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I. Introduction 

The framework provided by the Kohn-Sham
1
 (KS) form of density functional theory

2
 for the 

electronic structure description of atoms, molecules and solids has become of great importance. 

Currently available approximations to the exchange-correlation (XC) energy functional allow the 

study of small, medium and large systems with a reasonable computational effort and quality of 

outcomes.
3-7

 However, the accuracy in the prediction of structural, thermodynamic and kinetic 

properties, among others, with comparatively simple functionals needs to be increased beyond 

present limits so as to achieve a reliable method for the description of a wide variety of systems 

with different characteristics.
8
 

A few years ago, Perdew and Schmidt,
9
 were able to organize what had been the historical 

development and some of  the issues confronting any attempt at systematic increase of the 

accuracy of the XC  functional, through what they called Jacob’s ladder. On it, the local spin 

density approximation (LDA), in which the functional is determined solely in terms of the local 

values of the spin up and spin down electronic densities via the expression for the homogeneous 

electron gas, is placed on the first rung. The second rung consists of functionals that depend, 

additionally, on the magnitude of the gradients of the spin up and spin down densities, to account 

for inhomogeneities. Because the form of that dependence is not simply that of the gradient 

expansion, such functionals are usually referred as generalized gradient approximations (GGA). 

The third rung comprises functionals that incorporate the Laplacian of the density and/or the KS 

kinetic energy density. Through the latter, one introduces an explicit dependence on the KS 

orbitals, additional to the one that comes from expression of the electronic density in terms of 

these orbitals. On the fourth rung, a fraction or the full exact exchange is incorporated. Recall 

that the X functional is defined from the KS orbitals, through their implicit dependence on the 



3 

  

density. Global and local hybrid functionals correspond to this level. On the fifth rung, explicit 

dependence on the unoccupied KS orbitals is added. Second and third rung functionals are said 

to be of “semi-local” nature (although they are strictly one-point functionals), while fourth and 

fifth rung functionals have explicitly non-local components. 

In the framework of this systematization, the usual expectation, or at least hope, is for the 

accuracy to increase as one climbs the ladder, although the complexity and computational effort 

will also increase. However, an interesting aspect is that the actual accuracy limits for a given 

rung are not necessarily exhausted by the current state of the art at that rung. Lacking an 

analytical framework by which to assess the ultimately achievable accuracy for some quantity 

e.g. bond lengths or atomization energies, functional developers are forced to exploration of 

improvement of existing successful approximations. 

In this context the search for better descriptions at the GGA rung continues to be a very active 

research area. In part, this is because such functionals provide good balance between accuracy 

and computational effort. Interest in GGAs also persists because of the quest for implementation 

of orbital-free density functional theory.
10,11

 Additionally, the GGA functionals usually are 

ingredients of the higher rung approximations, so that it is important to achieve a better 

understanding of their general behavior, and the constraints that they could or should satisfy. 

The object of the present work is to analyze the behavior of GGA functionals from the 

perspective of the constraints related with the low and large reduced density gradient regions, 

taking as starting point the approximation of Perdew, Burke and Ernzerhof (PBE),
12

 and to 

analyze the behavior of the reduced density gradient as a function of the density, to establish 

some of the implications it may have in the development of improved GGA functionals.  
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II. The PBE formulation of the generalized gradient approximation for the exchange 

energy functional 

A. PBE and its revisions 

The exchange energy functional in the generalized gradient approximation usually is 

expressed, for the spin non-polarized case, in the form 

   
E

x
[ ]    d r  (r ) 

xLDA
[ (r )] F

x
(s)  ,     (1) 

where the X energy density in the LDA is 

   


xLDA
[ (r )]   C

X


1/ 3
(r )   (3 / 4)(3 /  )

1/ 3


1/ 3
(r )  ,    (2) 

and the reduced density gradient is defined as 

s(r )   (r ) / [2 (3
2
)
1/ 3


4 / 3
(r )] .       (3) 

The enhancement factor F
X
( s ) describes deviations from homogeneous electron gas behavior. 

For PBE, it is written as
12

 

F
X

PBE
(s )  1   



1 
 s

2



  ,        (4) 

where   and   are parameters. 

The PBE enhancement factor form, together with the values assigned to the parameters   and 

 , fulfill the following constraints: 

(a) Under uniform density scaling,  (r ) 
3
 ( r ) , the exchange energy scales like  . 

(b) From Eq. (4), for s  0 , F
X

PBE
(0 )  1 , to recover the homogeneous electron gas exchange. 

(c) Although written for the spin non-polarized case, the spin-polarized expressions satisfy the 

spin-scaling relationship 
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E
X
[


, 


]  (E

X
[2 


]  E

X
[2 


]) / 2  ,      (5) 

where 


 and 


 are the spin-up and spin-down electron densities. 

(d) Being a GGA, the exchange energy and its functional derivative do not diverge for atoms 

and molecules at the exponential tail of the charge distribution. 

(e) The Lieb-Oxford bound
13,14

 that establishes the most negative value that the exchange 

energy may attain for a given electron density, namely, 

E
X
[


, 


]  1.679 d r 

4 / 3
(r )         (6) 

is satisfied, by imposing the condition that the local values of F
X
( s )  should not grow beyond a 

value of 1.804. Since for the form given by Eq. (4), the maximum value of F
X
( s )  is 1    (the 

limit when s   ), one finds that   0.804 . 

(f) From Eq. (4), one has that in the small s  regime, 

F
X
(s ) 1   s

2  ,         (7) 

which indicates that   is directly related to the weight given to the density gradient. Now, the 

LDA provides a very good description of the linear response of the spin-un-polarized uniform 

electron gas. Thus, in the PBE functional,   was set to cancel the second-order gradient 

contribution to the correlation energy in the high density limit, through the relationship 

  
2
 / 3  ,         (8) 

where, according to Ma and Brueckner,
15

   0.066725 , and therefore 
PBE

 0.21951 . 

The form of the enhancement function given by Eq. (4) was first proposed by Becke,
16

 who 

determined the values of the parameters empirically, through a least squares fit to the Hartree-

Fock X energies of the noble gas atoms He-Xe, using Hartree-Fock densities to evaluate the 

integral in Eq. (1). The values that he found were  0.967  and   0.235 . 
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The PBE XC functional leads to a reasonable description of a wide variety of properties of 

molecules and solids. It has become one of the most heavily used approximations in electronic 

structure calculations. However, several modifications have been proposed, all with the objective 

of improving the calculated values of various sets of properties.
17-26

  

A general finding which emerges from those modifications is that the magnitude of   is 

correlated with the prediction of structural, thermodynamic and kinetic properties. The smallest 

non-empirical value of   corresponds to the gradient expansion approximation (GEA) value,
27

 


GEA

 10 / 81  0.12346 , while the largest non-empirical value of   comes from imposition of 

the constraint that, for the hydrogen atom, the exchange energy cancels the Coulomb repulsion 

energy.  The later constraint leads
26

 to 
xH

 0.27583 . Large values of   are better for 

atomization energies and worse for crystalline lattice constants, while low values of   generate 

the opposite trend. In fact, Zhao and Truhlar
20

 also showed that the magnitude of the coefficient 

  correlates with the behavior of the cohesive energies of solids, reaction barrier heights, and 

non-hydrogenic bond distances in small molecules. 

It is important to note that, in general, when the value of   is changed, the value of   is also 

changed, through Eq. (8), or through other arguments, so that in addition to the exchange energy, 

the correlation energy also has an impact on this behavior. 

 

B. The large reduced density gradient limit 

Most of the PBE modifications have essentially the same behavior at large values of the 

reduced density gradient, that is, they are built in such a way that F
x
(s) 1    when s   . 

Their main differences occur in the interval 0  s  3 , although for larger values of s , the 
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difference among the different approximations may also come from the different values of  . 

Nonetheless, one may wonder about the behavior of the enhancement function in this limit, 

which arises from the exponential tail of the electronic density of finite systems far away from 

the nuclei. This was the viewpoint adopted in the development of the VMT
28

 X energy 

functional, which can be viewed as a candidate for superseding PBE. A key analysis in the 

development of the VMT enhancement factor form involves the outer regions of an atom or a 

molecule. There the electronic density and its gradient vary slowly and the density is small 

compared to its peak value. Thus one should recover the homogeneous electron gas type 

behavior, and therefore VMT was built imposing the condition ( ) 1
xVM T

F s   when s   . 

However, Levy and Perdew
14

 have shown that the exact asymptotic behavior is given by 

lim
s

s
1/ 2
F
XC
( , s )    .        (9) 

Since the unpolarized enhancement factor may be expressed in terms of its exchange and 

correlation components, Eq. (9) separates into 

lim
s

s
1/ 2
F
X
(s )    ,         (10) 

and 

lim
s

s
1/ 2
F
C
( , s )    .        (11) 

The limit expressed in Eq. (10) indicates that F
x
(s )  should decay asymptotically to zero at a rate 

equal or faster than s
1/ 2 . To our knowledge, only the GGA functionals PW91 (Ref. 29), LG 

(Ref. 30), and the recently proposed VT{8,4} (Ref. 31), based on VMT, satisfy Eq. (10). 

Although it is generally accepted  that the primary range of interest for real systems 0  s  3  

(Refs. 32-34) and 0  r
s
 10  (Refs. 32,33), where r

s
 (3 / 4   )

1 / 3
, it has been shown

31
 that the 

imposition of the large s constraint induces subtle, but important changes in the region 0  s  3 . 
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One may go back to the original PBE form, Eq. (4), and apply the reasoning that led from 

VMT to VT{8,4} in order to satisfy the constraint given by Eq. (10). A simple approach that 

allows one to achieve this goal is to express the enhancement function in the form 

  
F

X

PBE  LS
(s)  F

X

PBE
(s)    1  1  e

 s
2

  ,      (12) 

since the product in the second term of the right hand side of this equation leads to a term that 

cancels the s    limit of
  
F

X

PBE
(s) , and a second term that decays as 

  
  1 e  s

2

, hence fulfills 

Eq. (10). 

Substitution of Eq. (4) in Eq. (12) gives 

  

F
X

PBE  LS
(s)  1   1 

1

1 
 s

2























   1  1  e
 s

2

  ,    (13) 

and therefore, in the limit s 0 , 

  
F

X

PBE  LS
(s)  1       1  s 2

 L  .     (14) 

Thus, incorporation of the correct large- s  limit gives an additional parameter , besides  and 

 . To proceed non-empirically, one may make use of two constraints introduced recently in 

consideration of modifying the original PBE enhancement factor parameters . 

One of the constraints was developed by Constantin et al.
24

 who made use of the asymptotic 

expansion of the semiclassical neutral atom,
35-37

 which for the exchange energy adopts the form 

E
X
 E

X

LDA
 d

1
Z  d

2
Z
2 / 3

 ...  ,       (15) 

where Z is the number of electrons (equal to the nuclear charge for a neutral atom), and the 

coefficients are determined from a numerical analysis that leads to
36,37

 d
1
  0.2240  and 

d
2
 0.2467 . Within this approach, one finds that the value of the coefficient for d

1
  0.2240  
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can be obtained from a modified second-order gradient expansion (MGEA) in which 


MGEA

 0.260 . The PBE exchange functional with this value of  , with   0.804 , and with the 

PBE correlation functional with a value of   3 
MGEA

/ 
2
 0.07903  was named APBE. It 

provides an improvement in the description of atomization energies compared to original PBE. 

The other constraint,
26

 addresses the issue of inadequate cancellation of spurious self-

interaction. The constraint is that for one-electron systems with 
1
(r ) , the one-electron density, 

the exact exchange energy must cancel the Coulomb repulsion energy, 

E
X
[

1
]   J [

1
]  .         (16) 

One can use this equation with the hydrogen atom electron density to fix the value of  , for 

  0.804 , with the enhancement function of original PBE form, Eq. (4). The value obtained 

from that procedure is 
xH

 0.27583 . Use of those   and   parameters in the PBE X form, 

together with the PBE correlation with   3 
xH
/ 

2
 0.08384  leads to a functional that was 

called PBEmol, because at the GGA rung, it provides a good description of several molecular 

properties, specially the atomization energies. In essence, PBEmol is the molecular counterpart 

to PBEsol, in the sense summarized above. Increasing   favors finite system accuracy at the 

cost of worsening extended system accuracy and conversely. 

We return to the task of setting the three parameters,  ,   and  , in  Eq. (13). We assume 

first, that the correct value of the coefficient of the second order gradient expansion in the limit 

s 0  is the one that arises from the asymptotic expansion of the semiclassical neutral atom. 

Therefore, from Eq. (14) one has 
  


MGEA
      1  0.26 . The second constraint we enforce 

is freedom from one-electron self-interaction error, Eq. (16), for the hydrogen atom density 


H
(r )  

1
e
 2 r

. The third constraint is to enforce the local Lieb-Oxford bound at the maximum 
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s
max

of the function given by Eq. (13), that is F
X

PBE  LS
(s

max
)  1.804 . These three requirements 

yield   0.26151 ,   0.9403  and   0.00078 . Within this procedure the value of the 

coefficient associated with the second order gradient correction to the correlation energy  , 

could be fixed through Eq. (8) and Eq. (14), so that 
PBE  LS

 3 
MGEA

/ 
2
 0.07903 . 

A comparison between several forms of the X enhancement function is given in Figs. (1) and 

(2). In both, we present a plot for a large interval of values of  s , and a plot for the interval 

  0  s  3 , in order to distinguish differences in this region. 

Fig. (1) compares PBE, PBE-LS, VMT and VT{8,4}. One sees that in the interval   0  s  3 , 

PBE-LS is larger than all of the others, and that VMT and VT{8,4},which are similar to each 

other, also lie above PBE. However, as  s  grows, PBE-LS goes to zero more rapidly than 

VT{8,4}, VMT tends to unity (by design), and PBE tends to 1.804. Fig. (2) provides comparison 

among PBE, PBE-LS, B88
38

, and OPTX.
39

 The enhancement function for the latter functional, 

proposed by Handy and Cohen, is  

F
X

OPTX
(s )  a

1
 a

2
c
2

 c
1
s
2

1   c
1
s
2











2

 ,       (17) 

where c
1
 4 (6

2
)
2 / 3

, c
2
 (2

1 / 3
C
X
)
1

, and the parameters a
1
, a

2
 and   are fixed through a 

fitting of the Hartree-Fock energy for the atoms H-Ar. The results are a
1
 1.05151 , 

a
2
 1.43169  and   0.006 . Although this functional has a semiempirical nature, when 

combined with the correlation energy functional of Lee, Yang and Parr
40

 (LYP), it leads to a very 

good description of several molecular properties, so it is interesting to compare it with the PBE 

type approximations to analyze the differences among them. Thus, one can see (Fig. 2) that, at 

  s  0 , the OPTX enhancement function differs from unity, and that, for values of  s  between 

zero and approximately 0.5, OPTX remains practically constant. Thus, in this approximation and 
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in this interval, the contributions due to the non-uniformities of the density are essentially 

constant and larger than those provided by X functionals with quadratic behavior. For values of 

 s  beyond 0.5, OPTX grows abruptly towards its  s    limiting value 

F
X

OPTX
(s ) a

1
 a

2
c
2
 2.59 . On the other hand, one can see that PBE and PBE-LS, in 

comparison with OPTX, grow slower, starting from unity, in the interval   0  s  3 . In contrast, 

the widely used B88 X enhancement function
38

 was formulated to yield the correct asymptotic 

limit of the exchange energy density per electron, namely, 
  
lim
r 


x
 1 / 2r . However, it has been 

shown
41

 that for a GGA this condition is equivalent to 
  
lim
s 

F
xGGA

(s)  s / ln s , which clearly is 

irreconcilable with Eq. (10). In Fig. (2) one can see that B88 lies between PBE and PBE-LS in 

the interval from   s  0  to   s  2.5 , and after that it grows abruptly. Separately, it has been 

shown
42

 that this asymptotic growth constraint 
  
lim
s 

F
xGGA

(s)  s / ln s  is, in fact, irrelevant to the 

energetic behavior of a GGA, which is why both VT{8.4} X and the PBE-LS proposed here 

ignore that constraint and use the relevant one, Eq. (10). 

C. Results for several atomic and molecular properties 

To analyze the performance of the functionals described in the previous section, we consider 

several atomic and molecular properties. The calculations were done with a developmental 

version of NWChem vers. 6.0 (Ref. 43). 

Table I shows the exchange energies for the atoms H-Ar obtained from exchange only 

calculations with a Def2-QZVP basis set for several functionals, in comparison with the Hartree-

Fock values obtained for the same basis set. One can see, as expected, that the empirical 

functionals OPTX and B88, whose parameters were set through least squares fits to the exchange 

energy of atoms He-Ar, lead to the lowest Mean Absolute Errors (MAE). In fact, OPTX with 



12 

  

three adjustable parameters leads to the best description, followed by B88 that has only one 

adjustable parameter. On the other hand, one can also see that the three non-empirical functionals 

VMT, VT{8,4}, and PBE-LS, whose enhancement function tends to one, zero, and zero, 

respectively, in the  s   limit, provide an improvement over the original PBE functional, 

which is rather similar for the three functionals. We have also included the non-empirical 

functional revTPSS,
44

 which is a meta-GGA, and therefore belongs to the next rung in the 

Perdew-Schmidt Jacob’s ladder. One can see that the results provided by revTPSS are close to 

the ones obtained from the three large- s  corrected GGA functionals. 

In Table II we present the results for heats of formation, ionization potentials, electron 

affinities, proton affinities, binding energies of weakly interacting systems, barrier heights for 

hydrogen and non-hydrogen transfer reactions, bond distances and harmonic frequencies, for 

some well known test sets designed to validate energy functionals. Those have been described in 

previous work.
26,31

 In these cases, correlation energy functionals have been added to the 

exchange energy functionals discussed. Thus, OPTX and B88 X have been combined, as is 

usual, with LYP C, while PBE, VMT, VT{8,4}, and PBE-LS have been combined with PBE C, 

to maintain their non-empirical nature. As previously described, for PBE-LS 


PBE  LS

 3 
MGEA

/ 
2
 0.07903 . One can see that except for the electron affinities, the proton 

affinities and the binding energies of weakly interacting systems, OLYP provides the best 

description. Particularly, the MAE for the heats of formation is just about one kcal/mol above the 

value for revTPSS, and the barrier heights have the lowest MAE, including even revTPSS. In the 

case of the non-empirical functionals, it may be observed that, heats of formation and barrier 

heights show smaller MAEs for VMT, VT{8,4} and PBE-LS, than PBE, with the best results 
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corresponding to PBE-LS. However, PBE provides smaller MAEs for bond distances and 

frequencies. 

III. Behavior of the reduced density gradient as a function of the density 

The foregoing analysis indicates that it is important to get a closer picture of the behavior of 

the density and its gradient in different regions of a molecule. To do this, one can follow the 

procedure of Johnson et al.,
45,46

 in which the reduced gradient given by Eq. (3) is plotted against 

the electronic density. Although their objective was to reveal the non-covalent interactions, the 

plot provides significant information about all regions of a molecule. Thus, in Fig. 3 we present 

these type of plots for the water molecule, its dimer, and its tetramer, and in Fig. 4 we present the 

plots corresponding to the reactant, transition state and product of the isomerization reaction of 

HCN. The calculations reported in this section were carried out with a developmental version of 

deMon2k, vers. 3.x (Ref. 47) 

For the analysis of these plots is important to consider the behavior of the electronic density 

near the nuclei and far from them. That is,
48,49

 for a spherically averaged density we have that at 

a given nucleus a of nuclear charge Z
a
, 

  (r )

r
r  0

 2 Z
a
 (0 )  ,        (18) 

and, asymptotically, at large distances from the nuclei,
50,51

 

 (r )
r 

   e
2 ( 2 I )

1/2
r
 ,        (19) 

where I is the first ionization potential.  
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The overall shape of the graph follows a  1 / 3  pattern due to the piecewise exponential nature 

of the electronic density. With respect to the values of   one can identify three approximate 

regions: 

Region I, where   takes values between zero and approximately 0.1 

Region II, where   takes values between approximately 0.1 and 0.8 

Region III, where   takes values beyond approximately 0.8 

Thus, the regions near the nuclei will appear towards the right edge of the graph, in region III, 

and will be governed by an exponential fall that satisfies Eq. (18) at each nucleus, while the 

regions far from the nuclei will appear in the upper part of the left edge, in region I, and will be 

governed by the exponential form given in Eq. (19). Note that in this limit the reduced density 

gradient diverges, because the density raised to the 4/3 power (denominator) decays faster to 

zero than the gradient of the density (numerator). 

The spikes that appear are a very important aspect in the regions that correspond to small s 

values, because these correspond to the different chemical interactions present. For all cases, the 

spikes show that in these regions, the density gradient approaches zero, and becomes equal to 

zero at the critical point. In Fig. 3, the spikes located in region II reveal the covalent interactions 

that correspond to regions with intermediate values of the density and low values of the gradient 

of the density, while the spikes located in region I reveal the noncovalent interactions. They 

correspond to regions with low values of both the density and its gradient. In Figs. 4 one can see 

that the covalent bond between carbon and nitrogen basically remains constant at a value of the 

density slightly over 0.4, while the H-C bond in the reactant and the N-H bond in the product, 

appears slightly below, and slightly above a value of the density of 0.3, respectively. However, at 

the transition state, this spike moves to a value slightly below 0.2, that is, it moves towards the 
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noncovalent interactions region, because at this stage of the interaction the H-C bond is breaking 

and the N-H bonds is forming, so that in general one could infer that there is a weak interaction 

of the entity formed by carbon and nitrogen with hydrogen. 

Let us consider now the density of the reduced density gradient, 
  
g (s) . It provides, for a given 

electronic density, the number of electrons with the values of  s  that lie between  s  and  s  ds . 

Zupan et al.
32,33

 have defined this distribution as  

   
g (s)  d r  (r )  (s  s (r ))  ,       (20) 

where 
   
 (s  s(r ))  is the Dirac delta function. In Figs. (5) and (6) we present plots of 

  
g (s)  for the 

water systems considered here and the isomerization reaction of HCN, respectively (details of 

the numerical procedure are given in Ref. 34). It is clear from these plots, and from the plots for 

many others we have done, that the region of physical interest for real systems lies primarily in 

the interval 0  s  3 . 

 

IV. Concluding remarks 

The study of the GGA functionals considered in this work, and the analysis of the behavior of 

the reduced density gradient as a function of the electronic density, together with its density, 

allows one to observe two important aspects for the possible improvement of exchange energy 

functionals that only depend on the density and its gradient. 

The first one is that the contribution to the exchange energy seems to be dominated by the 

behavior of the enhancement function in the interval 0  s  3 , and that its description in this 

region is crucial to improve the accuracy of the non-empirical GGA approximations known to 

date. However, this behavior does not imply that the imposition of constraints related with large 
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values of s , like the one given by Eq. (10), are not important. Indeed, we have found in a 

previous work
31

 and in the present one, that by imposing the large- s  constraint, one induces 

changes in the interval 0  s  3 , which may have an important impact on the prediction of 

diverse properties. In fact, the results presented in this work, together with the ones reported in 

Ref. 26, indicate that PBE-LS provides the best description for most of the properties considered. 

Note also that in its development the constraints associated with Eqs. (15) and (16) were also 

incorporated, adding to the ones already present in PBE. 

The second important aspect of the present analysis comes from the plots of the reduced 

density gradient versus the density. It was shown that there are two regions of the electronic 

density that give rise to low values of s . One of those corresponds to the covalent interactions, 

and one corresponds to the non-covalent or to the transition-state type interactions. This situation 

could indicate that the weight given to the gradients of the density could be different, depending 

on the values of the density itself, and that the limit for small s  could be revised and modified. 

Recall that the functional OPTX, that leads to a rather good description of the heats of formation, 

behaves as s
4  for small s , in contrast with PBE that behaves as s

2 . 

In summary, the analysis presented here points at some of the issues that may be studied to 

improve the accuracy of the GGA approximations known to date. 
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Fig. 1. Plot of the enhancement factor as a function of the reduced density gradient for PBE, 

VMT, VT{8,4}, and PBE-LS. The inset corresponds to a zoom in the range of interest for real 

systems. 
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Fig. 2. Plot of the enhancement factor as a function of the reduced density gradient for PBE, 

OPTX, and PBE-LS. The inset corresponds to a zoom in the range of interest for real systems. 
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Fig. 3. Plot of the reduced density gradient versus the electronic density for water molecule (top), 

its dimer (middle) and its tetramer (bottom). 
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Fig. 4. Plot of the reduced density gradient versus the electronic density for the reactant (top), 

transition state (middle) and product (bottom) of the isomerization reaction of the HCN 

molecule. 
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Fig. 5. Plot of the density of the reduced density gradient as a function of s for the water systems 

considered in this work. 
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Fig. 6. Plot of the density of the reduced density gradient as a function of s for the isomerization 

reaction of HCN. 
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TABLE I. Exchange energies and mean absolute errors (MAE) with respect to the Hartree-Fock 

values, in hartree units, as determined with several GGA functionals and one meta-GGA through 

exchange-only calculations. 

 

 Exchange energy 

Atom HF OPTX B88 PBE VMT VT{8,4} PBE-LS revTPSS 

H -0.313 -0.308 -0.306 -0.301 -0.304 -0.304 -0.310 -0.311 

He -1.026 -1.019 -1.016 -1.002 -1.010 -1.011 -1.029 -1.025 

Li -1.781 -1.775 -1.768 -1.748 -1.761 -1.762 -1.791 -1.783 

Be -2.667 -2.663 -2.652 -2.627 -2.645 -2.647 -2.690 -2.671 

B -3.770 -3.754 -3.748 -3.716 -3.738 -3.740 -3.799 -3.775 

C -5.077 -5.054 -5.048 -5.008 -5.034 -5.036 -5.111 -5.065 

N -6.607 -6.584 -6.569 -6.521 -6.549 -6.551 -6.643 -6.578 

O -8.218 -8.190 -8.188 -8.131 -8.162 -8.165 -8.279 -8.198 

F -10.045 -10.016 -10.021 -9.954 -9.988 -9.990 -10.125 -10.012 

Ne -12.108 -12.088 -12.087 -12.009 -12.044 -12.047 -12.201 -12.060 

Na -14.017 -13.989 -13.977 -13.891 -13.930 -13.933 -14.108 -13.944 

Mg -15.994 -15.968 -15.954 -15.863 -15.905 -15.908 -16.105 -15.907 

Al -18.092 -18.068 -18.055 -17.952 -17.997 -18.000 -18.220 -17.992 

Si -20.304 -20.281 -20.261 -20.147 -20.194 -20.198 -20.440 -20.180 

P -22.642 -22.627 -22.593 -22.467 -22.517 -22.521 -22.784 -22.493 

S -25.034 -25.014 -24.976 -24.837 -24.889 -24.893 -25.180 -24.865 

Cl -27.544 -27.529 -27.481 -27.329 -27.384 -27.388 -27.698 -27.349 

Ar -30.185 -30.185 -30.119 -29.953 -30.011 -30.015 -30.347 -29.964 

         

MAE  0.017 0.034 0.109 0.076 0.073 0.080 0.071 
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TABLE II. Mean absolute errors (MAE) for several properties as calculated with several GGA 

functionals and one meta-GGA. All energies are in kcal/mol, bond distances in Å, and 

frequencies in cm
-1

. The number of cases for each test set appears in parenthesis. 

 

    MAE    

Property OLYP BLYP PBE VMT VT{8,4} PBE-LS revTPSS 

Heats of formation (223) 5.51 9.64 21.21 10.53 9.98 9.39 4.55 

Ionization potentials (13) 2.61 4.20 3.47 3.26 3.25 3.65 3.06 

Electron affinities (13) 3.63 2.97 2.64 2.48 2.48 2.61 2.45 

Proton affinities (8) 1.66 1.78 1.39 1.07 1.09 1.23 1.80 

Binding energies of weakly 

interacting systems (31) 
2.27 1.67 1.64 1.52 1.53 1.49 1.41 

        

Reaction barrier heights:        

Hydrogen transfer forward 

(19) 
6.02 7.81 9.49 8.31 8.23 7.26 6.63 

Hydrogen transfer backward 

(19) 
6.06 7.85 9.72 8.66 8.59 7.77 7.72 

Non-hydrogen transfer 

forward (19) 
7.74 10.49 10.38 9.82 9.79 9.45 11.18 

Non-hydrogen transfer 

backward (19) 
7.21 10.03 9.96 9.49 9.46 9.31 10.08 

        

Bond distances (96) 0.0198 0.0240 0.0179 0.0209 0.0211 0.0216 0.0204 

Frequencies (82) 40.42 56.25 43.30 45.41 45.57 45.74 39.58 

 

 


