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Many-electron systems confined at substantial finite temperatures and densities present a major challenge to
density functional theory. In particular, there is comparatively little systematic knowledge about the behavior
of free-energy density functionals for temperatures and pressures of interest, for example, in the study of warm
dense matter (WDM). As with ground-state functionals, development of approximate free-energy functionals
is faced with significant needs for reliable assessment and calibration data. Here we address, in part, this need
for detailed results on well-characterized systems. We present results on a comparatively simple, well-defined,
computationally feasible but previously unexplored model, the thermal Hartree-Fock approximation. We discuss
the main technical tasks (defining a suitable basis and evaluation of the required matrix elements) and give an
illustrative initial application that probes both the content of the model and the solution techniques: a system of
eight one-electron atoms with nuclei at fixed, arbitrary positions in a hard-walled box. Even this simple system
produces physical behavior different from that produced by simple ground-state density functionals used at finite

temperature (a common approximation in the study of WDM).
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I. INTRODUCTION AND MOTIVATION

Warm dense matter (WDM) is encountered in systems
as diverse as the interiors of giant planets'? and in the
pathway to inertial confinement fusion.>* WDM is challenging
to theory and simulation because it occurs inconveniently,
for theory, between the comparatively well studied plasma
and condensed-matter regimes. Both the Coulomb coupling
parameter I := Q?/(r;kT) and electron-degeneracy param-
eter ® := kpT /ep are approximately unity for WDM. (Q is
relevant charge, ry is Wigner radius, ¢ is electron Fermi
energy, T is temperature, and kp is the Boltzmann constant.)
A nonperturbative treatment therefore is required.

Contemporary computations on WDM>~!8 are dominated
by the use of the Kohn-Sham (KS) realization of thermal
density functional theory (DFT)'*-2° to generate a potential
surface for ionic motion (treated classically). The majority
of such calculations use approximate ground-state exchange-
correlation (XC) functionals E,. with the temperature depen-
dence of the XC free energy picked up implicitly from the
T dependence of the density n(r,7). Though fruitful, this
approach is not without potential difficulties, as is illustrated
in Fig. 3 of Ref. 7. Three issues are germane here.

First, there is little systematic knowledge of the implicit
T dependence of ground-state approximate E,. functionals
(especially beyond the local density approximation, LDA),
whether they are constraint based or empirical. Compared to
the ground-state situation, there are relatively few studies on
explicitly 7-dependent functionals, that is, XC free-energy
functionals, and essentially, all of those studies are at the level
of the LDA.26~2

Second, there is the computational burden of solving for the
Kohn-Sham orbitals and eigenvalues. Since the computational
load from the eigenvalue problem scales, in general, as
order N2,. ., the growth in the number of non-negligibly
occupied KS orbitals with increasing temperature is a clear
computational bottleneck. See the remarks, for example, in
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Sec. 4 of Ref. 18. For complicated systems, the same bottleneck
is encountered in ground-state simulations that use the DFT
Born-Oppenheimer energy surface to drive the ionic dynamics.
One result has been the emergence of active research on
orbital-free DFT (OFDFT), that is, approximate functionals
for the ingredients of the KS free energy, namely, the KS
kinetic energy (KE) 7, entropy S, and XC free energy F.
or their ground-state counterparts. Almost all of this effort has
been for ground-state OFKE functionals.***¢ (Note that most
of the OFKE literature invokes the KS separation of the KE in
order to use existing E,. approximations consistently.)

Third, the finite-temperature OFDFT work is dominated by
variants on Thomas—Fermi—von Weizsdcker (TFvW) theory
(see, for example, Ref. 41 and references therein). That
type of theory, however, is known (on both fundamental
and computational grounds) to be no more than qualitatively
accurate in many circumstances relevant to WDM (e.g.,
chemical binding). Compared to the data-rich context for
development of zero-temperature functionals, there is little
to guide development and assessment of finite-7" functionals
beyond TFvW. Similarly, compared to the 7 = 0 K situation
(or the very high T situation), not much is known about the
accuracy of approximate finite-7” OFDFT functionals beyond
TFvW.

The primary aim of the present study is to provide
reference data for both development and appraisal of free-
energy density functionals. Such reference data must come
from a combination of a well-defined physical system with
a well-defined approximation and its implementation. In
the case of ground-state density functionals, three classes
of reference data have been particularly influential: high-
precision Monte Carlo results for the homogeneous electron
gas*’ and small systems,*® Hartree-Fock (HF) calculations
on myriad molecules (the literature is too vast to cite in
detail, but see the textbooks by Jensen** and by Szabo
and Ostlund®”), and high-precision (e.g., coupled cluster and
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configuration interaction) calculations on atoms and small
molecules (again, the literature is too large to cite fairly,
but see, for one example, Ref. 51). Though the Hartree-Fock
approximation has accuracy limitations with respect to the
precision of thermochemistry (e.g., atomization energies), it
has had at least two large impacts on the development of
ground-state DFT. First, it provides the framework for all
basic electronic structure concepts. Second, because of the
many rigorous results known about the HF approximation (see,
for only two examples, Refs. 52 and 53), understanding the
distinction between HF and Kohn-Sham DFT has sharpened
the understanding of DFT itself.

There are multiple reasons, therefore, that finite-
temperature Hartree-Fock®>34-¢ results will be valuable in
constructing and appraising free-energy functionals. Note that
we do not propose finite-temperature Hartree-Fock studies
as competitors or replacements for DFT-based molecular
dynamics simulations of WDM. Though we intend, later, to
undertake a small number of HF-based molecular dynamics
(MD) simulations, the predominance of DFT-based MD at
zero temperature makes clear that HF-based studies cannot be
truly competitive. This, in itself, is another way of focusing on
finite-temperature HF for development of better functionals.

II. SYSTEM AND METHODOLOGY

We treat a neutral system of Nj,, atoms with nuclei fixed
at arbitrary positions in a hard-walled three-dimensional rect-
angular box. The confined system allows systematic treatment
of pressure effects at stipulated finite temperature and hence
is a small, treatable sample of WDM. For specificity and
comparative simplicity in this first-stage study, we chose H
atoms and N, < 8. Other than commensurateness with cubic
symmetry, there is nothing special about this value. Note the
corresponding use of a small number of atoms in Ref. 18.
Also note the considerable literature on spherically confined
systems at 7 = 0 K.7-%2 Other than DFT calculations with
ground-state functionals®® (which, though interesting, are not
relevant to our goal of providing calibration and assessment
data for development of better functionals), we have not
found any work on lower-symmetry confinement of multiatom
systems at nonzero 7. At nonzero 7T there is a large amount
of literature on average-atom methods (for example, Refs. 64
and 18 and many others), but such methods also do not provide
the fiduciary data needed for functional development.

Many-electron problems require clearly defined approx-
imations. We choose the finite-temperature Hartree-Fock
(FTHF) scheme,?*>*% with issues of electron correlation to
be addressed in the future. In addition to being well defined
in the grand ensemble, FTHF provides the advantage that
its T =0 K limit is, as noted above, the lingua franca of
molecular electronic structure interpretation. Use of FTHF
therefore also provides a semiquantitative (at least) framework
for understanding chemical processes in WDM.

The FTHF approximation is defined in the grand-canonical
ensemble by restricting the relevant traces to states that
are single Slater determinants.>>>*3> The result is an upper
bound to the free energy Frryr = F. Standard thermodynamic
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relationships for the grand ensemble follow. The FTHF Euler
equations to be solved (in unrestricted form) are>

1
gigi(r) = (—EVZ + Uion(r)) @i (r)
A g ()2 .
i ;fl /dr r—r 7

1) (r')
- Z&no/fi/dr/w‘pj(r)’ (1
j

Ir —r

where U, is the ion-electron interaction potential and o; is the
spin label; the sums are over all spin orbitals. Unless indicated
otherwise, we use hartree atomic units (A =m, = e = 1;
energy is then in hartrees, 1 hartree = 27.2116 eV, and lengths
are in bohrs, 1 bohr = 0.52918 angstrom). The spin orbitals
(eigenstates ¢;) have Fermi-Dirac thermal occupations

fi= A+ LOm N =3 f @

where 8 = 1/kpT and u is the electron chemical potential. For
a specified value of N, which is a grand-ensemble average, i
must be determined. These equations, along with specification
of the nuclear sites and imposition of hard-wall boundary
conditions, completely describe the problem.

The FTHF free energy and entropy are given by

1
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Ki,j = 80'in /drdr/ (6)
Equations (3) and (4) clearly reduce to conventional ground-
state Hartree-Fock expressions in the zero-temperature limit.

A. Basis set design

Solution of self-consistent field equations such as (1) via
Gaussian-type-orbital (GTO) basis methods is the standard
procedure in modern computational codes for molecules.
First introduced by Boys,®% such basis sets automatically
satisfy the free-molecule boundary condition that the orbitals
vanish at infinity. For a hard-wall confined system, the basis
functions must vanish at the boundary, so standard molec-
ular GTO matrix-element expressions are inapplicable. This
simple distinction underlies the most critical implementation
issue, namely, to find a basis that satisfies the boundary
conditions yet allows for an efficient enough evaluation of
the two-electron integrals to be computationally tractable on
reasonable resources. A second, closely related, technical issue
is that the high temperature also dictates what is “efficient
enough,” in that the basis must be large enough and flexible
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enough to represent a sufficient number of thermally occupied
higher-energy orbitals of the system, hence to represent the
density and free energy accurately.

Those considerations eliminate several seemingly plausible
options for a basis. For example, a real space finite difference
or finite element scheme, while suitable for a DFT calculation
or a Hartree-Fock calculation on a free diatomic molecule
(for which curvilinear coordinates can be exploited’’), is far
too expensive for the present case because of the number
of matrix elements to be calculated. Another example is
sine functions. They also satisfy the hard-wall boundary
condition, but an adequate description of the rapidly varying
electronic distribution near the nuclei requires prohibitively
many matrix elements in our multicenter problems. So we
chose an adaptation of standard GTO methods, which uses
modified Gaussians that meet the boundary condition yet retain
enough efficiency to complete the calculation.

The various ways to force a GTO to zero at the bounding
planes of a rectangular box can have great impact upon
the efficiency of the matrix-element calculations. Compared
with the familiar practice for free molecules, in general,
the confined case requires more primitive GTOs for each
contracted one. More importantly, the finite integration volume
makes it impossible to achieve completely analytic calculation
of the two-electron integrals, which is, of course, precisely the
category in which computational efficiency is most needed.
We have addressed this issue by using truncated Gaussians, as
described next.

B. Truncated Gaussians

The rectangular box makes Cartesian GTOs a convenient
choice because each primitive function then is separable into
Cartesian factors, which are simple one-dimensional (1D)
functions. Consider the Cartesian factor

g1(x) = (x — x)'e @0, )
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To force this function to zero at the box boundaries x = 0 and
x = L., we subtract a constant equal to the function value at
each end. When x, is not at the box center, the value to be
subtracted differs for the two ends, so we split the function
into two pieces, make the two subtractions, and scale the two
pieces such that the resulting function is continuous. Each
unnormalized Cartesian factor becomes

Shox(X) = aolg"(x) — Aol 0 < x < xe,

=ar[g"(x)—AL]

with Ag = g"(0), Ay, = g"(L,). We call this the truncated
GTO (TGTO) basis.

Two technical issues remain. The TGTO functions may
not have continuous derivatives, so proper evaluation of the
kinetic-energy matrix elements requires attention. Appendix A
shows that nothing untoward happens and that the kinetic
energy is simply a sum of piecewise contributions, except for
p-type functions, which have a simple correction term. Second
is the matter of evaluating two-electron matrix elements. In
Appendix B, we show that this task reduces to computing
finite-range integrals of products of Gaussians and error
functions. At this juncture, we are doing those via Gauss-
Legendre quadrature. We also note that the TGTO basis is
simpler than the smoothly cutoff floating spherical GTO basis
of Ref. 61 in the sense that the latter introduces a mixing of
two symmetry types (e.g., s and d) in each basis function.

Note that, so far, we have implemented only the restricted
Hartree-Fock approximation (RHF; non-spin polarized in DFT
language and closed shell or spin compensated in quantum
chemistry language).

®)

Xe <x < Ly,

III. RESULTS

A. Zero temperature

Two simple ground-state test cases, the H atom and the
H, molecule, illustrate the system behavior with increasing
confinement (decreasing volume) as well as the correctness of

TABLE I. Optimized exponents and orbital energies for an H atom at the center of a cube of edge length L. 2 p refers to the triply degenerate
D« Py, and p states. For L < 2, the 25 level could not be optimized beyond the first six exponents.

L Fixed ls 2s 2]7 E1s Eos Ep

1.0 1.6,3.2,6.4,12.8,25.6 179.1 244 (NA) 4.01 10.518 50.5898 26.683

1.5 0.8,1.6,3.2,6.4,12.8 92.15 244 (NA) 1.88 3.6738 21.3545 11.154

2 0.4,0.8,1.6,3.4,6.8 48 250 1.115 1.48471 11.3649 5.8753

3 0.2,04,0.8,1.6,3.4 24.5 175 0.545 0.11385 4.47073 2.25356

4 0.2,0.4,0.8,1.6,3.4 21.2 7.0 0.34 —0.268848 2.18313 1.06314

5 0.1,0.2,0.4,0.8, 1.6 11.2 3.7 0.235 —0.40474 1.18372 0.547955
6 0.1,0.2,0.4,0.8, 1.6 10.4 2.5 0.18 —0.458898 0.675591 0.288794
7 0.1,0.2,0.4,0.8, 1.6 17.7 2.25 0.15 —0.481704 0.389716 0.145105
8 0.1,0.2,04,0.8,1.6 10.2 0.195 0.122 —0.491112 0.217062 0.0591604
9 0.1,0.2,04,0.8, 1.6 10.2 0.07 0.103 —0.495291 0.10651 0.00450443
10 0.1,0.2,0.4,0.8, 1.6 10.2 0.0365 0.088 —0.497104 0.0327616 —0.0321549
11 0.1,0.2,0.4,0.8, 1.6 10.1 0.023 0.076 —0.497889 —0.0179536 —0.0578267
12 0.1,0.2,0.4,0.8, 1.6 10.1 0.018 0.0665 —0.498227 —0.0535872 —0.0764093
13 0.1,0.2,0.4,0.8, 1.6 10.1 0.015 0.059 —0.498372 —0.0789901 —0.0901715
14 0.1,0.2,04,0.8, 1.6 10.05 0.014 0.053 —0.498435 —0.0972631 —0.100500
15 0.1,0.2,0.4,0.8,1.6 10.1 0.014 0.048 —0.498461 —0.108291 —0.108291
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our implementation. The confined-system energies should be
above the ground-state energies (in the basis selected) of the
corresponding free systems and approach those free-system
energies (and bond length for the molecule) in the limit of
large box volume.

For the hydrogen atom in the center of a cubical box,
Fig. 1(a) shows the ground-state energy for confinements
L < 10 bohrs. (The basis exponents are shown in Table I; their
selection is described in the next section.) The calculations
were carried out to L = 30 bohrs. Beyond 10 bohrs there
was negligible difference in the energy with respect to the
free-atom energy in the same basis, precisely as expected. At
L = 30 bohrs the ground-state energy is identical to that of
the free-atom GTO calculation using the same basis, namely,
—0.498476 hartree, validating our overlap-, kinetic-, and
nuclear-energy integral calculations. A fit to the energies as
a function of cube edge L,

E(L)=a/L*+b/L+c, 0<L<10bohrs, (9)

yields a = 14.5733 hartree bohr?, b = —3.82369 hartree bohr,
¢ = —0.238258 hartree. Though this fit does not have the
correct infinite-size limit, it is the best fit of this simple form for
0 < L < 10 bohrs. From this fit the pressure, p = —dE/dV
(V = L3) can be calculated; see Fig. 1(b).

T T T
L Groundstate energy X
10 fit

Energy (hartree)

2000 T T T T

T T
pressure

1500

1000

Pressure (Gpa)

500 | 1

2 3 4 5 6 7 8 9 10
(b) L (bohr)

FIG. 1. (Color online) (a) Ground-state energy of an H atom in
the center of a cube with edge length L. Fit is for function f(L) =
a/L?+ b/L + c. (b) Pressure calculated from the energy fit.
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FIG. 2. (Color online) Comparison of ground-state energy of an
H atom in a cube with its energy within two bounding spheres.

The effects of spherical versus cubic confinement can
be assessed easily by comparison of the two confinement
types both for bounding volumes and for equal volumes.
For bounding volumes, the circumscribed-sphere R = +/3L /2
and inscribed-sphere R = L /2 results from Ref. 71 (also see
Ref. 72) can be compared to our cube results. Figure 2 shows
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or fit
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8 I _
@
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5 oer .
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>
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FIG. 3. (Color online) (a) Comparison of energy of an H atom in
a cube with that in a sphere of equal volume. (b) The difference of
the two ground-state energies.
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FIG. 4. (Color online) Energy vs atomic separation for the H,
molecule centered in a 30-bohr cube. The ground state agrees exactly
with the free GTO calculation using the same primitives as a basis.

that the energy of the cubically confined system is bounded by
that of the two spherical systems, as expected. Shape effects of
confinement are shown in Fig. 3. Though the spherical system
has a lower energy than that of the equal-volume cubical
system, they are quite close until the cube is smaller than L &
4 bohrs, where a significant indication of shape dependence
begins. At L = 1 bohr the difference in energy is over 25%,
as shown in Fig. 3(b). A simpler basis of six s-type TGTOs
with exponents [0.15,0.3,0.6,1.2,2.4,4.8 bohr—2] reproduces
the ground-state energies for L > 1.5 bohrs.

Next consider the confined H, molecule at zero temper-
ature. Here we used the simpler six-TGTO basis just given.
For a large cube, the new TGTO confined-box computations
again should conform to known results for the integrals and
produce essentially the energy vs bond length curve for the
free molecule. With L = 30 bohrs and the molecule centered
in the cube and aligned along the body diagonal, we get
energies shown as points in Fig. 4. These agree completely
with the values of the free GTO calculation, which are shown
in Fig. 4 as the curve labeled “free”. The minimum is at
1.383 bohrs, satisfactorily close to the free-molecule RHF

-0.65 T
-0.7
-0.75 -
-0.8 B
-0.85 B
-09 B
-0.95 | i

1k i
1.05 | .
11 F .

-1.15 I I I I 1 I
4 6 8 10 12 14

L (bohr)

IGroundsltate Enelrgy e

Energy (hartree)

FIG. 5. (Color online) Ground-state energy for H, with a bond
length of 1.4 bohrs confined in a cube of edge length L.
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FIG. 6. (Color online) Energy vs bond length for the H, molecule
centered in cubes L = 30 and L = 5 bohrs. The minima are at 1.383
and 1.178 bohrs, respectively.

value of 1.385 bohrs from a 6-31G** basis calculation.”®
Conversely, for fixed R (at 1.4 bohrs) and decreasing L
(to 4 bohrs), the ground-state energy behavior is shown in
Fig. 5. The onset of confinement effects becomes visible in
the vicinity of L ~ 11 bohrs. Optimization of the bond length
R at L =5 bohrs is shown in Fig. 6. The total energy is, of
course, higher than for the larger box, and the optimal R is
shifted down to 1.178 bohrs from 1.383 bohrs.

Following this method, we obtain the optimized R and
energy for decreasing L. A function fit to the energy similar
to that used earlier yields R as a function of the pressure, as
shown in Fig. 7.

B. Finite temperature

For finite-temperature calculations, at least a single p
orbital needs to be included, and as many orbitals as feasible
should be available to represent the fractionally occupied
levels, which become increasingly important as 7 is increased.
For all the following calculations, except where noted, the
basis consists of seven s-type primitive GTOs and one p,,

14
1.35
13 |
1.25 -
12 |
1.15 -
11
1.05 |

1 -
0.95

09 1 1 1 1 1 1
-100 0 100 200 300 400 500 600

Pressure (Gpa)

Optimized R (bohr)

FIG. 7. (Color online) Optimized bond length R for the H,
molecule vs pressure.
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FIG. 8. (Color online) Lowest five eigenstate energies of H as a
function of cube edge L. Energy values are from Table 1.

one p,, and one p, GTO, with the p-GTO exponents equal.
An elementary exponent optimization was done as follows.
A set of five s-type exponents was picked and held fixed:
[0.1,0.2,0.4,0.8,1.6 bohr—2]. The sixth exponent was optimized
to to minimize ¢, for the single atom centered in a cube of
specified L. With those six exponents fixed, the seventh s-GTO
exponent was used to minimize &,;. With those seven fixed,
the p exponent was used to minimize &;,. Additionally, for
small L the smallest exponents produce orbitals that are so
similarly flat that an approximate linear dependence exists
and diagonalization fails. When this happens, the smallest
exponent is replaced by extending the even-tempered exponent
series to larger values. For example, at L = 4 the 0.1 exponent
is also replaced with 3.2, and at L = 2 the 0.2 exponent is
replaced with 6.4.

This procedure keeps the ratio of the effective length
(1/4/a) of the most diffuse function to the edge length L
at 0.75-0.79 for L < 3, with smaller ratios for larger L.

The optimization was done for each L. Table I shows the
resulting exponents and energies for the orbitals that were
optimized.

Total Energy (hartree)

©
o
—_
o

L (bohr)
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With this volume-dependent optimized basis, calculations
were done for a single atom at the center of a cube with
1 < L < 15 bohrs. The orbital energies of the five lowest
states (1s, 2py, 2py, 2p,, 2s) are plotted in Fig. 8. Notice
the inversion of ordering (2p below 2s) that is a result
primarily of the confinement. To address finite temperature
for this single-electron system, the one-electron levels were
populated according to the Fermi-Dirac distribution. Observe
that the one-electron Hamiltonian is independent of density,
so the one-electron orbitals and eigenenergies are independent
of occupancy, even though the density and total electronic
energy are not. Figure 9(a) shows the resulting total energy
as a function of L for four values of T, while Fig. 9(b)
shows the free energy. The weak minimum in total energy
in the vicinity of 6 bohrs at T = 50 kK appears to be a
confinement effect. We have found a similar minimum at about
the same volume by doing a Fermi-Dirac population of the
high-precision eigenvalues of the spherically confined H atom
given in Ref. 71.

Figure 10 shows the contributions to the free energy for the
single atom as a function of T for four cube volumes (L = 2,
3,7, 15 bohrs). At L = 7 bohrs, the KE is flat with respect to T’
at almost its 7 = 0 K value. The T = 50 kK nuclear-electron
attraction Ey., however, is much stronger for L = 7 bohrs
than for L = 15 bohrs. By L = 3 bohrs, the KE and Ey. are
roughly equal in magnitude.

Figure 10 also shows that the KE for the L = 15 bohrs
system falls with increasing temperature. Though this might
seem odd, it is as it should be from virial theorem arguments
for the free atom. The 2s KE is one-fourth the 1s value.”* The
finite-temperature population of the 2s and the depopulation
of the 1s therefore reduces the KE with respect toits 7T = 0 K
value.

Next we turn to the system of eight H atoms. We
examined a symmetric configuration in which the eight
atoms were situated at the corners of a smaller cube, edge
length of L/2, centered within the hard-wall cube, edge
length of L. The basis used was ten s-type GTOs cen-
tered on each atom. Strict s-type symmetry is broken, of
course, by enforcement of the hard-wall boundary conditions.
An even-tempered set of exponents also was used in this

1.5

1

g os
=
5]
< 0
>
>
2 .05
L
[0]
o} -1
8 g
Ll Brog ]
RN = SO B o S m
-2 I I . | 1 1 1

FIG. 9. (Color online) (a) Single H atom total energy, E = Frrur + T Srrur, and (b) free energy Frryr as a function of cube edge L, with

the one-electron levels populated according to the Fermi distribution.
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FIG. 10. (Color online) Energy components of a cubically confined single H atom vs temperature: (a) kinetic energy, (b) electron-nuclear
energy, (c) total energy, (d) free energy, and (e) entropic energy [(d) minus (c)]. The key for all plots is shown in (e).

case: [0.2,0.4,0.8,1.6,3.2,6.4,12.8,25.2,50.4,100.8 bohr—2]. As  fully self-consistent calculations may be done at many
a test, the calculations were redone with two fewer basis temperatures.

functions per atom; the exponents [50.4,100.8 bohr~2] were Figure 11 shows the total energy E = Frrur + T Srrur
removed. The two calculations agreed to 2 millihartrees  as a function of L for various temperatures, as well as the
in total and component energies up to 200 kK. Matrix free energy Fprur itself. The nuclear-nuclear repulsion energy
elements are calculated only once and stored, after which  is included (constant with respect to temperature, it varies
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FIG. 11. (Color online) Zero- and finite-temperature total energy and free energy for eight H atoms in different sized cubes: (a) £ =

Frrur + T Sprar and (b) Ferue.

with L). Figure 12 shows various components of the free
energy (electron-nuclear Coulomb energy, electron-electron
Coulomb energy including exchange, kinetic energy, and
entropic energy). Also shown are the total energy and free
energy, with the difference of these two being the entropic
energy. Again, the nuclear-nuclear repulsion energy is included
in Figs. 11 and 12. It has values of 9.118, 7.598, 5.699, 4.559
hartrees for L = 5, 6, 8, 10 bohrs, respectively. The energies
are shown as a function of temperature 0 < 7 < 250 kK for
four cube sizes, L = 5, 6, 8, and 10 bohrs. The comparatively
flat plateau up to roughly 7 = 15 kK is a direct consequence
of Fermi-Dirac level filling. Up to about 25 kK, the interval
between the highest occupied molecular orbital (HOMO) at
zero temperature and the lowest unoccupied molecular orbital
(LUMO) is roughly constant at 0.5 hartree. Therefore the
filling ratio of those two is roughly exp(—13/1.3) ~ 5 x 1073
or smaller up to about 7 = 15 kK. We return to this matter
below.

C. Comparison with approximate functionals

Orbital-free treatment of WDM has been dominated, not
surprisingly, by local density approximations for both the KE
and exchange contributions to the free energy. For the KE,
the choice is physically motivated by the fact that the high-
pressure and/or high-temperature limit for a WDM system
is Thomas-Fermi. This leads to finite-temperature Thomas-
Fermi (FTTF)” 7 = [ 7 dr by itself or with some fraction
of the von Weizsicker contribution (in its zero-temperature
form) 7y = [ tw dr, with

2
0= W\c/zh/z(ﬂu), (10)
2
= %h/z(ﬂu), (11
Vaf?
= (12)

where I are Fermi integrals. Note a parametrized form?® may
be used to eliminate u between 7( and n.

In Fig. 13 we compare the FTHF KE as a function of
T with the FTTF KE alone and with it supplemented by
both the full 7y and (1/9)7y for L = 6 bohrs. The latter
three functionals were evaluated with the FTHF density
and hence are non-self-consistent. As is known at T =
0, pure Thomas-Fermi underestimates the KE, while the
addition of the full 7y overestimates it. None of the three
is close to quantitative agreement with Zgryp. Moreover,
FTTF and FTTF augmented with (1/9)7y can be ruled
out from the 7 =0 K comparison since the exact (fully
correlated) KE must be above 7eryr (from a virial theorem
argument).

For the exchange contribution to the free energy, the use
of ground-state functionals is common (recall the Introduc-
tion), with the LDA being dominant. Figure 14 shows the
FTHF exchange contribution to the free energy Fy prup in
comparison with the exchange free energy generated by the
ground-state LDA functional and with the Perrot and Dharma-
wardana parametrization for the temperature-dependent LDA
functional.?® Again, this is for the cubic symmetry, eight-H
system at L = 6 bohrs. The other functionals are evaluated
with the FTHF density. (Note that such “post-self-consistent-
field” evaluation is fairly common in assessment of newly
developed ground-state functionals. See, for example, Ref. 76.)
Here one sees a marked difference: the ground-state functional
fails completely, while the temperature-dependent functional
has at least semiquantitatively correct temperature depen-
dence.

We may also make some semiquantitative comparison with
a more widely used model for extended systems at substantial
T. In Fig. 15 we show the internal energy per atom of the
eight hydrogen atoms in the cubic symmetry arrangement
at L =7 bohrs (corresponding to average ry = 2.17), with
that of the average-atom DFT calculation of Dharma-wardana
and Perrot’” at r, = 2, with (47r/3)r = L*/8. Their system
includes DFT exchange and correlation, whereas we have
pure Hartree-Fock exchange. Additional energy differences
are due to the different boundary conditions. Decomposing the
near-parallel temperature dependence into those components,
however, is a task outside the scope of the present work. We
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FIG. 12. (Color online) Self-consistent FTHF free-energy contributions for eight confined H atoms in a cubic array as a function of T for
four different cube edge lengths L. The key for all plots is given in (d).

can see one aspect immediately. Though the kinetic energy IV. DISCUSSION AND CONCLUSIONS
is the major contributor to the change in total energy as a
function of temperature (recall Fig. 12), the change due to
electron-electron interaction, including exchange, is at least a
third that of the kinetic energy.

Comparison, evaluation, and betterment of functionals for
WDM simulations is the long-term motive of this work. As just
shown, even at this initial state of development (Hartree-Fock,
small particle number, no molecular dynamics), the approach
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FIG. 13. (Color online) FTHF kinetic energy compared with
finite-temperature Thomas-Fermi KE and two forms of von
Weizsidcker augmentation of FTTF for the eight-H cubic system at
L = 6 bohrs. See text for details.

gives insight regarding that task. There are some specific issues
worth discussion also.

A. One-particle spectrum effects

It is well known that zero-temperature HF calculations
overestimate both band gaps in solids and the so-called
HOMO-LUMO gaps of finite systems. This occurs because
the occupied HF orbitals are free of self-interaction, but the
unoccupied ones are not. As temperature increases in the FTHF
scheme, however, levels unoccupied at 7 = 0 K become in-
creasingly occupied and shifted. In the self-consistent solution
of the HF problem in a basis, those levels then contribute to
the Hamiltonian matrix (“Fock matrix” in quantum chemistry
terminology). Thus there are two questions to address. What
is the extent to which FTHF exhibits HOMO-LUMO gap
overestimation similar to that of ground-state HF? At what
fractional occupancy is an energy level changed from an
overestimated virtual to a more properly estimated partially
occupied one?

-1.2 T T T T T T T T
FTHF ——
LDA ---x---
14T LDAT) % L
16 x 4
® -
°© 18|
t
©
T Ll
h:<
22 F
24 b .
26 DA e

0 20 40 60 80 100 120 140 160 180
T (kK)

FIG. 14. (Color online) FTHF exchange free-energy ground-state
LDA and Perrot and Dharma-wardana temperature-dependent LDA
(eight-H cubic system, L = 6 bohrs). See text for details.
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FIG. 15. (Color online) FTHF internal energy per atom for the
eight-H cubic-symmetry system at L = 7 bohrs compared withr, = 2
hydrogen plasma average atom DFT calculation.

For specificity, we consider the eigenspectrum of a single,
moderately compressed eight-atom cube with L = 6 bohrs.
Figure 16 shows the Fermi distribution of the single-particle
energies for four temperatures. The continuous curves in
Fig. 16 show the Fermi function with calculated chemical
potential . The discrete points mark the input energies to the
calculation of n. Note that these distributions are for one spin.
Also keep in mind that the cubical symmetry causes the lowest
four one-electron orbitals to group as singly degenerate and
triply degenerate (ajg, 1, in crystal-field notation). At zero
temperature, therefore, only two points are shown with unit
occupancy, but the higher-energy point corresponds to three
degenerate HOMO states (indexed as 2, 3, 4). The LUMO is
degenerate states 5, 6, and 7, with the singly degenerate state
8 above them (again, as would be expected from a cubical
crystal field). For simplicity of discussion, the HOMO and
LUMO (at T = 0) are labeled &4 and €5, respectively. One
can see that the spacing between &4 and &5 decreases with
temperature. This difference is shown directly in Fig. 17 along
with the occupation number for the ¢5 level. Then in Fig. 18,

f(T=0 K, 1=0.200557

1 p—+ ) ——
— f(T=100 kK, pn=0.437144) ---x---
b f(T=200 kK, n=0.313805) ---*---
£ o8 lx f(T=300 kK, 1=0.0233386) & |
& 06 %X i
E “‘\\
2 o, %,
c 04 F o i
S :
g %,
o NS
3 02t X % i
(%3 \\ g[::,,
A RS =
0+ + + >S:~-—)(.,_:L&;';;m'_l’:.;;ﬁ.;;_-__-_-_._.- —-«B|
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FTHF eignevalues (hartree)

FIG. 16. (Color online) Fermi distribution for eight H atoms in a
box, L = 6 bohrs. Points may represent more than one state due to
energy degeneracies.
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FIG. 17. (Color online) Energy difference between the fourth and
fifth energy levels along with the occupation number of the fifth
energy level. Eight H atoms, cubic box, L = 6 bohrs.

wu is plotted as a function of 7. Observe that the chemical
potential is nearly midway between &4 and &5 up to just below
50 kK. This behavior is exact at zero temperature.

Those total-energy and eigenspectrum results together
resolve the matter of the behavior of what would be virtual
states at zero temperature in FTHF. First, examination of the
kinetic- and total-energy plots for all box sizes shows that
there is a change in the form of the temperature dependence at
roughly 20 kK. That change is complemented by the change in
the spacing between the &4 and ¢5 levels. They are essentially
static for lower temperatures, then begin to change abruptly
well below 50 kK, and then change more moderately at higher
temperatures. Thus, above 50 kK, states corresponding to
zero-temperature virtuals are sufficiently incorporated in the
interaction terms to make a material modification of T =0
behavior. However, as the temperature is decreased below
roughly 50 kK, the FTHF Coulomb and exchange terms
increasingly are dominated by the 7' = 0 occupied levels,
which therefore keeps the lightly occupied higher-energy

0.8 T T T T T
0.7 Tk 5

0.6
0.5
0.4

Energy (hartree)
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FIG. 18. (Color online) Chemical potential x and the fourth and
fifth energy levels for eight H atoms in a cubic box, L = 6 bohrs. The
curve labeled “middle” is half way between g4 and es.
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levels artificially high. This is not a basis issue, but an issue
with discrete eigenstates. In a solid such as jellium or a metal
with a continuum of states, this should not be an issue, but for
a system with energy gaps the issue remains.

B. Other findings and considerations

The preceding discussion about depopulation and repopu-
lation of levels relative to the ground-state HF HOMO-LUMO
gap illustrates a broader challenge for the construction of
approximate functionals for the various contributions to the
free energy. Whether explicit or implicit, such approximate
functionals correspond to restricting the required traces to
specific classes (or subsets of classes) of state functions. The
consequence of such a restriction is to incorportate the spectral
properties of that class into the approximate functionals. For
example, in FTHF that class is single Slater determinants
constructed with respect to ground-state HF minimization.
Although we have not attempted its construction here, in
principle, there is an FTHF free-energy functional. It would
have exactly the same problem with a plateau in its T
dependence as we have found here.

The small number of particles is another issue. For
sufficiently large numbers, all standard ensembles (grand
canonical, canonical, and microcanonical) give the same
thermodynamics. Fluctuations characteristic of small particle
counts can degrade that relationship. The main issue regarding
particle count is computational cost. The problem is endemic
to many computational studies, especially when a large
temperature and pressure domain such as characterizes WDM
is involved (see, for only one example, Ref. 78). At the least, we
have an even-handed comparison of different methods (e.g.,
the comparison of functionals given above) for a given number
of electrons and of ions.

Clearly, we have shown that the TGTO basis is feasible
and effective. As is typical of GTO basis methods, the
computational cost is essentially entirely in the CPU time for
the calculation of the two-electron integrals. The eight-atom
systems described are calculated with 64 or 80 total basis
functions, making diagonalization trivial. A simple double
array of all N* two-electron integrals only occupies 128 or
312.5 MB, respectively, storable in memory. In practice, we
calculated N* /A integrals, with A = 7.60, 7.68 and not 8 due
to the looping procedure we used. While, for the cubic system
discussed here, this calculation requirement could have been
reduced further by exploiting symmetry, we need the capability
to explore other, lower-symmetry geometries. Note, however,
that if the box size or the atomic positions are changed, all
integrals affected by the change must be recalculated.

On a modern desktop processor (Intel Core i5 650 at
3.2 Ghz) one two-electron integral can be calculated in about
29.1 ms. So the times to calculate all integrals for a 64- and an
80-orbital basis would be 17.84 and 43.13 h. The integrals
are calculated independently, so they can be parallelized
effectively. Calculations reported in this work were done on
the University of Florida High Performance Computing Center
Linux clusters.

Though these are quite acceptable costs for fixed geometries
and small numbers of ions and electrons, the burden be-
comes formidable for direct application in Born-Oppenheimer
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molecular dynamics. We are currently working on ways to
ameliorate that problem.
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APPENDIX A: CORRECTION FOR PIECEWISE
INTEGRALS FOR THE BASIS FUNCTIONS

From the definition of the basis functions in Egs. (7) and
(8), it follows that derivatives of the basis function may not be
continuous at x., the center of the function. A discontinuity of
the second derivative would, of course, be significant for the
kinetic energy. The issue is whether the kinetic-energy matrix
elements can be evaluated piecewise, as is the case with the
overlap, nuclear-electron, and electron-electron integrals. We
may examine this issue by writing the basis formally with
Heaviside functions as follows:

¢ =1[0(x) —0(x —x)]lpo + [0(x — x1) = O(x — L)lg. (Al)
For the TGTO basis, the identification from Eq. (8) is

@0 = aplg"(x) — dol,
o = arlg"(x) —éLl,

g"(x) = (x —x))'e TN

(A2)
X1 = X¢.

The derivatives are

d
% = [8(x) — 8(x — x1)]go + [0(x) — O(x — x1)]g)
+[6(x —x1) —8(x — L)]oL

+[0(x —x1) —0(x — L)lg; (A3)

and
82()0 I ’ /
— = [0'(x) = 8 (x — xD]go + 2[6(x) — 6(x — x1)]ey
dx2
+[0(x) — 0(x — x1)]gy
+[8'(x —x1) = 8'(x — L)]gr
+2[8(x — x1) — 8(x — L)]¢},

+[0(x —x1) —0(x — L)lg; . (A4)

Now consider a generic kinetic-energy matrix element
involving the foregoing function and another similar basis
function y with left and right constituents xo, xz, centered
at x,. Without loss of generality, take x; < x,. Then

L a2

/ X8_<p dx ;=I5 + Ip. (AS)
0 ox 2

The terms of the second derivative with the Heaviside functions

contribute just the piecewise integration I, while the &

function and first derivative § function terms contribute /p.

Of the terms in Eq. (A4) only those at x; contribute, as the
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constituents xo, X1, ¢, and ¢ gotozeroatx = O0andx = L.
Thus

Iy = / Sol8 (x — 3191 — o) + 25(x — x1)(@, — @] dox.
(A6)

From the definition of 8’ this expression becomes

Ip = /Xo[—5(x —x)(@; — @)

+25(x — x1)(@; — @)1 — xo8(x — x1)(pr — @o) dx,
(AT)

which reduces to

Is = [xo(pr — 90) — Xo(pL — @0)]lx=x, - (A8)

For the case of x| = x;, that is, for diagonal terms or
functions that have the same center, Xé must be replaced in
Eq. (A7) by the analog of Eq. (A3), with the result

Iy = x0(9p, — 9)lx=x, — /5(x — x1)(pL — @o){[8(x)

—8(x — xD)Ixo + [0(x) = O(x — x1)]xg
+[6(x —x1) = 3(x — D)Ixr + [6(x —x1)
—60(x — L)y} dx. (A9)
Note o in the first term follows because the functions them-
selves are continuous, while the first and second derivatives
may not be. For the same reason, it follows that the remaining
integral in Eq. (A9) and the second term of Eq. (A8) vanish.
Thus so long as the functions are continuous, the correction to
the piecewise kinetic-energy integral is simply

Ig = X((pIL - (p(/))|x:x1’ (A10)
and so long as the first derivative is continuous, this reduces to
Zero.

With continuity of the basis functions enforced by con-
struction, only the first derivative needs to be examined for
a possible correction to simple piecewise integration. For the
basis defined in Eq. (8), those corrections are

g(x) = e [, =0,

—a(x—x;)?

g'(x) = (x — xp)e Iy = x(ar —ap), (All)

g2 () = (x — x))%e " [ =0.

Basis functions g”(x) with higher powers of the prefactor
(x — x;) all have continuous first and second derivatives at
x1. In fact, those derivatives are all zero. So only the p-type
basis functions (n = 1) have a kinetic-energy matrix-element
contribution beyond that given by piecewise integration.

APPENDIX B: FINITE-RANGE GAUSSIAN INTEGRALS

Following the methods of Boys,*%° we use the transform

of the Coulomb potential to separate the Coulomb integrals
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into one-dimensional Cartesian pieces:

1 o _YZ(T_RN)Zd
—_— = — e s
r—Ral V7
1 > —s2(x—XN)? =52 (y=YN)? ,—52(z—Zn )
:T e N TS TN TS RN g
T J-c0
(B1)

Hence all Coulomb integrals require integration over the
transform variable s, which is done by Gauss-Laguerre
quadrature.

For 1D primitive TGTOs, we note the required finite range
(a,b) integrals are of the form

b
I, = / XTI gy (B2)
This simply transforms to
b=x. 2
I, =/ x" + x)'e™™ dx'. (B3)
This result leaves us needing to compute
b 2
Jy = / x"e™* dx. (B4)
Integrating by parts, we find
—ax? b 1
Jy = —xn 18 " (B5)
20 |, 200
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So with the initial two integrals, we may find the higher-order
integrals by recursion:

b f
Jo=/ e dx = —erf(\/_x) (B6)
a’ \/_
b —ax? |V’
2 e
Ji :f xe Y dx = — (B7)
o 200 |,

All two-center (overlap, nuclear-electron, kinetic) integrals
reduce to expressions in terms of I,,. After two applications of
the Gaussian product rule, four-center (two-electron) integrals
reduce to terms of the form

by b
/ / "l e~ (=X p—on(xa—x))? ,=s*(x1—x2) dxdx.

(B8)

Two further applications of the product rule bring us to the
form

bz b]
_ 2 _ _ 2
f f xi’xme fr[xr— R](Xz)l K2 (x2—R2) dxidxs.

Here the integral over x; may be evaluated as /,,, so we are left

with
by x1=b, )
[ e e,
a

X1=a

(B9)

=b
(B10)

which we evaluate by Gauss-Legendre quadrature.
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