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Positivity constraints and information-theoretical kinetic energy functionals
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Recently several variants of a new orbital-free density functional for the total Ne-electron kinetic energy (KE)
have been proposed. These are based on a systematically constructed (Ne − 1)-electron conditional probability
function and Monte Carlo evaluation of the associated conditional expectation of the KE operator in the case
of the homogeneous electron gas. Because the resulting functionals depend on n ln n (n = the electron number
density), they have been interpreted as being the leading term in a Shannon information power expression for the
non–von Weizsäcker part of the total KE. We show that these functionals violate known positivity constraints, are
inconsistent with known results for the correlation energy of the homogeneous electron gas, and that the Shannon
information power interpretation also violates known constraints. We consider both the full KE and Kohn-Sham
cases. Possible corrections and extensions are considered, including an apparently new form for parametrization.
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I. INTRODUCTION AND BASICS

In density-functional theory (DFT),1–5 one of the key
challenges to direct implementation of the variational principle
is the Ne-electron kinetic energy in state �,

T [n�] = 〈�|T̂ |�〉, (1)

with n(r) the electron number density (normalized to Ne). The
notation is a reminder of the difficulty: T is indeed a functional
of n but the general functional form is unknown. Analysis of
this problem from an information theory-based decomposition
of T [n�] has been considered sporadically over the history of
DFT, beginning apparently with Sears, Parr, and Dinur6 in
1980. A survey through 2001 is found in Sec. 3 of Ref. 7.

The information-theoretical decomposition begins from
writing the Ne-body density as

Ne�
∗(r1 . . . rNe

)�(r1 . . . rNe
) = n(r1)f (r2 . . . rNe

‖r1). (2)

(This and similar factorizations have a long history.8,9) The
positive-definite form of T (in Hartree atomic units) then
decomposes into

T [�] = 1

8

∫
dτNe

|∇1nf |2
nf

= TW [n] + 1

8

∫
dr1

∫
dτNe−1

∣∣∇1f
(
τNe−1‖r1

)∣∣2

f
(
τNe−1‖r1

) , (3)

where dτNe
= dr1 . . . drNe

and the von Weizsäcker kinetic
energy10 is

TW [n] = 1

8

∫
dr

|∇n(r)|2
n(r)

≡
∫

dr tW [n(r)]. (4)

The von Weizsäcker term is identified with the Fisher in-
formation entropy, a measure of localization. The remaining,
nonlocal contribution is called the correlation part in Ref. 11 or
the kinetic correlation term in Refs. 12 and 13 and is discussed
in terms of the Shannon information entropy.

When used variationally, this factorization has a di-
rect interpretation11,13 in terms of Levy-Lieb constrained

search14,15 DFT. In notation essentially parallel with that of
Refs. 11 and 13, the electronic total energy is

E[n,f ] = TW [n] +
∫

dr1n(r1)vext(r1)

+Kcorr[n] + Ecorr[n],

Kcorr[n] + Ecorr[n] = min
f

�[f,n],

�[f,n] := 1

8

∫
dr1n(r1)

∫
dτNe−1

∣∣∇1f
(
τNe−1

)∣∣2

f
(
τNe−1

)
+ (Ne − 1)

2

∫
dr1n(r1)

∫
dτNe−1

f
(
τNe−1

)
|r1 − r2| . (5)

Here Kcorr and Ecorr correspond in order to the terms on
the right-hand side of the definition of �[f,n] and vext is
the external potential, usually the nuclear-electron attraction.
Observe that, by construction,

Kcorr � 0. (6)

The following remarks are in order: (i) Despite the useful
notation, Kcorr is not the conventional correlation kinetic
energy, T − TRHF � 0 with TRHF the restricted Hartree-Fock
kinetic energy (KE) and T the total KE. Nor is Kcorr the
DFT correlation kinetic energy, which is Tc,DFT = T − Ts ,
with Ts the Kohn-Sham KE as defined below in Eq. (11).
Instead Kcorr = T − TW . It is useful to keep this in mind. At
various points in the discussion, we point out which correlation
energy is being calculated. (ii) The (|∇1f |2/f ) term has been
studied by Ayers16 in the context of a bounding sequence of
generalized von Weizsäcker–type terms.

Reduction of this formulation to a local functional was
begun by Ghiringhelli and Delle Site.17 They presented a
Monte Carlo sampling of Eq. (5) for a model f (τNe−1)
constructed from necessary conditions on the Ne-fermion
wave function. The Monte Carlo sampling was done for
the homogeneous electron gas (HEG) over a finite range
of densities. From those calculations they proposed [see
Ref. 17 and Eq. (12)] that for slowly varying densities a new
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functional “ready for OFDFT-based codes” (OFDFT stands
for orbital-free DFT) is

TGDS08[n] = TW [n] +
∫

drn(r)[A1 + B1 ln n(r)] (7)

with A1 = 0.860 ± 0.022 and B1 = 0.224 ± 0.012. In what
follows, we refer to this functional and the associated paper as
GDS08.

In the Erratum to Ref. 11, the GDS08 form was rationalized
as being the leading-order term of a more general form, namely

Kcorr,SIP = ξ exp

{
m

3
S

}
, 0 < m < 2,

S[σ ] := −
∫

drσ (r) ln σ (r), (8)

σ (r) := n(r)

Ne

,

with ξ a constant. Such a form was introduced in Refs. 18
and 19 with the signs as shown. [Somewhat confusingly, the
Erratum to Ref. 11 has the sign in the exponent wrong in
both Eqs. (3) and (4). The corresponding sign in Eq. (23)
of Ref. 11 is correct.] The quantity S is recognized as the
Shannon information and Kcorr,SIP with m = 2 is recognized as
the Shannon information power. We focus on the DFT aspects
and do not discuss the information-theoretical aspects further.

To improve upon GDS08, Ref. 13 refined the trial con-
ditional probability function to model the behavior of high-
density fermion pairing. From a Monte Carlo procedure
closely analogous with that of GDS08, they obtained what
we denote as the GHDS10 functional,

TGHDS10[n] = TW [n] + TTF[n] +
∫

drn(r)[A2 + B2 ln n(r)].

(9)

The constants are A2 = 1.02 and B2 = 0.163 [after combining
like terms in Eq. (34) of Ref. 13]. Here the Thomas-Fermi KE
is

TTF[n] := c0

∫
dr n5/3(r),

(10)

c0 := 3

10
(3π2)2/3 ≈ 2.8712.

One other introductory point is needed. Commonly the
objective of orbital-free kinetic energy approximation develop-
ment is to replace the explicitly orbital-dependent Kohn-Sham
kinetic energy

Ts

[{φi}Ni=1

] = 1

2

N∑
i=1

∫
dr∇φ∗

i (r)∇φi(r)

≡
∫

drts[n(r)], (11)

not the full Ne-body KE T . Though there is mention in the
works by Delle Site and co-workers about OFKE approxima-
tions to Ts , (e.g., the introduction to Ref. 17, discussion toward
the end of Sec. 2 of Ref. 12, as well as the suggestive quotation
above about existing OFDFT codes), the GDS08 functional17

is for the full T , not Ts .20 The same is true for the GHDS10
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FIG. 1. Kinetic energy per electron.

functional; see page 3 of Ref. 13. We return to issues of Ts

briefly below.

II. POSITIVITY AND THE GDS08 AND GHDS10
FUNCTIONALS

There are several positivity problems with Eqs. (7)–(9). We
consider numerical values first, then formal properties.

A. Quantitative behavior

If the GDS08 functional is a reasonable approximation for
the total KE T [n] of the HEG, then the conventional correlation
KE it yields for the HEG,

Tc,GDS08[n] = TGDS08[n] − TTF[n], (12)

should be reasonable. (Observe that TTF = TRHF for the HEG.)
Figure 1 shows the HEG kinetic energy per electron for
the Thomas-Fermi model and for GDS08, Eq. (7), with the
published values17 of A1, B1. The Thomas-Fermi values
always are above those from Eq. (7), hence the correlation
kinetic energy produced by Eq. (12) is negative, i.e., Tc,GDS08

for the HEG has the wrong sign. Because the values of A1,
B1 were obtained over the range 0.04 � n � 1.4 (see Fig. 2
of Ref. 17), a fairer assessment is to consider Eq. (12) only on
that domain. But even there the imputed Tc,GDS08 is negative.

The GDS08 and GHDS10 functional form suggests consid-
eration of high densities. For roughly n � 1.9, the asymptotic
expansion in rs of the HEG correlation energy is a fair
approximation,21 which improves as the density increases. The
asymptotic correlation KE density from that expansion is

tc,asymp = 0.0103 ln n + 0.020 66. (13)

This expression is properly positive for n > 0.135, a density
far below the range for which the asymptotic expansion is
accurate. The GDS08 functional has that asymptotic form but
because the constants are quite different, GDS08 goes negative
at a much lower density, n < 0.0215; again see Fig. 1. Such
failure of positivity is suggestive of an N -representability
problem22 with the specific form of f used in Ref. 17 at
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FIG. 2. Correlation kinetic energy per electron for GDS08,
GHDS10, and the parametrized Ceperley-Alder Monte Carlo results.
See text.

least for this density range. In retrospect, an N -representability
problem might have been expected, since the form for f used
in GDS08 is identical for bosons and fermions. Recognition
of that difficulty is one way to formulate the motivation for
GHDS10.13

Similarly the GHDS10 KE, Eq. (9) goes negative for an
HEG density such that

ln n = −(A2 + c0 n2/3)/B2, (14)

which has a solution ncrit,1 ≈ 0.001 52. The density range for
which the Monte Carlo calculations were done to determine A2

and B2 is not reported in Ref. 13, but Fig. 1 of that paper shows
that 0.01 or 0.02 apparently was the lowest density used. The
failure of N -representability therefore is below the expected
range of valid densities for the GHDS10 functional.

In Fig. 2, we compare the GHDS10, GDS08, and Ceperley-
Alder (CA) correlation kinetic23 energies. The CA values were
obtained from the parametrization in Ref. 24, which used
essentially the same virial relation as used just above for
the asymptotic correlation KE. Note that neither GHDS10
nor GDS08 resembles the exact result even qualitatively,
except in the limited sense that the exact result is dominantly
logarithmic.

These behaviors draw attention to the range of densities
over which the GDS08 and GHDS10 fits were obtained,
0.04 � n � 1.4 e/au3 for the former, 0.01 − 0.02 � n �
2.0 e/au3 for the latter. In terms of the Wigner-Seitz radius,
these ranges are 0.55 � rs � 1.81 and 0.49 � rs � 2.88,
respectively. Compared to metallic equilibrium, these are
rather high densities, especially for GDS08. Insight comes

from the text of Ref. 17, which says that densities 0.04,
0.2, and 1.0 e/au3 correspond approximately to Na, Ti, and
Pt, respectively. That correspondence is not the conventional
choice of valence electrons only. If one works back to the
effective number of valence electrons,25

Zval = 11.2055
nA

ρm

(15)

with ρm the mass density in gm/cm3, A the atomic mass, and n

in e/au3, the three densities quoted give Zval = 10.6, 23.84, and
102.1, respectively. More typical values for determining the
appropriate equivalent HEG for those three elements would be
Zval = 1, 3, and 2 (or 4), which give densities 0.0038, 0.0025,
and 0.0019 (or 0.0039), respectively. Of course, developers
of approximate functionals may choose the domain in which
fitting to results on the HEG is done. The point here is that the
failures identified above are in the range of realistic equilibrium
metallic densities, whereas the GDS08 fitting range and much
of the GHDS10 fitting range correspond to compressions of
10–200 or more.

Returning to Fig. 2, note that the CA correlation kinetic
energy density tc has almost logarithmic dependence on the
density, at least qualitatively similar to the GDS10 functional,
as remarked above. Hence we can use the parametrized CA
form for tc given in Ref. 24 to reparametrize the GHDS10
total KE functional, Eq. (9). Our values of parameters are
Ã2 = 0.614 34 × 10−1 and B̃2 = 0.613 17 × 10−2. Closer in-
spection of Fig. 2 shows that the CA tc depends nonlinearly on
ln n, hence we fit to a total KE functional with a quadratic term,

TTKVln[n] = TW + TTF +
∫

drn(r)[A3 + B3 ln n(r)

+C3 ln2 n(r)]. (16)

The resulting parameters are A3 = 0.459 60 × 10−1, B3 =
0.655 45 × 10−2, and C3 = 0.231 31 × 10−3. The subscript
TKVln simply denotes the authors and the logarithmic
dependence as a way to distinguish this particular expression.

Table I compares the valence kinetic energy per atom
delivered by the GDS08, GHDS10, GHDS10 reparametrized,
TKVln, and second-order gradient approximate functionals
to the Kohn-Sham value for two crystalline systems. The
approximate functional values are from evaluation at the
KS valence density. The KS calculations used numerical
atomic orbitals as implemented in the SIESTA code26 with
Troulier-Martins nonlocal pseudopotentials,27 and the Perdew,
Burke, and Ernzerhof28 exchange-correlation functional.

If we use the DFT definition of correlation kinetic energy,
Tc,DFT[n] = T [n] − Ts[n] � 0, the result should be approxi-
mately the value from the third term in Eq. (16). This is the
value shown in the table as T estim

c . Consistent with the positivity
discussion above, GDS08 strongly underestimates the valence
KE, with a negative value for Li, and gives a negative Tc for

TABLE I. Comparison of approximate and Kohn-Sham valence kinetic energies (eV) per atom for two solids. See text.

GDS08 GHDS10 GHDS10 (repar.) TKVln SGA Ts T estim
c

bcc-Li (a = 3.44 Å) −6.257 9.221 4.085 3.760 3.007 3.626 0.527
fcc-Al (a = 4.05 Å) 5.271 57.532 25.492 24.351 21.346 22.102 2.067
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Al (subtract Ts from the GDS08 value of Tvalence). In contrast,
GHDS10 strongly overestimates the valence KE by a factor of
roughly 2–3, with the result that the predicted Tc is too large.

As might be expected, both the reparametrized GHDS10
and new TKVln functionals predict reasonable valence total
KEs. They would not be expected to be applicable for all-
electron densities, however. There are formal problems with
constraints (discussed in the next Subsection) and there is
the problem that when the TW + TTF functional in these two
forms is evaluated with the correct KS density, it strongly
over-estimates the non-interacting (KS) KE, so that the third
term would have to be spuriously negative.

B. Formal issues

There also is a formal problem with the forms of both the
GDS08 and GHDS10 functionals. Levy, Perdew, and Sahni29

(LPS hereafter) studied

G[n] := Kcorr[n] + Ecorr

− 1

2

∫
dr1dr2n(r1)n(r2)/r12 (17)

and showed that δG/δn � 0. They also showed that

δKcorr

δn
= 1

8

∫
dτNe−1

∣∣∇1f
(
τNe−1

)∣∣2

f
(
τNe−1

)
+ 1

8

∫
dr1n(r1)

δ

δn

∫
dτNe−1

∣∣∇1f
(
τNe−1

)∣∣2

f
(
τNe−1

)
� 0. (18)

The first term of this expression is itself manifestly positive.
It corresponds to the third term on the right-hand side of LPS
Eq. (17). The LPS argument also provides a proof that the
second term of our Eq. (18) is positive. Simply take the kinetic
energy contribution to the second term on the right-hand side
of their Eq. (17).

The corresponding terms from TGDS08[n] are

vcorr,GDS08 = δ(TGDS08 − TW )

δn

= δ

δn

∫
drn(r)[A1 + B1 ln n(r)]

= A1 + B1 + B1 ln n. (19)

For the published values of A1, B1, at sufficiently small
densities,

ncrit,2 = exp [−(1 + A1/B1)] = 0.0079, (20)

this potential goes negative. Once again, however, the critical
density is outside the range of the GDS08 Monte Carlo data
fit.

But a focus on the range of valid densities begs the question
of the meaning of the constant shift A1 + B1 in the potential.
That shift cannot be correct. LPS showed that the potential
vcorr is part of the effective potential for a one-body eigenvalue
problem for the square root of the density. The eigenvalue
for that problem is the negative of the ionization potential.
Therefore the zero of the potential must be zero, not the
constant A1 + B1 in Eq. (19). If we eliminate that potential
shift, then the critical density below which the potential from

a KE of the form
∫

n ln n goes negative is just

ncrit,2 = 1. (21)

Essentially the same arguments can be made with regard to
the GHDS10 correlation potential, which is

vcorr,GHDS10 = δ(TGHDS10 − TW )

δn

= δ

δn

∫
drn(r)[c0n

2/3(r) + A2 + B2 ln n(r)]

= 5

3
n2/3 + A2 + B2 + B2 ln n. (22)

We eschew obvious detail.
Next, consider the Shannon information power form,

Eq. (8). First, the change of variables, n to σ = n/Ne,
introduces size-extensivity difficulties via the highly nonlin-
ear explicit Ne dependence. Second, though it might seem
plausible, it is not true that σ � 1. A counterexample is a
hydrogen-like density for a neutral atom, Ne = Z, which
satisfies the Kato cusp condition.4,30–33 [sufficiently close to the
nucleus n(r) ∝ 1 − 2Z|r| + · · ·]. Such a spherical density is

nH (r) = N4
e

π
exp(−2Ner). (23)

This density integrates to Ne over R3, as it should, but even
for Ne = 2 has a maximum value ≈ 5.093, or σ � 2.54.

This little example illustrates an underlying difficulty with
using a Shannon entropy form such as Eq. (8) in DFT. A
physical σ as defined above is not a probability mass function
for a discrete random variable. Hence such a σ is not bounded
by unity and therefore the Shannon entropy S(σ ) is not of one
sign for all possible σ . This point was recognized by Sears,
Parr, and Dinur.6 The consequence, once again, is positivity
violation for vcorr, even though the contribution to the total KE
given by Eq. (8) is positive. This follows from

vcorr,SIP = δKcorr,SIP

δn

= m

3
Kcorr,SIP

δS
δn

. (24)

Since S has the same form as TGDS08, the same kind of
nonpositivity problems will arise, except at different critical
densities.

III. RE-INTERPRETATION?

The Monte Carlo minimization that yielded the GDS08 and
GHDS10 functionals was for the HEG, so one may ask if, after
all, those functionals can be interpreted as an approximation for
the Kohn-Sham KE Ts , not T . It is straightforward to see that
this interpretation is not workable. The difficulty is exposed via
an exact result called the Pauli KE decomposition,34–37 to wit

Ts[n] = TW [n] + Tθ [n],

Tθ [n] � 0. (25)

Critically for the present discussion, it is known that the Pauli
potential must be positive semi-definite:29,37,38

vθ ([n]; r) = δTθ [n]/δn(r) � 0, ∀ r. (26)
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These conditions have been shown39,40 to be important to
the construction of reasonable approximations to Ts . But the
GDS08, GHDS10, and Shannon information power function-
als violate the Pauli potential constraint for the same reason
that they violate the LPS constraint discussed above. And
the GDS08 and GHDS10 functionals also violate Pauli KE
positivity for sufficiently small densities.

IV. POSSIBLE MODIFICATIONS

All acceptable densities n satisfy relatively mild
conditions,41 to wit

n(r) > 0 almost everywhere,∫
dr|∇

√
n(r)|2 < ∞, (27)∫

drn3(r) < ∞.

The essential point is that every physical density has a
maximum (it may be a supremum, that does not matter for
the level of this discussion). Denote that maximum, which is
clearly a functional of n, as M[n] = max n. If we suppose,
on practical grounds regarding the density properties just
listed, that there is an upper bound Nm to M[n], then we
have Nm � M[n] for all acceptable densities. A few remarks
follow: (i) We have disallowed the δ function and other
singular densities. This restriction includes the conventional
Thomas-Fermi atom. However, Parr and Ghosh42 have shown
that imposition of conditions akin to Eqs. (27) on the TF
atom gives physically plausible results with a nonsingular
density. (ii) Note that Nm is a density, not a number. With
this definition, redefine

σ := n/Nm � 1, (28)

whence S[σ ] � 0 in Eq. (8). This redefinition also gets rid of,
or at least hides, the size-extensivity problem in the original σ

definition.
However, the leading-order argument about the Shannon

information power S summarized above still may fail because
the correlation potential vcorr,1 from S itself (not from the full
Kcorr) is

vcorr,1 = − 1

Nm

(ln σ + 1)

> 0 for n < Nm exp(−1). (29)

(The index on vcorr,1 is simply to distinguish this result from
similar ones that follow.) Once again the range of allowed
densities is restricted, a violation of the universality of the
functional. In practice, one might argue that Nm may be large,
e.g., of the order of N4

e per unit volume for the hydrogen-like
density just mentioned, and the restriction then might not be
too severe. But that argument is difficult to use in practice,
since Nm cannot be determined a priori.

Returning to the GDS08 functional from Eq. (7), even if one
shifts to σ � 1 as the variable, there is still a positivity problem
except for one special case, namely changing the parameters
to A′ = −B ′ > 0. The prime is to recognize the fact that
the variable is different (σ , not n). This choice automatically
eliminates the difficulty with the zero of vcorr discussed above,

though it does not match the Monte Carlo result from Ref. 17.
Then the counterpart of Eq. (7) is

Tcorr,2 := B ′
∫

drσ (r)[−1 + ln σ (r)], (30)

which is manifestly positive. The counterpart potential to
Eq. (19) also is positive:

vcorr,2 = B ′

Nm

ln σ. (31)

Continuing with the modified definition of σ , Eq. (28) (thus
forestalling for the moment the problem of using Nm rather
than M[n]), one may ask what modification of S in Eq. (8)
would yield a properly positive-definite vcorr as well as Tcorr.
We have found one such modification. Consider

S3[σ ] := −A3

∫
drσ (r) ln[σ (r) + B3σ

2(r)] (32)

with A3 > 0, −1 < B3 < 0. Then σ 2 < σ ∀r, the argument of
the logarithm is everywhere less than unity but positive, and
S3 � 0. The effective potential which results is

vcorr,3 = − A3

Nm

{
ln(σ + B3σ

2) +
(

1

1 + B3σ

)
(1 + 2B3σ )

}
.

(33)

The choice B3 = − 1
2 gives

vcorr,3 = − A3

Nm

{
ln

(
σ − 1

2
σ 2

)
+

(
1

1 − 1
2σ

)
(1 − σ )

}
(34)

which has the interesting consequence that

vcorr,3(σ = 1) = − A3

Nm

ln

(
1

2

)
= A3 ln 2

Nm

,

(35)

vcorr,3(σ = 0) = − A3

Nm

ln(0) = ∞.

It is easy to show that the first term on the right-hand side of
Eq. (34) is smaller than the second for the entire range, 0 �
σ � 1. Again, since Nm seems likely to scale at least as some
power of Ne, the practical effect would be 0 � vcorr,3 � ∞.

Return to the Shannon information power form of Kcorr as
defined in Eq. (8), but, again, with the revised definition of
σ = n/Nm. The kinetic-correlation potential that results is

vcorr,4 = δKcorr

δn
= m

3Nm

Kcorr
δS
δσ

= − m

3Nm

Kcorr[n] (ln σ + 1), (36)

which has, of course, the same limitation as vcorr,1, Eq. (29).
An obvious question is, what happens if we use M[n],

the density maximum functional, rather than Nm? Of course,
this choice also resolves the explicit size-extensivity problem
from Ne introduced in the original Romera and Dehesa18 type
of definition. Moreover, this modification helps show what is
missing from the purely information-theoretical formulation in
a more systematic way than the somewhat ad hoc illustration
provided by the construction of S3, Eq. (32).
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Thus we consider a modified version of Kcorr, namely

K̄corr = ξ exp

{
m

3
S̃[σ ′]

}
, 0 < m < 2,

S̃[σ ′] := −
∫

drσ ′(r) ln σ ′(r), (37)

σ ′(r) := n(r)

M[n]
.

Then the question becomes the behavior of the functional
derivatives of M[n], because vcorr now is

vcorr,5 = δK̄corr

δn

= −m

3
K̄corr

1

M[n]

(
1 − n

M[n]

δM

δn

){
ln

(
n

M[n]

)
+ 1

}
.

(38)

In fact, we may generalize the problem into asking what
functional M[n] might be introduced as in Eq. (37), with the
redefinition σ ′ := n/M, to satisfy constraints on vcorr without
stipulating that M[n] be the maximum functional used in
Eq. (37), but with the stipulation σ ′ � 1.

The problem simplifies a bit if we consider a function of n

rather than a functional of n, M(n) rather than M[n] or M[n].
Two obvious positivity constraints then follow from Eq. (38),
namely that

1 − n

M(n)

∂M

∂n
> 0 (39)

and

M(n) > exp (+1) n. (40)

That such a function exists is trivial, for example

M(n) = exp (+1)n + 
, 
 = const > 0. (41)

This trivial result, however, illustrates what we believe to be
a general fact. Introduction of M(n) has a significant effect
on the interpretation of S̃, namely a shift away from being a
straightforward Shannon information. We have not explored
the consequences of other seemingly plausible choices of M(n)
[e.g., M(n) = n exp (+1) + 
 exp(−αn), α > 0, 
 > 0] to
date.

Instead, explore the formal structure of M(n). A clue
is the fact that the coefficients for the GDS08 functional,
Eq. (7), were obtained for the HEG, but that it does not
have the Thomas-Fermi contribution. (TF is introduced in
GHDS10 by choice of a constant.) Thus we consider, as an
ansatz, the von Weizsäcker plus parametrized Thomas-Fermi
model,

TWTF[n] = TW [n] + γ TTF[n],

0 � γ � 1. (42)

From the expansion

n1+α = n + αn ln n + 1
2n(α ln n)2 + · · · (43)

with α = 2/3, we have

TTF = c0

∫
dr

(
n + 2

3
n ln n

)

+ c0

∫
dr

2

3
n ln n

∞∑
j=1

1

(j + 1)!

(
2

3
ln n

)j

:= c0

∫
dr

(
n + 2

3
n ln n

)
+ 2

3
c0

∫
dr n ln nL(n).

(44)

To compare with the GDS08 form, pull out the constant and
n ln n terms and write

TWTF = TW + γ c0

{
Ne + 2

3

∫
drn ln n

}

+2

3
γ c0

∫
dr n ln nL(n)

= TGDS08 + 
T. (45)

The difference 
T between parametrized WTF and GDS08
follows by comparison with Eq. (7) as


T = (γ c0 − A1)Ne +
(

2γ c0

3
− B1

)∫
drn ln n

+2

3
γ c0

∫
dr n ln nL(n). (46)

Unsurprisingly, for the published values17 of A1, B1, no
single value of γ will eliminate the first two terms of 
T .
However, the choice γ = A1/c0 ≈ 3/10 will eliminate the
explicit number dependence, while γ = 0.117 will eliminate
the “excess” Shannon-entropy-like term. Either way, there is
a complicated density functional left.

At least formally, the form of the function M(n) can be
recovered by this line of argument. From the definition in
Eq. (44) we have L > 0 for both n > 1 and n < 1. For n = 0,
L = 0. Therefore when the Shannon term in Eq. (44) goes
negative, so does the L term. Then with γ = 1, the full KE is

T [n] = TW [n] + TTF[n] + TR[n]

:= TW [n] + TTF[n] +
∫

drn(r)tR[n] (47)

with TR the (in general unknown) remainder functional. By
comparison with the last line of Eq. (44), we have

T [n] = TW [n] + c0

∫
drn

(
1 + 2

3
ln n

)

+
∫

drn(r)

{
2

3
c0 ln nL(n) + tR[n]

}

:= TW [n] + c0

∫
drn

(
1 + 2

3
ln n

)

−2

3
c0

∫
drn(r) ln M(n)

= TW [n] + c0

∫
drn(r)

(
1 + 2

3
ln

n

M(n)

)
. (48)

The complexity of M is evident. This may be a caution
against assuming simple forms of M(n). For example, one
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might return to the HEG, assume a form of M , impose
positivity on the resulting vcorr, and parametrize to the
GDS08 or GHDS10 Monte Carlo results. But without detailed
knowledge of the behavior of M from the structure in Eq. (48),
it would be hard to know whether the resulting approximate
M was of any generality for use in calculations.

V. CONCLUDING REMARKS

Despite the intriguing form and connection with Monte
Carlo sampled data, we have shown that the GDS08 and
GHDS10 KE functionals are limited by violation of important
positivity constraints. We have also given an apparently new
formulation for how the Shannon information entropy form
comes into the KE functional, namely as part of the TF
contribution. The von Weizsäcker term enters as a lower bound.
The remainder is a renormalization of the Shannon term.

Finally, there is a cautionary note from the Coulomb
virial theorem. For the Ne electron system with equilibrium

ground state density n0, the ground-state total energy E[n0] =
−T [n0]. Finding a widely valid approximate T [n] functional
therefore would be equivalent to finding a functional that
gives the same equilibrium results (same solution for its Euler
equation) as the Hohenberg-Kohn functional. The history of
DFT shows that finding such a functional is a truly formidable
task. A more profitable use of the information-theoretical
structure may be in building Tθ in Eq. (25) along lines parallel
with the discussion of the formal structure of M(n) just given,
Eq. (48). We have this approach under investigation.
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