of the core states then is used, with the
rest of the system handled by a conventional KEDE, in the case of [98], a two-point functional.

Xu et al [99] proceed somewhat differently. They write the non-LPP energy in terms of the KS orbitals
and 1-matrix. The 1-matrix is approximated in turn by a Gaussian-based Taylor expansion to second-order
that depends on the conventional KS KE density. That is de-orbitalized (though the paper does not use that
term) by replacement with an OF-DFT KEDE. The short-ranged nature of the non-local terms in the
pseudo-potential then leave a double integral over that non-zero domain of the local atomic-like functions
and the orbital-free approximate 1-matrix. Again the Wang-Teter kernel was used for the non-local part of
the KEDE.

For the purposes of the present discussion, these brief summaries suffice to focus attention on the need
for some way to calculate core corrections that avoid problems of nonlinearity of the noninteracting and XC
free energies (and their T =0 counterparts).

However, there is a third study that bears directly on the main topic of this section, namely the issue of
AE LPPs. In [89], Lethtomiki et al devised a way to use PAWs with OF-DFT. The advantage of that
combination is that it provides AE values for calculated quantities such as bond lengths, lattice constants, and
cohesive energies. We are careful here to make a distinction highlighted by those authors. The PAW scheme is
not an AE method in the conventional sense of the term, but it does yield highly accurate approximate AE
values for the physical observables. With the real-space grid code GPAW, the TEAvW KEDF
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Figure 7. Pressure as a function of lattice constant as predicted by conventional KS- and OF-DFT (with 1le™ and 3e™ LDA local
pseudopotential) for bee-Li at T = 300 K. OF calculations are performed with LKT/GGA noninteracting functional in
combination with the ground-state LDA XC. It also was used in the conventional KS scheme.

(Ts = T1r + ATw; 0 < A < 1; in this case A = 1) and the PBE XC functional, they found that the AE lattice
constant for bec Li was far smaller than the results from LPP calculations reported in [49], 1.65 A versus
3.43 A. Moreover, the AE bulk modulus was huge (945 GPa) compared to the LPP result (14.9 or 15.2 GPa
depending on LPP details). The PAW itself is not in doubt. Conventional KS calculations with it give sensible
lattice parameter and bulk modulus values. Clearly something very peculiar is happening with the LPPs.

5.2. Implications of noninteracting kinetic energy nonadditivity

The qualitative differences in pseudo-densities have drastic consequences for OF-DFT prediction accuracy.
Even with regularized potentials, the pseudo-orbitals for deep core electrons are not smooth. It therefore is
common practice to treat the core electrons as ‘frozen’, hence without an active role in the conventional KS or
OF-DFT minimization problem. Irrespective of conventional KS or OF-DFT, T = 0 or > 0, the total electron
density can be split into core (C’) and valence (V') electron densities

n(r) =nc(r) +ny(r) . (77)

Written in terms of KS orbitals, this is #n.(r) = vazlf, |pi(r)|? and n(r) = Z?;NC_Hfi\cpi(r) |2. As before, the
fi and ¢; are the KS occupations and orbitals respectively. For second and third row atoms, N, = 2
([He]-core) and 10 ([Ne]-core) respectively. Extension and more options for higher-Z atoms are obvious.

This rather intuitively sensible decomposition introduces a problem. To illustrate we performed a set of
static calculations for bee-Li and fec-Al with conventional KS and OF-DFT methods employing two types of
pseudo-potentials, valence-only and AE. Figure 7 shows pressure as a function of lattice constant for bec-Li.
The equilibrium lattice constants predicted by conventional KS and OF-DFT calculations with the
one-electron (‘le~) LPP are nearly identical, close to 3.37 A. The conventional KS 3e~ LPP equilibrium
lattice constant is a little bit smaller, ~3.33 A. But the OF-DFT simulations with the AE LPP gives a
dramatically smaller value, 1.7 A.

This is precisely the same misbehavior found earlier by Lehtomiki et al [89] that was discussed above. It
confirms the remark made there. The gross misbehavior is rooted in the qualitative difference between AE
and valence-only LPPs.

The situation for fcc-Al is quite similar. See figure 8. The KS equilibrium lattice constants from
calculations with PBE XC, frozen [Ne]-core PAW, and an AE LPP are ~4.04 A. The OF-DFT prediction with
a 3e~ LPP predicts a slightly overestimated value, ~24.14 A. But for OF-DFT with the AE (‘13e~’) LPP, the
system collapses to ~2.5 A lattice parameter.

These drastic equilibrium lattice constant differences as predicted by OF-DFT with valence-only versus
AE LPPs are a direct consequence of the noninteracting kinetic energy nonadditivity. We continue with the
zero-temperature case for simplicity. Extension to T > 0 K is basically straightforward.

The explicit KS kinetic energy is additive with respect to core and valence orbitals

T [, | = 18 [fos ] + T [{ehinan (78)
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Figure 8. Pressure for fcc Al as a function of lattice constant as predicted by conventional KS-DFT (with 3e~ PBE PAW and 13~
PBE local pseudopotential) and OF-DFT (with 3e™ and 13e™ PBE local pseudopotential). All calculations used PBE XC.

but not with respect to the density decomposition in equation (77). Instead, because the orbital-free
representation of the KS kinetic energy is nonlinear in the density (recall the Thomas—Fermi KE density
o n/3), one has

T [n] = TOF [ne] + TOF [n,] + Ts?]fadd [ne,ny] - (79)

The nonadditive kinetic energy TOF [, ny] is zero only if the core and valence electron densities do not
overlap.
Because the XC functional also is nonlinear in the density (Slater LDA is n*/?), it also is nonadditive:

E)fT [n] = EXXT [ne] + Bt [my] + Bt o e 1] - (80)

Given all this, for the case of a valence-only pseudo-potential Ly, the total KS energy takes the form
ESP [ny] = TS [my] + Eua [my] + Exc ] + / 1y (1) Vgt (1) dr + Eion ({R}) - (81)

with T8%[n,] being the second term in equation (78).
The difference between the AE and pseudo-potential total energies, equations (1) and (81) respectively, is

AESS = TKS {{901}1_1} JFEDFT[ N JFEEcl?Eadd [1e, my] + /nc (1) Vexe (1) dr
=+ /I’lv (1‘) (Vext (I’) - VE)S(t (1’)) dr + Ey [nc] + EH7nadd [nCa nv] y (82)

where

Extnad [, 14] = / / ne(O) () 4. (83)
r_r

Though the deep core-electron levels have much lower energy in comparison to the valence levels, they
cannot be considered as independent of the local environment. Core levels are affected by on-site
valence-electron orbital changes. As a consequence, changes in the individual terms in equation (82) might
be large. However, pseudopotential methods with active valence electrons only, which neglect any changes of
core levels, are surprisingly quite accurate relative to the fully self-consistent results. Von Barth and Gelatt
[100] demonstrated that the energy difference equation (82) has only a weak dependence on the local
environment (i.e. it is near-constant) because of cancellation of large errors involved in the frozen-core
approximation implicitly used by pseudo-potential methods. They showed that the AEXS changes vanish to
first order in the core-charge-density difference (see details in [100]).

The nonadditive XC term (third term) in equation (82) depends on the valence electron density, hence
upon interactions with neighboring atoms. Therefore Ey. na44 introduces an additional error associated with
the pseudo-potential calculations. Because the magnitude of the XC energy typically is about 10% of the total
energy, however, the Ex naqq error typically is small.

The seventh term, Ey nq44, is due as well to nonadditivity, but it does not introduce additional errors as
the corresponding functional derivative, vy ([n];1) = §En[n]/dn(r), is linear with respect to density.
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The total orbital-free pseudo-potential energy, in parallel with equation (81), is
EOFP ] = TOF [my] + En ] + Bxe [ ] + / ty (1) vy (1) dr + Eion ({R}) (84)

The orbital-free counterpart of equation (82), i.e. the difference between the AE and pseudo-potential OF
energies, is

AECF = TSOF [ne] + E)]()CFT 1] +E;]?cF,Eadd (e, my] + TsO,nFadd [, ] + /”c (T) Vext (r) dr

+ / iy (1) (Vext (r) — vl (1)) dr + Ey [nc] + Ept pada [1e,my] - (85)

Equation (85) includes all the terms in the KS energy difference equation (82), with the exception that
the fourth term arises only in the orbital-free approach. The XC nonadditivity arguments do not hold for it
because the noninteracting KE has the same order of magnitude as the total energy (recall the Coulomb virial
theorem). Hence, |TOF ,\[nc,n,]| > |EDFT | [nc,n,]|, and changes of this term associated with the local
environment might introduce large errors.

Detailed comparative study of these two terms is a matter of current investigation. However, at the least
one can conclude that the use of pseudo-potentials with frozen core (or valence-only) in OF-DFT
simulations is not soundly justified unless some kind of nonlinear kinetic energy core correction is made.
The relatively good accuracy of orbital-free approximations for simulations with such valence-only
pseudo-potentials (e.g. the 3e™ LPP calculation on fcc Al discussed above) is strongly suggestive of error
cancellation between the orbital-free approximate KEDF calculation and the omission of nonlinear KE core
correction. Transitioning to the AE framework, as needed for WDM calculations, removes the technical need
for the nonlinear KE core correction but exposes the major error in a simple approximate KEDE

OF-DFT (both ground-state and finite T') thus is confronted with a challenge. Introduction of a
nonlinear core correction for the kinetic energy likely will harm rather than help the accuracy of OF-DFT
computations with currently available noninteracting functionals, hence necessitating the development of
new approximate noninteracting functionals.

5.3. Nonlinear core corrections

Having nonlinear core corrections for the kinetic energy would be useful, at minimum, as a means for
avoiding the use of AE LPPs under many T,P conditions. This appears to be a priority need for OF-DFT
progress. There is precedent in the context of construction of pseudo-potentials with nonlinear XC core
corrections. We sketch that here.

A simple scheme is the nonlinear core correction proposed by Louie et al [101]. It constructs a ‘partial
core density’ nPao®!(r) which is added to the valence density n, in the computation of the XC energy during
the unscreening step of pseudopotential generation.

The original partial core density form was

sin(br)
(=4
Neore (T) y T2 Teore

r< rCO['C (86)

such that nlc’f;l;gal (r) was by construction equal to the true core density outside a core cutoff radius ror. That

typically was a smaller cutoff radius than used for the entire pseudopotential r.. Within roye, the functional
form equation (86) is a matter of mathematical convenience with parametrization to enforce a match
between the value and gradient of n?ﬁﬁial(r) and n¢(r) at r = Feore.

The partial core density form (equation (86)) has a discontinuity in the second derivative, which
precludes its use in pseudopotentials within GGA and above. Other forms are possible with continuous

differentiability up to an arbitrary degree [102]. For example,

7 .
exp Zi:o Cir217 T < Tcore

(87)
ncore (r) I r > rcore .

ial
pardl ()

From this sketch, it should be apparent that one route to address the nonadditivity problem of the
noninteractive kinetic energy is to devise a nonlinear core KE correction.

However, inclusion of a nonlinear core correction for the kinetic energy in an OF-DFT calculation may
lead simulations using frozen-core LPPs to similar results as AE LPPs (i.e. significant underestimation of
lattice constants). Rather than adopting such a strategy, reformulation of the orbital-free noninteracting
functionals for separable core and valence densities may be necessary. An example of the density partition
into delocalized and localized parts that is treated by different orbital-free functionals is given in [103].
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6. Conclusions and perspective

We have summarized key elements in progress over the last 15 years on the constraint-based development of
orbital-free density approximations for noninteracting and XC free-energy functionals. Those two
approximate functionals are critical ingredients for orbital-free simulations of matter at extreme conditions.

The ground-state XC ‘Jacob’s ladder’ rung typology has been extended to both the noninteracting and
XC free-energy functionals. It is important to emphasize that, as expected, higher-rung functionals generally
provide improvements in accuracy as compared to the lower rungs.

Thus, the first (LDA) rung was developed in 1948 and 2014 for the noninteracting (Thomas—Fermi) and
XC (KSDT) free-energy respectively. The second, fully thermal GGA rungs were developed in 2012
(noninteracting free-energy GGA-level framework) and 2018 (fully thermal KDT16 GGA XC). The
constraint-based development of these two GGA rungs used similar approaches: temperature dependences
are defined by analysis of the second-order gradient expansion (for noninteracting and XC free-energy
respectively), reduced density gradients with explicit temperature dependence are identified from the
corresponding GE2, and functional forms are defined in the usual GGA spirit.

The recently developed Laplacian (meta-GGA) level framework for noninteracting free energy
functionals [34] is based on reduced density variables with T-dependences defined from the fourth-order
gradient expansion for the noninteracting free-energy of a weakly inhomogeneous electron gas. So far, the
meta-GGA level XC free-energy approximation is realized via an additive approach in which the thermal
GGA-level correction augments a ground-state meta-GGA XC.

In all cases, both the noninteracting and XC free-energy functionals reduce to known ground-state
counterparts with known performance, such that these functionals can be used across the entire range of
temperatures.

Local pseudopotentials are an important ingredient for orbital-free calculations. The vulnerability of
existing one-point orbital-free functionals to the limitations of pseudopotentials is an increasingly pressing
problem. Valence-only pseudopotentials require relatively small energy cutoffs, and the resulting densities
usually are acceptably smooth. Such LPPs in combination with currently available single-point orbital-free
approximations frequently provide reasonably accurate results, especially for metals and semi-conductors.

Simulations at extreme conditions, however, require AE LPPs. Orbital-free calculations with AE LPPs at
near-ambient conditions show that equilibrium lattice constants for bee-Li and fec-Al are strongly
underestimated as compared to both conventional KS reference and valence-only OF calculations. The
accuracy of the valence-only OF calculations is attributable to incomplete error cancellation between the
missing nonlinear kinetic energy core correction and the approximate KEDE.

That cancellation represents one of the limitations and challenges related to the noninteracting
free-energy nonadditivity. Valence-only LPPs are not transferable to high temperatures, while currently
existing orbital-free approximations are highly inaccurate in conjunction with AE LPPs at low-T. A
combination of the valence-only and AE LPPs in principle can be used across the temperature regimes if
continuity of properties of interest, including thermodynamic derivatives with respect to temperature, can be
provided upon the switching between LPPs.

XC nonlinear core corrections address the nonadditivity of XC functionals and thereby improve the
accuracy of valence-only pseudopotentials. It appears that similar KE nonlinear core corrections can be
developed for valence-only LPPs. However, we expect that the accuracy of OF calculations using current
approximate functionals in conjunction with such corrected valence-only LPPs may degrade drastically,
becoming closer to the accuracy of calculations with AE LPPs. Addressing that challenge almost certainly will
require development of new orbital-free noninteracting functionals that treat core and valence electron
densities differently. Development of machine-learning augmented orbital-free approximations also may
provide new routes to development of orbital-free functionals accurate for AE calculations at a wide range of
temperatures.
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