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Abstract
Though calculations based on density functional theory (DFT) are used remarkably
widely in chemistry, physics, materials science, and biomolecular research and though
the modern form of DFT has been studied for almost 60 years, some mathematical
problems remain. From a physical science perspective, it is far from clear whether
those problems are of major import. For context, we provide an outline of the basic
structure of DFT as it is presented and used conventionally in physical sciences, note
some unresolved mathematical difficulties with those conventional demonstrations,
then pose several questions regarding both the time-independent and time-dependent
forms of DFT that could benefit from attention in applied mathematics. Progress
on any of these would aid in development of better approximate functionals and in
interpretation of DFT.
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1 Introduction and overview

Our objective is to identify some outstanding questions relating to density functional
theory (DFT), including finite-temperature, orbital-free, and time-dependent DFT.

DFT is a reformulation of the Hamiltonian description of quantum mechanics
(e.g., Schrödinger equation) for calculation of properties of interest (e.g., ground-
state energy, free-energy, etc.). As such, it is not an independent many-body theory,
hence adds no physics. Instead, it offers a framework that is quite distinct from other
approaches to the quantum mechanical many-body problem.

Some readers may not be familiar with the extensive DFT literature of the past
sixty years. Therefore, we have organized our presentations regarding both time-
independent and time-dependent DFT to begin with contextual overviews, Sects. 2
and 6, respectively. A generic but more abstract overview of the two is offered in
Appendix 1.

By choice, our perspective for the two more physical overviews is the conventional
one of the physical sciences (condensed matter physics, materials science, theoretical
chemistry). In addition to being a fair representation of our expertise (and its limits),
the conventional perspectives give a straightforward way to summarize known mathe-
matical difficulties with those approaches (a consequence, among other things, of the
different standards of proof typical of physical sciences compared to mathematics).
Useful resources include Refs. [1–7].

Observe that our attention is restricted to quantum systems. The counterpart DFT
for classical systems, e.g., atoms in liquid states [8], is an active area with problems
of its own. It is not discussed here. Moreover, we restrict discussion to many-electron
systems because they, overwhelmingly, comprise the quantum systems of interest in
DFT.

Though our purpose is not a DFT review, it is important to note that DFT is, by
now, the most widely used many-electron method by far. Its appeal and utility rest
in several aspects. It reduces the many-degrees-of-freedom problem of other many-
fermion formulations to a functional dependency on a single, physically observable
scalar quantity, the electron number density. It provides a structure by which that
density (time-independent or time-dependent, zero or nonzero temperature) can be
generated by use of an auxiliary non-interacting many-electron system. That, in turn,
provides highly advantageous computational cost-scaling with system size compared
to other many-body ansätze. And it yields system-specific physical and chemical
property values (energies, free energies, ionization potentials, . . . etc.). In detail,
applications of DFT as a computational tool confront many technical and fundamental
problems. Some of these are discussed in more detail below.

Before proceeding, some basic definitions are useful. We use Hartree atomic units,
� = me = qe = 1 where � is Planck’s constant divided by 2π ,me is the electronmass,
and qe is the electron charge magnitude. We restrict consideration to non-relativistic
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many-electron systems in an external potential such that the system total energy (free-
energy) per unit volume is bounded below. The electron number density is n(r); it is
normalized to the number of electrons (or number per cell as the case may be), Ne.

The remainder of the paper is structured as follows. Section2 summarizes time-
independent DFT as presented conventionally along with the time-independent
Kohn–Sham (KS) variational procedure. Section3 then gives the knownmathematical
difficulties with those conventional approaches (both as to the underlying theorems
and the KS procedure), and poses four questions about the scope and impact of those
mathematical deficiencies. In Sect. 4,we summarize the so-called orbital-free formula-
tion of KS DFT and pose six questions. Section5 poses six questions on various other
aspects of time-independent DFT (e.g., explicit number dependence, spin-density-
functionals, spectral gap). Turning attention to time-dependent DFT (TDDFT), Sect. 6
summarizes conventional approaches to formulating TDDFT. Then, Sect. 7 discusses
some fundamental issues of TDDFT proofs. We conclude with very brief remarks in
Sect. 8.

Throughout, we formulate specific questions that are of current interest to the
DFT community. About them, we believe the applied mathematics and mathematical
physics community may be able to make some helpful progress.

2 Time-independent DFT—conventional presentation

As noted above, time-independent DFT conventionally is presented as a variational
formalism within which the quantum mechanical energy of a many-particle (usually
many-fermion) system can be determined. For a system at zero temperature, this refers
to the ground state energy, while at nonzero temperature (called “finite temperature”
in the physics literature) it refers to the thermodynamic free energy.

At the fundamental level, the problem is characterized by a Hamiltonian H for the
system of interest plus an external potential coupling separately to each degree of free-
dom qi , V = ∑

vext(qi ). The energy is therefore a functional of this external potential,
E = E[vext]. Similarly, derived properties also are functionals of vext. For example,
the local number density n(r) is the functional derivative n(r) = δE[vext]/δvext(r).
Therefore, one may use this to define n(r | vext) as a functional of vext(r). Via a Leg-
endre transform, a functional of the density F[n] can be constructed. In this way, the
properties of the system of interest are characterized by the density for any external
potential. The objective of time-independent DFT is to find this representation through
the propositions that (i) there is a one-to-one relationship between vext(r) and n(r),
and (ii) there exists a universal (i.e., independent of vext) functionalF[n] such that the
extremum (minimum) of F[n] := F[n]+ ∫

drn(r)vext(r) occurs at n0(r) with F[n0]
being the ground state energy for temperature T = 0 K or equilibrium free energy for
T > 0 K.

Proofs of various forms of these propositions for many-electron systems at zero
temperature were given by Hohenberg and Kohn (HK) [9] and refined by Levy [10]
and Lieb [7]. From this work, there are three distinct functionals, Hohenberg–Kohn
(FHK ), Levy–Lieb (FLL), and Lieb (FL ). We sketch the differences.
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TheHK argument established that for a non-degenerate ground state�0 and its den-
sity n0(r) from a particular vext(r), there is a one-to-one mapping vext(r) ↔ n0(r) and
E0 = FHK[no] + ∫

drn0(r)vext(r). On the assumption that every n(r) is associated
with some vext(r) as its ground-state (“ground-state interacting v-representability”),
HK defined FHK[n] := E[vext] − ∫

drn(r)vext(r) and the associated variation prin-
ciple (see Ref. [7] at Eq. (3.10)). The difficulties with the HK functional are (i) it is
not convex on the required density domain, (ii) it is difficult to define that domain,
which is the space of ground-state n(r), and it also is difficult to define the space of
vext(r) for which H + V has a ground state, and (iii) not every density is ground-state
interacting v-representable.

The Levy–Lieb functional [7, 10] removed both the interacting v-representability
problem and the non-degenerate ground state restriction essentially by rearranging the
ordinary Ritz variational principle into variation over equivalence classes by density,
followed by variation over densities (“constrained search” in the DFT literature):

FLL[n] := inf
{ 〈ψ | H | ψ〉

〈ψ | ψ〉
∣
∣
∣ψ �→ n

}

E[v] = inf{FLL[n] +
∫

drn(r)vext(r)|n ∈ INe }. (1)

Here INe is the set of properly normalized densities with finite vonWeizsäcker kinetic
energy; see Ref. [7]. The difficulty with FLL[n] is that it also is not convex.

Lieb then defined a convex functional

FL [n] := sup{E[v] −
∫

drvext(r)n(r)} (2)

with vext(r) defined on a suitable space (L3/2 + L∞). (Aside: There is a typographical
error in Lieb’s Theorem 3.4 (i). It should say “F̃(ρ) is not convex.” Equivalently in
our notation “FLL[n] is not convex.”)

Formost physical scientists, Lieb’s functional has been regarded as providing a firm
mathematical foundation for DFT but a quotation from Lieb himself gives worthwhile
perspective (notation transcribed): “Despite the hopes of HK,…it is not true that every
n(r) (even a “nice” n(r)) comes from the ground state of some single-particle potential
vext(r). This problem can be remedied by replacing the HK functional by the Legendre
transform of the energy, as is done here. However, the new theory is also not free of
difficulties, and these can be traced to the fact that the connection between vext(r) and
n(r) is extremely complicated and poorly understood.” 40 years later some of those
challenges are unresolved.

Regarding the one-to-one mapping, the issue of vext(r) in a suitable space is dis-
cussed by Lieb (his Remark (ii), page 255) in terms of densities that do not come from
some vext(r). Of specific concern are those otherwise proper densities “…that vanish
on a nonempty open set.” If vext belongs to L3/2+L∞, then he asserts that such cannot
be ground state densities by the unique continuation theorem. But parenthetically he
adds “(Strictly speaking, this theorem is only known to hold for v ∈ L3

loc but it is
believed to hold for L3/2 + L∞.)” The argument then goes that “if the set of allowed
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vs can be extended properly to allow infinite vs, the existence of such ns may not
have any particular importance. The question is very delicate, however ….” From a
physical science perspective the question also is significant because v ∈ L3/2 + L∞
excludes the harmonic oscillator. We return to this below.

2.1 Conventional discussion of functional derivatives

As a practical tool for physical science, time-independent DFT almost always relies
on the existence of functional derivatives of F[n] to determine the equations used to
solve for the optimizing density n0. The existence and detailed properties of functional
derivatives remain, therefore, among the crucial open issues for time-independentDFT.
This is the context in which, after detailed discussion of the existence of continuous
tangent functionals for FL and FLL, Lieb posed two questions “…whose answers we
cannot give but that are obviously important for the theory.” Those two questions are
about the occurrence of continuous tangent functionals and their relationship to vext.
He did not discuss functional derivatives explicitly (in fact, the term does not appear).
That was taken up by Englisch and Englisch [4, 5], who asserted that on the basis of
Lieb’s results for continuous tangent functionalsFL has a proper functional derivative.

An example of how this is presented in the DFT community (from a treatise we
respect and use) is on page 36 of Ref. [1]: “In summary: The functional derivative of
FL [n] exists for all ensemble v-representable densities and is identical with a potential
vext …Moreover, for any other “reasonable” density n …one can find an ensemble
v-representable density which is arbitrarily close to n, so that the functional derivative
of FL [n] again exists.”

The foregoing statement has been known not to be true since at least 2007; we defer
further details to Sect. 3. What is significant here is that, in our experience, statements
such as the foregoing are an authentic representation of the understanding of most of
the physical science segment (the majority) of the DFT community. Generally it is
held that Levy’s seminal insight [10], Lieb’s analysis [7], and Englisch and Englisch’s
analysis [4, 5], together provided a reasonably sound resolution of the limitations of
the original HK argument, save perhaps for somemathematical niceties that are tacitly
assumed to be inconsequential. Thus, restrictions on allowable potentials are ignored
for example and functional differentiation is done routinely.

More tersely, Mermin provided the analogue to the original HK proof for finite
temperature [11]. Ensemble generalizations [12, 13] analogous with the conventional
ground state treatment for FLL and FL are obvious. Refinements and their extension
for more general systems are described in Refs. [1, 7, 14, 15]. Additionally, it is the
conventional view that the zero temperature results are subsumed by the appropriate
limit from finite temperature except without some of the problems of the functional
derivatives that the zero-temperature theory has [12].

It is safe to say that most of the attention in the DFT community is focused on
overcoming the barriers to exploiting the many advantages to representing the original
many-body problem in terms of the density rather than the external potential. A very
recent “round-table” paper has many details [16].
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2.2 Conventional time-independent Kohn–Sham procedure

The variational representation in terms of a density functional provides means for
approximations that are not confined to limitations of other quantummechanicalmany-
body methods. Because, however, the proofs about F[n] in any of its forms provide
no insight into its structure, the strategy for exploiting the variational representation
is indirect, namely the Kohn–Sham (KS) scheme [17]. In it, FLL is decomposed
into two pieces. Working at T = 0 K for simplicity, the KS strategy is to introduce
an auxiliary non-interacting system with variational functional Es := Ts + EH +
Eext +

∫
drn(r)vxc(r) that has the same number density and same external potential

as the physical interacting system. Here Ts[n] is the non-interacting (KS) system
kinetic energy. The additional potential vxc required to maintain the same density
eventually becomes identified as connected with exchange and correlation energies in
the interacting system, hence the subscript “xc.”

Remark In the conventional presentation, the variational functionals for both the inter-
acting and auxiliary system usually are FLL. This is expressed with admirable candor
in Ref. [15], p. 36: “As a matter of principle, the subsequent development of the
DFT formalism should therefore be based explicitly on the Lieb functional. We will
nevertheless ignore the issue … and not distinguish between the various flavors ….”

Introduction of the KS auxiliary system provides a definition for the exchange
energy Ex in terms of a single-determinant of the KS one-body states (“orbitals”).
Then, FLL + ∫

drn(r)vext(r) can be rearranged so that the variational energy is

ELLKS[n] := Ts[n] + EH [n]
+ Ex [n] + Ec[n] + Eext[n] (3)

with EH the Hartree energy, Ec the DFT correlation energy, and Eext the energy from
the external potential (usually the Coulomb interaction with nuclei or ions).

Remark For those conversantwith variational wave-function approaches, theKS-DFT
correlation energy includes the difference between the interacting system and non-
interacting system kinetic energies, T [n] and Ts[n]. Explicit expressions for Exc[n] =
Ex [n]+Ec[n] are not known except for a few special cases. Themajority of the papers
that discuss “approximate density functionals” concern approximations to Exc[n]. We
return to this below.

Variation of ELLKS[n] with respect to the density subject to conservation of total
particle number then causes the functional derivative vxc := δExc/δn to appear as a
local potential in the eigenvalue problem for the KS orbitals, along with the original
vext.

Remark (a) Notice that FLL conventionally is assumed to have well-defined func-
tional derivatives (an assumption we already have highlighted). (b) The Kohn–Sham
decomposition is extremely helpful because the non-interacting terms may be
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expressed exactly with the use of the orbitals and because, for most systems of inter-
est, the exchange-correlation energy, which still must be approximated, is only a
small-magnitude correction to the non-interacting energy.

3 Mathematical difficulties with conventional time-independent DFT

3.1 Issues with conventional time-independent HK and LL functionals

Issue 1 The argument in Ref. [7] for the one-to-one correspondence between density
and external potential in the first HK theorem depends on Lieb’s assumption, discussed
above, that the unique continuation theorem actually holds for the function space in
which his argument is formulated. A version of unique continuation and a resultingHK
theoremwas given muchmore recently by Garrigue [18] but, as we understand it, for a
different function space than used in Ref. [7]. Hence, the ground-state “HK theorem”
that is used conventionally is not the one forwhichGarrigue provided amathematically
proper foundation and conversely. The issue of relevant spaces and corresponding
conditions upon external potentials (including unique continuation) was studied at
the same time by Lammert [19]. He gave several HK theorems, not just one. Again,
there are function-space differences involved. His proofs are in Kato class spaces, for
example, K3. He noted explicitly that Lieb’s proofs are in L3/2(R3)+ L∞(R3) which
is not in K3 but then he says “K3 nearly contains the Lieb class in some sense.” For
the thermal case, the only rigorous proofs of the one-to-one HK theorem seem to be
in a finite-basis [20] or on a lattice [21]. For explicitly finite systems, the results for
graphs are perhaps more perplexing from the conventional viewpoint, since the first
HK theorem demonstrably does not hold [22] for those systems.

Question 1.1 To what extent and in what ways are the mathematical deficiencies of
the conventional justification of time-independent DFT consequential for its use? Put
anotherway, where and howdo those deficienciesmanifest themselves?Do theymatter
for many physically realizable systems or are they important only for some limited,
exotic (hopefully well-defined) cases?

Remark In the context of Lammert’s remark quoted above, our question amounts to
asking about the detailed consequences of that function space relationship.

Question 1.2 In what way or ways must the responses to Question 1.1 be modified for
the thermal case?

3.2 Issues with the conventional time-independent KS procedure

Briefly, at least two categories of mathematical difficulties with the conventional KS
scheme are known. One is the v-representability problem: What are the conditions
under which a density n can be associated uniquely with both an interacting and a
non-interacting system constructed from it by the KS strategy? This seems to have
been resolved (see Ref. [23]), but we are unsure on that point.
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Issue 2 The other issue has drawn much attention. For the Lieb functional, neither
Gateaux nor Frechet functional derivatives exist in general. It is known [24] that the
supposed proof ofGateaux differentiability inRefs. [5] and [23] is incorrect. Reference
[24] shows that differentiability can be rescued by imposition of subsidiary conditions
about the density (which must be strictly greater than zero) and about the first and
second derivatives of the parent ground-state wave function. This obviously is far from
what is assumed in the conventional KS development, vide supra.

Remark Even if the conditions ofRef. [24]were to bemet, it is not obvious to us that the
resulting functional derivatives would have a straightforward operational relationship
with those derivatives commonly used in the conventional DFT development.

Question 2.1 To what extent and in what ways does the lack of the functional deriva-
tives that are assumed to exist in conventional DFT manifest itself in the development
and use of approximate functionals? Alternatively stated, can a prescription or pro-
tocol be provided (such as those used for manipulating the Dirac delta function and
Heaviside unit step function in the physical sciences) to account for the consequences
of the restrictions given in Ref. [24], such that the conventional procedure could be
made operationally valid?

The only other cure to the functional derivative problem so far offered seems to be
in Ref. [25] but that requires the use of quasi-densities.

Question 2.2 Can a detailed scheme be provided whereby the quasi-densities of Ref.
[25] and manipulations with them are related systematically to the physical densities
(that are experimentally measurable quantities) used in conventional DFT?

Remark Many rigorous results about physical densities are known and exploited in
the development of approximate Exc functionals. Connecting quasi-densities system-
atically to those properties is an essential pre-requisite therefore to any approach for
using quasi-densities in some reformulation of DFT.

4 Issues in “orbital-free” time-independent DFT

We continue at T = 0K. Though the ordinary KS equation has a local potential
vext(r) + vxc(r), its self-consistent solution in a basis typically has computational
costs that scale as N 3

e . This scaling is worsened by the introduction of approximations
for Exc[n] that depend explicitly on theKS single-particle orbitals. Though in principle
one can find the KS potential for such an Exc via what is called the optimized effective
potential [1], the computational burden is so high that the conventional work-around is
what is called “generalized KS” (gKS). It amounts to taking the variational derivative
of ELLKS[n]with respect to the orbitals ϕ j (r). That worsens the computational burden
because each orbital must be calculated from a separate, orbital-dependent potential in
the gKSequation.Details are irrelevant here. To evade that bottleneck, onemay express
the non-interacting kinetic energy Ts as an explicit functional of the density, obviating
the use of orbitals. Since Ts[n] is not known in general as an explicit functional of
n(r), doing so requires a further approximation. This is called, slightly misleadingly,
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orbital-free DFT (OFDFT). In fact, there is one orbital ∝ n1/2(r). Approximating
Ts[n] is significantly more challenging than for Exc. OFDFT is an area of continuing
fundamental and practical research; see Refs. [26–28].

Thus, ordinary KS calculations require accurate approximations for Ex and Ec,
while the OFDFT form also requires an accurate approximation for Ts[n]. The range
of systems of interest is enormous, yet there are few exact results to guide or inform
development of those required approximations. Two routes are followed therefore.One
is unabashedly pragmatic. Terms in ELLKS arewritten in some physically sensible form
with parameters that then are fitted to relevant physical or chemical data (computed
or measured). Such functional approximations (called “empirical” in the physics and
chemistry literature) are not our priority. Our focus is on the second kind, developed
by imposition of whatever set of exact properties is known as constraints. These
approximations are formulated in the framework of the KS decomposition, so we give
pertinent details next. We assume Coulombic systems.

As noted above, the desired functional is decomposed into the sum of a non-
interacting kinetic energy, the classicalCoulomb repulsion, and the external interaction
energy, denoted above as Es [n], and the remainder, Exc = Ex [n]+Ec[n]. Standard uti-
lization of the KS decomposition invokes the explicit form of Ts , namely, for specified
density n,

Ts[n] = 1
2 min

φ �→n

∫

dr1...drNe

Ne∑

i

|∇iφ|2 (4)

with φ a properly normalized single Slater determinant. (Extension to T > 0K is
by the corresponding 1-particle reduced density matrix.) This leads to the commonly
seen expression

Ts [{ϕi [n]}] := 1
2

∑

i

fi

∫

dr |∇ϕi (r)|2. (5)

The fi are the Fermi-Dirac occupation numbers for the KS orbitals ϕi and the domain
of integration is R

3 for finite systems (molecules, atoms) or the periodic volume in 3D
periodic boundary conditions. Solving for the minimum ofF leads to a self-consistent
eigenvalue problem for each occupied ϕi [n].

The OFDFT utilization of the KS decomposition eschews explicit use of the ϕi
and instead constructs an approximate non-interacting kinetic energy Ts[n] (non-
interacting free energy) functional for use alongwith an approximate Exc[n]. The Ts[n]
contribution to the total energy typically is substantially larger than the magnitude of
Exc. Nonetheless, it is less well studied than the XC term, so the OFDFT approach
has several significant unsolved problems regarding the properties and behavior of Ts .

Exact properties of various density functionals (especiallyXC) have been extremely
useful in the construction and improvement of practical approximations. Thus, next we
suggest several topics regarding which mathematicians may well be able to contribute
to advancing OFDFT.
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Issue 3 The structure and properties of Ts[n] remain somewhat obscure. In OFDFT
(for convenience here still at T = 0K; there is an obvious finite T counterpart) there
are two ways to formulate approximations for the Kohn–Sham kinetic energy Ts . To
embody known properties, one-point approximations are written as

Ts,1[n] = TvW [n]
+ cT F

∫

dr n5/3(r)

× fθ
(
n(r),∇n(r),∇2n(r), . . .

)
(6)

with the “enhancement factor” fθ to be approximated. Here cTF := 3
10 (3π

2)
2
3 and

fθ = 1 makes that term the Thomas–Fermi kinetic energy,

TTF := cTF

∫

dr n5/3(r). (7)

The first term is the von Weizsäcker kinetic energy,

TvW := 1

8

∫

dr
|∇n(r)|2
n(r)

. (8)

The Thomas–Fermi kinetic energy is exact for a homogeneous electron gas, while
the von Weizsäcker kinetic energy is exact for a one-electron problem or a doubly
occupied two-electron problem.

Remark There is a vast literature of exact results on the TF problem [29–33] and
gradient expansion corrections thereto. [34–37]

Two-point approximations conventionally are written as augmentations to those
two limiting cases,

Ts,2[n] = TvW [n] + TTF[n]
+

∫

drdr′ K[n(r), n(r′); r, r′], (9)

with K to be approximated. At least one exact result is known about it [38]. It also is
known that the sum of the last two terms must be ≥ 0 because TvW ≤ Ts [39].

For reasons of computational speed and clarity of formulation, we have focused
on one-point approximations. Except for the gradient expansion, some positivity con-
ditions on the second term in Eq. (6), and some properties provable in the limit of
infinite distance from a single atom, rather little is known to guide and shape such
approximations. Practical barriers so far have led to no higher-order spatial derivative
dependence than ∇2n.

Question 3.1 Fora specifiedhighest-order ν of spatial derivative dependence ∂νn/∂rν

of a one-point approximation, is there an underlying intrinsic property of Ts that
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makes such an approximation impossible in principle or subject to formidably difficult
necessary and sufficient conditions?

Remark There are claims in the literature about maximum possible order; see Ref.
[40] and references therein.

Issue 3 -continued It long has been conjectured that one-point approximations can-
not yield atomic shell structure because they cannot reproduce the interference between
orbitals that arises in the KS kinetic energy, Eq. (5). However, whether functionals
employing higher-order derivatives, e.g., ∇2n, that necessarily are sensitive to small
deviations from a smooth density, could generate such structure is an unresolved issue.

Question 3.2 Is the conjecture about the non-appearance of shell-structure in one-
point approximations true and, if so, under what conditions?

Remark Observe that this question is linked to Question 3.1.

Question 3.3 If the answer to Question 3.2 is negative, does obtaining shell-structure
in a one-point approximation implicate non-standard (e.g., improper signs) terms in
the gradient expansion correction to the Thomas–Fermi kinetic energy?

Remarks The subsidiary matter at issue here is whether terms can be implemented in
a practical functional so as to generate the correct shell structure in the density rather
than unphysical fluctuations. This relates to the observation, in several contexts, that
the lowest-order gradient expansion correction to the Thomas–Fermi kinetic energy
(proportional to |∇n|2) might properly be negative, rather than positive, as is the case
in the standard gradient expansion [34]. The contexts include the Airy or edge gas
[41], the large-Z limit of neutral atoms [42], and imposition of the discontinuity in the
Lindhard response function as a constraint upon the approximation [43]. This opens
the possibility that shell structure could be induced because of the reduction in Ts
as gradients are introduced in the density. However, to date, approximate functionals
implementing a negative gradient expansion contribution to the kinetic energy while
retaining overall stability fail to produce shell structure in self-consistent calculations.

Issue3 continuedAnupper-bound to theKSkinetic energyTs that has been conjectured
but apparently never proved [44, 45] is

Ts ≤ TTF + TvW . (10)

The inequality has been invoked in constructing OFDFT Ts approximations as a
constraint. It can be rationalized [46] by taking the Ne → ∞ limit of the finite-
system inequality due to Gázquez and Robles [47]. However, their inequality involves
a local-density approximation, hence is not an exact result.

In the development of approximate Ts[n] functionals, for reasons of convenience,
the conjectured inequality (10) usually is enforced locally, that is, as a constraint on
the respective integrands in (10) for an approximation to Ts , to wit,

ts(r) ≤ tTF(r) + tvW (r). (11)

Examples of violations of local satisfaction have been discussed recently [48].
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Remark The gauge ambiguity in using densities such as in Eq. (11) is well understood
in the DFT community.

Questions 3.4, 3.5, and 3.6 Is the inequality (10) true and, if so, under what condi-
tions? What are the provable implications of its use locally? Are those results different
for T > 0 K and if so, in what way(s)?

5 Additional issues in time-independent density functional theory

It is standard practice (see, for example, Section 2.5 of Ref. [1]) to generalize from
DFT to spin density functional theory (SDFT). Doing so exposes physically significant
aspects of the exchange-correlation functional that are hard to access in the original
non-spin-polarized formulation.We continue to limit discussion toT = 0K. In outline,
the textbook argument goes as follows: Define the magnetization density m(r) :=
nα(r)−nβ(r) (nα = “up spin,” nβ = “down spin”) and an external field of magnitude
B(r). For simplicity, take theB andmagnetization directions to be aligned (though they
may be parallel or anti-parallel). Then, to lowest-order in the field, theKS-decomposed
Levy–Lieb functional, Eq. (3), becomes

ELLKS[n,m] := Ts[n] + EH [n]
+ Ex [n,m] + Ec[n,m] + Eext[n]
+ μ0

∫

drm(r)B(r).

(12)

Here μ0 is the Bohr magneton. The conventional argument is that this is a straight-
forward extension of Levy–Lieb constrained search. That is, the usual Hamiltonian
(sum of many-electron kinetic energy, electron–electron Coulomb interaction, and
external potential) is augmented by a term linear in B. The KS decomposition and
rearrangement gives Eq. (12) and variation then gives spin-dependent exchange and
correlation potentials in two coupled KS equations, even for B(r) → 0.

Issue 4 However, Savin [49] has shown, by explicit example, that (12) is not
bounded below for any finite B, so the textbook variational argument is not valid.
Earlier it had been shown [50] that the SDFT spin-dependent potentials are not unique.
Though that problem can be resolved [51], the resolution does not solve the lower-
bound issue raised by Savin. Going beyond linear order in B supposedly provides the
solution but that implicates current density functional theory [52] and it is not obvious
that it resolves the issue of B = 0 SDFT legitimacy.

Question 4.1 Is there a formulation of SDFT that resolves these issues and is con-
nected unambiguously to the Levy–Lieb–Englisch formulation of the spin-independent
theory?

Issue 5A fundamental problem of many-fermion physics is to predict the existence
or absence of a spectral gap for a prescribed Hamiltonian, that is, to predict whether
there is a nonzero energy interval between the ground- and first-excited stationary
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states for that Hamiltonian. In a tour-de-force paper, Cubitt, Pérez-Garcia, and Wolf
[53] showed that for a certain carefully described type of two-dimensional quantum
spin system, the spectral gap problem can be mapped to the outcome of the Turing
machine “halting problem.” Given a well-specified input, it is provable that the ques-
tion of whether a Turing machine will halt is undecidable. Therefore the question of
whether a system with the type of Hamiltonian they defined is gapped or gapless also
is undecidable. Note that this is subject to the logical limitation that, as defined by the
authors [54], in the original proof “gapped” is not defined strictly as the negation of
“gapless.”

The direct calculation of spectral functions viaDFThas not receivedmuch attention.
Reference [55] does give one formulation with particular emphasis on degenerate
states. Viewed broadly, since DFT is, in principle, an exact rendition of interacting
many-electron quantum mechanics and the formalism discussed by Jacob and Kurth
[55] is an exact result for the exact functional, a question arises.

Question 5.1 Does spectral gap undecidability apply to exact DFT for degenerate
many-electron systems, or does it fall into a different class of gapped systems?

Issue 5 continued Suppose that spectral gap undecidability does apply for exact
DFT. In practice, the theory is used with approximations, e.g., Ex [n] and Ec[n] in
conventional KS calculations and, additionally, Ts[n] in the orbital-free form of the
KS procedure (vide supra). Those approximations introduce errors.

Question 5.2 Can the errors from density functional approximations cause a proof of
spectral gap undecidability in DFT to be nullified? For example, if the proof relies
on halting a Turing machine, can such errors fortuitously halt a Turing machine, thus
making the evaluation of the spectral gap decidable for degenerate states?

Issue 6 Lieb, at the beginning of Section 4.A of Ref. [7], remarked that any math-
ematically satisfactory definition of the DFT variational functional “…must depend
explicitly on the particle number Ne. This fact is unavoidable and frequently over-
looked.” Various examples of such dependence in practice were cataloged in Ref.
[56]. Early investigations of approximations for Ts[n] notably involved such depen-
dence [47, 57–62]. Partly at least that was motivated by the possibility of generating
shell structure from Ne dependence. The problem that explicit Ne-dependence could
introduce, of course, is incompatibility with size consistency. (For two systems,
A, B with ground state energies EA, EB , size consistency requires that the total
energy of the aggregate in the limit of arbitrarily large separation between them be
EA+B → EA + EB .) The conventional KS form of Ts includes the required Ne

dependence explicitly by its sum over the kinetic energy of the occupied KS orbitals,
c.f. Equation (5). Practical approximations for Ex and Ec either have no explicit Ne

dependence or they pick up such dependence from use of theKS kinetic energy density
in a dimensionless indicator function [63].

Question 6.1 Are there formal structures by which Ne dependence could be incorpo-
rated systematically in approximations of useful quality for Ts (within OFDFT) and/or
Ex , Ec without violation of size-consistency?
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Issue 7 Because of the differentiability issues discussed above (recall 3.2), interest
recently has grown [64] in generating the time-independent KS potential directly by
a bijective mapping n(r) ↔ vK S(r), much as is done in time-dependent DFT, vide
infra. The methodology is force-balance and continuity, i.e., use of the equations of
motion of the physical current density and the density, respectively. In at least one
demonstration calculation [65], the potential was derived for various systems and
compared with, among others, simplified optimized effective potentials.

Question 7.1 In the absence of an explicit variational density functional E[n], how is a
ground-state KS potential obtained by the force-balance scheme to be used to evaluate
ground-state expectation values, particularly the ground state energy E0[n0]?
Remark Opportunism from a physical science perspective would suggest using the
v from force-balance to solve for n(r) and use of that to evaluate E[n] from some
approximate Exc[n]. The motive is to avoid “density-driven error” [66], but the logical
difficulty is, of course, that this procedure assumes that the inversion (bijection) is
variationally related to the ground-state energy.

6 Time-dependent DFT conventional presentation

An extension of the DFT concepts to dynamical phenomena, time-dependent density
functional theory (TDDFT), also is a very active research area. As just mentioned
in the force-balance context, this approach relies on the existence of a bijective map
between the time-dependent density n(r, t) (which may take on any initial value at
t = 0) and the time-dependent external potential vext(r, t), up to a constant.

At least from the physical scientist’s perspective, proof of this mapping is funda-
mentally different in character and more complicated than the proofs for ground-state
or finite-temperature DFT. See Ref. [67] and references therein to the original lit-
erature. One way to understand the distinction is that there is no straight-forward
variational principle for the time-dependent case. An attempt to proceed analogously
with standard procedure for the time-dependent Schrödinger equation by defining an
action and varying it leads to causality problems [68].

The focus of time-dependent DFT therefore is almost entirely on the n(r, t) ↔
vext(r, t) mapping. For pure-states, the conventional TDDFT formulation was put
forth first by Runge and Gross [69] with substantial refinements by van Leeuwen
[70]. Their result was extended to general mixed states recently by Dufty, Luo, and
Trickey [71]. In all of those cases, the systems were restricted to those with densities
and potentials that are analytic in time for some domain about the initial time (an
exception is the special case of linear response).

For context about the conventional perspective, it is worthwhile to outline the
Runge–Gross [69] proof. It exploits the analyticity of the potentials by considering
two potentials vA, vB that differ by more than a constant. At some order k, the time
derivative of their difference is non-constant (because of analyticity):

vA,k(r) − vB,k(r) := ∂k[vA(r, t) − vB(r, t)]
∂tk

∣
∣
∣
t=t0

�= constant. (13)
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Then, they calculate the partial time derivative of the difference in the two quantum
mechanical currents. If Eq. (13) is satisfied for k = 0, the current-difference time
derivative is nonzero and the bijectivity result is trivial. If, however, k > 0, they
take k + 1 current-difference derivatives and show that they correspond to the spatial
gradient of the kth potential timederivative.By the equation of continuity, this is related
to the (k + 2)nd time derivative of the density difference nA(r, t)− nB(r, t) and from
there they show that this difference is nonzero provided that a certain surface integral
vanishes. They argue that on physical grounds it must vanish. Counterexamples and
ways to deal with them have been discussed [72–74].

We give this rather labored summary of the Runge–Gross argument to illustrate how
very different TDDFT is, at least from the conventional physical science perspective,
from time-independent DFT.

A quite different approach has been proposed by Ruggenthaler and van Leeuwen
[75, 76]. It is based on an iterative solution to an equation relating the time-dependent
density and external time-dependent potential that follows from the conservation laws
for number density andmomentum. There are two steps: relating existence and unique-
ness of solutions to that equation to the corresponding statements of TDDFT, and proof
of that existence and uniqueness. The method does not require analyticity of the den-
sity and external potential.While formulated for pure states, it can be extended directly
to more general mixed states for both quantum and classical descriptions.

7 Some issues in time-dependent DFT

To get at the questions regarding TDDFT proofs, it is helpful to frame the problem
rather generally. Consider two systems characterized by the Hamiltonians H (t) and
H1 (t),

H (t) = K +U + V (t), H1 (t) = K +U1 + V1(t). (14)

Here, K denotes the kinetic energy, U and U1 are general many-body potentials, and
V and V1 are sums of single particle potentials

V (t) =
∫

drv(r, t )̂n(r), V1(t) =
∫

drv1(r, t )̂n(r). (15)

The number density operator n̂(r) is given by

n̂(r) =
N∑

j=1

δ
(
r − q j

)
, (16)

where q j is the position operator for the j th particle. The expectation value of some
observable corresponding to an operator X is 〈X〉 = TrρX , Trρ = 1. The trace is
taken over an arbitrary complete set of states defining the Hilbert space considered.
The system state is represented by the positive, semi-definite Hermitian operator ρ
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normalized to unity. The corresponding quantities for the second system have the same
definitions but distinguished by the subscript 1.

The time-dependence of a state ρ (t) is given by the Liouville–von Neumann
equation

∂tρ(t) = −i [H (t) , ρ(t)] , ρ(t = 0) = ρ (17)

where, without loss of generality, the initial time is taken to be t = 0. Accordingly,
the number densities for the two systems are

n(r, t | v) = Trρ (t) n̂(r) ≡ 〈̂n(r); t〉 , (18)

n1(r, t | v1) = Trρ1 (t) n̂(r) ≡ 〈̂n(r); t〉1 . (19)

The notation n(r, t | v) indicates that the density is a space-time functional of
v(r, t), where for simplicity we have dropped the “ext.” Also the subscript on the
bracket 〈̂n(r); t〉1 indicates an average over ρ1 (t) with dynamics generated by H1 (t).
Densities n(r, t) for which there exists a corresponding potential v(r, t) are called
v-representable and their determination is the v-representability problem (vide supra).

As stated already, the objective of TDDFT is to show that for a given n(r, t) the
corresponding external potential v(r, t) is unique, i.e., that there is a one-to-one map-
ping of the potential and density for the given Hamiltonian H (t). If so, the mapping
must hold as well for the Hamiltonian H1 (t) with different U1, V1(t). It follows that
for the same choice of density there exists a unique external potential v1(t) such that
n1(r, t | v1) = n(r, t). Consequently,

n(r, t | v) = n1(r, t | v1). (20)

This is the strongest statement of TDDFT (conditions for the initial state are required
but details are not needed for this discussion). For the special case that system 1
consists of non-interacting particles, i.e.,U1 = 0, this result implies that the density of
an interacting system can be reproduced by a non-interacting system with a different
external potential. That representation is referred to as the Kohn–Sham form.

Issue 8 The TDDFT proof proposed by Ruggenthaler et al. starts with an exact
representation for the functional relationship of the density and external potential
resulting from the local macroscopic conservation laws for the density andmomentum
density, to wit

∂2t n(r, t | v) = 1

m
∂i

[
∂ j ti j (r, t | v) +

+n(r, t | v)∂iv(r, t) ] .
(21)

(Subscripts i , j are coordinate indices. Repeated indices denote Einstein summa-
tion. We have left the mass dependence explicit for clarity, though for electrons in
Hartree atomic units m = me = 1.) This is an identity relating the average density
obtained from the Liouville equation for the dynamics evolved under the external
potential v(r, t) . Here t jk (r, t | v) is the average momentum flux t jk (r, t | v) =
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Trρ(t | v)̂t jk (r). The precise definition for the operator t̂ jk (r) is known, and its
average over the ensemble implies that it is a functional of v(r, t).

Now consider an arbitrary density n(r, t) and an external potential w(r, t) defined
as the solution to the equation

∂2t n(r, t) = 1

m
∂i

[
∂ j ti j (r, t | w) + n(r, t)∂iw(r, t)

]
. (22)

This is an equation forw(r, t) in terms of the given density. The functional ti j (r, t | w)

is unchanged, only its argument is different. Suppose (22) has a solution. Then, the
Liouville equationwithw(r, t) gives the exact conservation law corresponding to (21)

∂2t n(r, t | w) = 1

m
∂i

[
∂ j ti j (r, t | w) +

+ n(r, t | w)∂iw(r, t) ] .
(23)

The difference between (22) and (23) gives the relationship of n(r, t) and n(r, t | w)

∂2t φ(r, t) = ∂i (φ(r, t)∂iw(r, t)) (24)

where φ(r, t) ≡ n(r, t | w)−n(r, t). At this point it is necessary to specify the initial
conditions

n(r, t = 0 | w) = n(r, t = 0), (25)

∂t n(r, t | w)|t=0 = ∂t n(r, t)|t=0 , (26)

or equivalently

φ(r, t = 0) = 0, ∂tφ(r, t)|t=0 = 0. (27)

Clearly, φ(r, t) = 0 is a solution to (24). However, Ruggenthaler and van Leeuwen
claim that this is the unique solution. If true, the proof of TDDFT follows directly as
indicated below.

Question 8.1 Is there a proof of this assertion, i.e., that φ(r , t) = 0 is the unique
solution to (24)?

Remark For a time-independent external potential, proof is straightforward using the
method of separation of variables. However, that is not the case here. It would appear
that this is a straightforward problem of classical analysis, yet to our knowledge its
proof has not yet been demonstrated.

Let us assume that the proof has been provided and consider the consequences. At
this point, the density n(r, t) in (22) still is arbitrary. Denote the solution to (22) for
a given density as a functional of that density w(r, t) = w(r, t | n) . The specific
functional is determined by the Hamiltonian through ti j (r, t | w) but is otherwise
universal, i.e., w(r, t | n) delivers an arbitrary density n(r, t) via solution to (22).
Now choose that density to be the one associated with the conservation laws for the
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Liouville equationwith a different external potential u(r, t), i.e., n(r, t) → n(r, t | u),

so that (21) becomes

∂2t n(r, t | u) = 1

m
∂i [∂ j ti j (r, t | u)

+ n(r, t | u)∂i u(r, t) ] . (28)

It follows from φ(r, t) = 0 that

n(r, t | w) = n(r, t) = n(r, t | u). (29)

Then, the identity (21) can be written as

∂2t n(r, t) = 1

m
∂i

[
∂ j ti j (r, t | u) + n(r, t)∂i u(r, t)

]
. (30)

Consequently, u(r, t) is also a solution to (22). If, as assumed, that solution is unique,
then w(r, t) = u(r, t). Thus, the first part of TDDFT, that the potential associated
with a given density is unique, is equivalent to uniqueness of the solution to (22).
Also, since the solution provides the potential for any given density, this also implies
existence of such a potential - v-representability.

The preceding analysis can be repeated for a system with a different two-particle
potential U → U1. Then, the solution to (22) for system with U1 gives an external
potential for that system for any given density. Now choose that density to be the one
for the system with U . The resulting unique external potential then reproduces that
density from the system with U1. The special case of U1 = 0 gives the Kohn–Sham
representation: an interacting system density can be represented by an appropriate
non-interacting system.

In summary, the solution to (22) for a given density implies that the density is
v-representable. Furthermore, if the solution is unique, then there is a one-to-one
relationship between n(r, t | v) and the potential v(r, t). Finally, the density from a
potential v(r, t) and pair interaction U can be generated from a different potential
v1(r, t) for a system with pair interaction U1. A proof of these conditions of TDDFT
therefore reduces to a proof of the existence and uniqueness of solutions to (22).

Question 8.2 Can the existence and uniqueness of solutions to (22) be proven?

Remark The basic equations of the preceding discussion of TDDFT are those of
continuum mechanics and are of the same form regardless of their basis in quantum
mechanics (pure or mixed states) or in classical mechanics. Only the explicit form for
the macroscopic stress tensor functional ti j (r, t | u) differs among the cases.

7.1 Issues with proposed answer to Question 8.2

An affirmative response to the Question 8.2 has been put forth but poses its own
difficulties.
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To proceed, first rewrite (22) in a notation similar to that of Ref. [75],

Qw(r, t) = q (r, t | w) − ∂2t n(r, t) (31)

where q (r, t | w) ≡ 1
m ∂i∂ j ti j (r, t | w) and Q is the linear differential operator Q ≡

− 1
m ∂i n(r, t)∂i . Consider first the operator Q. For appropriate homogeneous boundary

conditions Q is self-adjoint

(ψ, Qψ) ≡ −
(

ψ,
1

m
∂i n(r, t)∂iψ

)

= (Qψ,ψ) , (32)

where the scalar product is for integrable functions over the system volume.
Furthermore, its spectrum is positive

Qψ ≡ − 1

m
∂i n(r, t)∂iψ = λψ (33)

(ψ, Qψ) ≡ 1

m
(∂iψ, n(r, t)∂iψ) = λ (ψ,ψ) ≥ 0, (34)

for positive densities n(r, t). Finally, λ = 0 is an eigenvalue with eigenvector ψ = 1
(or any constant). The right side of (31) is orthogonal to this zero eigenvector, so the
Fredholm conditions are met for inverting Q

w(r, t) = Q−1
[
q (r, t | w) − ∂2t n(r, t)

]
. (35)

Issue 9: A constructive approach to a solution to (35) can be attempted via iteration
from an initial trial solution w(0)(r, t) and successive approximations,

w(n+1)(r, t) = Q−1
[
q

(
r, t | w(n)

)
− ∂2t n(r, t)

]
, (36)

or

w(n+1)(r, t) = G ◦ w(n) (r, t) . (37)

Here, G◦ denotes the nonlinear "map"

G ◦ x(r, t) = Q−1
[
q (r, t | x) − ∂2t n(r, t)

]
. (38)

The convergence of the sequence
{
w(n)

}
follows if it can be established that G is a

contraction mapping

G ◦
[
w(n) (r, t) − w(n−1) (r, t)

]
≤

[
w(n) (r, t) − w(n−1) (r, t)

]
, (39)
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or equivalently

w(n+1)(r, t) − w(n)(r, t) ≤
[
w(n) (r, t) − w(n−1) (r, t)

]
. (40)

Convergence, w(n) (r, t) → w (r, t), implies that it is the desired solution to (35) and
that it is a fixed point of G

w(r, t) = G ◦ w (r, t) . (41)

These inequalities are measured with respect to some norm, e.g.,

‖G◦
[
w(n) (r, t) − w(n−1) (r, t)

]
‖

≤
∥
∥
∥
[
w(n) (r, t) − w(n−1) (r, t)

]∥
∥
∥ . (42)

Questions 9.1 and 9.2 What is an appropriate function space for analysis of the map
G? Can suitable bounds be found to establish that it is a contraction mapping? See
Ruggenthaler et al. [76] for the extent to which these issues have been addressed.

8 Concluding remarks

A striking feature of both time-independent DFT and time-dependent DFT is that
they are formulated in terms of theorems that do not provide any mechanical recipe
(e.g., perturbation theory) for constructing approximations. Therefore, even cursory
examination of the literature on development of density functional approximations
will convince one of the influence and value that bounds, limits, asymptotics and
similar rigorously provable properties have had on such developments. What we have
delineated here is, in a way, self-serving, in that we are certain we would be helped
by having some answers to the questions posed. Leads to other questions of rigorous
nature about DFT and TDDFT may be found in a recent “round-table” paper [16].

Our objective has been to provide a personal perspective of DFT and its limitations
in foundation and application. The discussion of the time-independent case has been
from the traditional variational formulation and the attendant, related difficulties in
applications. This is the most common approach currently in use. The subsequent
discussion of TDDFT has been from the force balance formulation and an elabora-
tion of the basis for applications from a time-dependent Kohn–Sham single particle
dynamics. The literature in both cases is extensive. We have highlighted selected
specifics for attention. It is our hope that interested mathematicians will see oppor-
tunities for contributions based on tools typically not familiar to the DFT physical
sciences community.

DFT is widely practiced across the most complex problems of physics, chemistry,
and materials sciences, with growing use in biomolecular areas as well. Its popularity
arises from the capacity to formulate approximations to questions for which other tra-
ditional many-body methods such as perturbation theory, small parameter expansions,
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and simulations are limited. In application, typical DFT approximations are inherently
uncontrolled in a technical sense. For example a priori error estimates are not given.
But wide experience over more than a half-century has led to ever increasing intensity
of use in spite of the remaining open problems. It is expected that the contributions
sought here from the mathematical community will mostly strengthen the confidence
in current approximations rather than to undermine or negate their continued practice.
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Appendix 1: Generic overview of DFT

Thoughmost of what follows is completely generic to any quantummechanical single-
species system, our focus is onmany-electron systems.Wenote, for example, that there
is active work on nuclear many-body DFT; see Ref. [77] and references therein.

In the simplest case, the Hamiltonian describes N particles interacting pairwise
(e.g., Coulomb interactions) subject to an external single-particle potential that cou-
ples to each particle, vext(r). (Any possible time dependence is left implicit to simplify
the notation here.) The states of interest (wave function, densitymatrix) are “extremal”
states (e.g., ground state, mechanical equilibrium) that are fixed by conditions involv-
ing the Hamiltonian. Hence, those states are functionals of vext. Properties of interest
(e.g., energy, free energy, magnetization, etc.) are expectation values of appropriate
operators in these states; hence, they inherit a functional dependence on vext. In par-
ticular, the number density n(r) defined in this way is a functional of vext , denoted
n(r|vext).

For reasons of insight and computational accessibility mentioned in themain text, it
typically is preferable to express properties of interest as functionals of n rather than of
vext. This change of variables can be implemented if there is a one-to-one relationship
vext(r) ↔ n(r|vext), e.g., via a Legendre transformation (subject to certain conditions
on the functional representing the property considered). The first task of DFT thus
is to establish this bijective relationship of the density and external potential. Two
complementary approaches have been used.
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The first (historically) [9] is based on variational principles showing that the den-
sity associated with a given potential provides the extremum of a certain functional
(or action in the time-dependent case). The convexity of the functional assures the
uniqueness required. A second approach is based on the force balance for these states,
or specifically, the conservation law for the local momentum density. Both approaches
accomplish the goal formally, but without complete mathematical rigor. Specifically,
the function space for vext(r) and that for n(r) have not been fully characterized
within the proof. As detailed in the main text, this deficiency remains an open prob-
lem for all states considered: time-independent, time-dependent, ground state, and
finite temperature.

The variational approach also requires conditions on the associated functional to
allow functional differentiation. Existence of such functionals in general remains an
open problem, related to the above-mentioned characterization of function spaces. The
force balance approach does not require functional differentiation and thus avoids this
difficulty.

Important practical problems remain after the bijectivity is proved. The first is to
know the functional n(r|vext), and the second is to know the corresponding functional
for the desired property (e.g., energy, free energy, etc.). These two tasks do not arise as
separate problems in the variational approachbecause the extremumof the functional is
identified as the primary property of interest (e.g., ground state energy or free energy).
In the force balance approach, the density can be calculated, but the dependence of a
property of interest upon that density remains to be fixed.

In practice, the calculation of the density for a given potential is accomplished by
a mapping of the DFT for the interacting particle system to that for a non-interacting
system, the Kohn–Sham representation. In the variational formulation, this is straight-
forward once the existence of the functional derivative (or its equivalent) can be
established. Once again, this can be done in the force balance approach without need
for the functional derivative.
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