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A simple, unconventional, nonempirical, constraint-based orbital-free generalized gradient approximation
(GGA) noninteracting kinetic energy density functional is presented along with illustrative applications. The
innovation is adaptation of constraint-based construction to the essential properties of pseudodensities from
the pseudopotentials that are essential in plane-wave-basis ab initio molecular dynamics. This contrasts with
constraining to the qualitatively different Kato-cusp-condition densities. The single parameter in the proposed
functional is calibrated by satisfying Pauli potential positivity constraints for pseudoatom densities. In static
lattice tests on simple metals and semiconductors, the LKT (for the authors’ initials) functional outperforms
the previous best constraint-based GGA functional, VT84F [Phys. Rev. B 88, 161108(R) (2013)], is generally
superior to a recently proposed meta-GGA, is reasonably competitive with parametrized two-point functionals,

and is substantially faster.
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Introduction. Hohenberg-Kohn density functional theory
(DFT) [1,2] has come into prominence mainly in Kohn-Sham
(KS) orbital form [3]. However, driving ab initio molecular
dynamics (AIMD) [4-7] with KS DFT exposes a computa-
tional cost-scaling burden. The KS computational cost scales
no better than N with N, the number of electrons or number
of thermally occupied bands. Additionally there is reciprocal
space sampling cost or equivalent costs from large real-space
unit cells used with I"-point sampling. In contrast, orbital-free
DFT (OF-DFT) offers linear scaling with system size [8,9] for
use of AIMD on arbitrarily large systems.

The long-standing barrier to widespread use of OF-DFT
has been the lack of reliable nonempirical approximate kinetic
energy density functionals (KEDFs). In terms of the KS
orbitals ¢;, the reference, positive-definite KS kinetic energy
(KE) density is

t;[n] = 1 =

N,
Z IV, %, (1

in Hartree atomic units with n(r) the electron number density
(and unit occupation for simplicity). Two types of approximate
KEDFs have been explored; semilocal (one point)

N |

T[n] = /dr t[n(r), Va(r), ...] 2)

and two point with a nonlocal term

INAE ch//dr dr'n“()K[n(r), n(r), r,r'InP (') 3)
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with crp = %(37{2)2/3. For a dimensionless K, o + 8 = 8/3.
Most approximate Ks are parametrized (see Refs. [9-16]
for details as well as brief discussion below). In this Rapid
Communication, we propose an unconventional nonempirical
one-point KEDF and show that it is competitive with current
two-point KEDFs, generally better than other one-point func-
tionals, more transferable, and notably faster.

Generalized gradient approximations. The simplest one-
point functionals are Thomas-Fermi [17-19]

Trrln] := /drm(r), trr() == crpn’(r), (4

and von Weizsécker [20]

2
Twln] == %/dr% =

Neither is satisfactory as a general KEDF. As with approximate
exchange-correlation (XC) functionals [21], the gradient ex-
pansion of the weakly inhomogeneous electron gas KE leads to
consideration of generalized gradient approximations (GGAs)
for T,

/dr tw(r). 5)

T ] = /drtTF(r)F,[s@)]. (©)
Here F;(s) is the GGA KE enhancement factor, a function
of the dimensionless reduced density gradient s := % =

W e | familiar from GGA X functionals. GGA KEDFs so
constructed automatically satisfy 7, uniform scaling require-
ments [22]. In GGA form the von Weizsidcker KE becomes
Fy(s) = %sz.
From the Pauli term decomposition [8,23,24],
Ii[n] = Twinl + Tylnl, (7N
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three constraints follow [25]:

Ty[n] = 0, (8)

ve(r) >0 Vr, 9

vg(r) > f (r) Vr, ty:= z;"b — tw, (10)
(r)

with the Pauli potential defined as vy (r) := §Ty[n]/én(r) and
the Pauli enhancement factor is Fy(s) = F;(s) — Fy(s).

To date, perhaps the best constraint-based GGA KEDF
is VT84F (evaluated at T =0 K, of course) [26]. It is
successful in finite-7" AIMD simulations [27] and is the only
nonempirical GGA KEDF that yields reasonable binding in
simple solids. It was constrained to satisfy Eqgs. (8) and (9)
for physical atom densities, i.e., those that obey the Kato
cusp condition [28]. VT84F also was constrained to respect
limg_, oo Fy(s)/Fw(s) = 0. This comes from the one-electron
tail region of a many-electron atom [29] where #y/fy must
vanish, hence ¢, — ty [30].

In terms of the universal Hohenberg-Kohn-Levy density
functional, such a physically motivated constraint is nonuniver-
sal: the Kato cusp condition is specific to an external Coulomb
potential. Such nonuniversality is rational for material and
molecular property calculations. But the ubiquitous use of
pseudopotential plane-wave-basis methods in AIMD simula-
tions means that it is not the optimal nonuniversality for them.
OF-DFT calculations in fact require a local pseudopotential
(LPP). The OF-DFT Euler equation then implies that vy is
closely related to the LPP vb, " and that vy is evaluated with
the corresponding pseudodensity. Thus any constraint based on
density characteristics should be specific to a particular type
or class of pseudopotential.

Reference [31] explored some elementary consequences for
constraint satisfaction (or violation) with non-Kato densities.
Difficulties with simpler one-point KEDFs (linear combi-
nations of Trp and Ty) used with orbital-free projector
augmented-wave pseudodensities also have been reported [32].
So far as we know, no approximate KEDF has been constructed
by explicit satisfaction of the foregoing constraints, Eqgs. (8)
and (9), for a specified type of pseudodensities. Nor has
Eq. (10) been used.

New GGA KEDF. We resolve this pseudopotential AIMD
deficiency by devising a GGA KEDF constrained to satisfy
Egs. (8) and (9) for pseudodensities of a particular kind and
show that in most spatial regions its vy satisfies Eq. (10) as
well. The proposed GGA KEDF enhancement factor is

LKT 1 S
0= han T3 (n
with parameter a > 0. Figure 1 compares FHLKT with the
VT84F and APBEK [33] enhancement factors. It sat-
isfies the obvious homogeneous electron gas constraint
limy_.o F;/p(s) = 1 and obeys 0 < FXT < 1 50 as to satisfy
the bound conjectured by Lieb [34,35]:

T, < Trrp+ Ty. (12)

also satisfies [25,29,36] f9([n];r) > 0Vr, thus
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FIG. 1. Pauli enhancement factors for LKT (a = 1.3; red dot-
dashed), VT84F (blue dashed), and APBEK (orange dotted).

The sole parameter a = 1.3 (which was used throughout
all the subsequent calculations) was determined as follows.
A set of pseudodensities was generated for the atoms H
through Ne with a typical Hamann norm-conserving nonlocal
pseudopotential scheme [37] using default radii in the APE
code [38] and the Perdew-Zunger (PZ) XC local density
approximation (LDA) [39]. Then a was found such that all the
post—self-consistent-field (post-scf) Pauli potentials from those
pseudodensities satisfied vy > 0 V r. Importantly, as long as an
a value gave vg > 0 for the H atom, positivity also was met
for all the heavier atoms. For Li a < 1.4 is required, while
for H, a < 1.3 is needed to get a post-scf vy > 0. For He,
the a value does not seem to matter within the range tested.
While the a value is nonuniversal, we expect reasonable trans-
ferability to those other pseudopotential types for which the
pseudodensities are similar, specifically those with nearly flat
pseudodensities near the nucleus. The expectation is confirmed
by post-scf and scf calculations for atoms.

Although the reference atom set, H-Ne, encompasses 1-8
pseudoelectrons, equally good performance for other elements
is not assured. Post-scf determination of a also is distinct
from self-consistent calculation, which might vitiate the sup-
posedly constrained behavior. Atomic tests are the first line
of investigating these issues. For a given pseudopotential
and XC approximation, self-consistent solution of the KS
equation provides the reference KS #, and the ingredients to
construct the reference KS Pauli vy [see Eq. (35) in Ref. [23].
Those are the standards against which to judge #, and vy
from an approximate KEDF. In anticipation of the OF-DFT
calculations on periodically bounded systems reported below,
we focused upon the bulk-derived LPP (BLPS) [40,41] for
two atoms, Al and Li. Here we discuss Al because it was
not in the a calibration. Li discussion is in the Supplemental
Material [42]. [The Li pseudoatom is challenging because it is
a one-orbital system (2s') for which 7 should vanish.] Again
the XC functional is PZ.

Figure 2 displays the reference #y/n and vg for the BLPS
Al pseudoatom in the 3s>3p! configuration and the post-scf
results with that pseudodensity for both VT84F and LKT.
Note several features. Although VT84F was constructed to
satisfy v}’ T84F > ( near a nucleus for Kato-cusped densities,
it also satisfies that constraint arbitrarily close to the nucleus
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FIG. 2. Upper left: AIBLPS as a function of radial position (inset:
KS pseudodensity). Upper right: reference KS vy and 5 /n. Lower left:
post-scf vy (solid) and #y/n for VT84F (dashed). Lower right: same
for LKT.

for the cuspless pseudodensity. However, vg/ T84F \ith that
pseudodensity becomes negative near » = 0.1 bohr, a clear
example of the crucial nonuniversality. LKT does not have
that problem. Second, v5XT is much smoother than v 78F,
although not as smooth as vgk 5. Third, except for a small
region around r = 1.8 bohr, v5¥T respects the Pauli potential
inequality, Eq. (10), whereas v) 7347 violates it in four regions
that span much of the significant density magnitude.

Note also that, unlike some other GGA KEDFs, e.g., E00
[43], PBE2 [24], and APBEK, U(I;KT (r) decays correctly to zero
asymptotically for an atom. This may be useful in the AIMD
simulation of low-density regions of matter. Although v, 78
decays similarly, its rapid oscillations in the dominant density
region might slow scf convergence rates as well as cause other
difficulties.

Self-consistent OF calculations for the BLPS Al pseu-
doatom show that viXT stays positive, although it exhibits
oscillations quite similar to those seen in the post-scf case
(see Fig. 3). The LKT Pauli energy per particle is far from
the KS value. However, the inequality Eq. (10) is violated only
around r = 1.8 bohr as in the post-scf case. We did not insist
on strict imposition of this constraint because doing so would
require a 0.8, a value that materially worsens results for
solids.

Performance on solids. Validation of the LKT functional
for AIMD requires accuracy tests on extended systems. We
therefore did KS-DFT and OF-DFT calculations on simple
metals and semiconductors. Conventional KS calculations
were done with ABINIT [44] and the OF-DFT calculations
used PROFESS [45] and/or PROFESS @ QUANTUM-ESPRESSO [46].
Again the PZ LDA XC functional and BLPS were used.
For comparison we included the Wang-Govind-Carter (WGC)
[13], Huang-Carter (HC) [14], and Constantin et al. KGAP[16]
two-point KEDFs and the one-point Constantin et al. SOF-
CFD [47] meta-GGA (Laplacian-dependent) KEDF. Tech-
nical details and parameter values are in the Supplemental
Material [42].
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FIG. 3. Top: Al KS (solid, red) and LKT (dashed, blue) pseudo-
densities as a function of radial position. Bottom: KS vs LKT vy (solid
red vs dash-dotted blue, upper pair) and similarly #, /n (dashed red vs
dotted blue; lower pair).

Note that WGC was parametrized for main-group metals
and yields poor binding curves for semiconductors, while HC
was parametrized for semiconductors. KGAP is parametrized
to experimental direct band gaps. Results from the one-point
functionals EOO, APBEK, and PBE2 are omitted because of un-
realistic binding curves for the former two and computational
instability problems for the latter one. KGAP comparisons are
from Tables I and II of Ref. [16]. SOF-CFD values are from
Table I of Ref. [47]. Equilibrium volumes, energies, and bulk
moduli for other functionals were generated by varying +5%
around the equilibrium volume to obtain 11 energy-volume
points, which then were fitted to the Birch-Murnaghan equation
of state [48].

The metals were Li, Mg, and Al in the simple cubic, body-
centered cubic, face-centered cubic, and hexagonal close-
packed structures. Nine III-V semiconductors in zinc-blende
structures were treated: AlP, AlAs, AlSb, GaP, GaAs, GaSb,
InP, InAs, and InSb.

With KS quantities as references, Table I shows the mean
absolute relative error (MARE) percentages for equilibrium
volume Vj, energy Ey per atom (for metals) or per cell
(for semiconductors), and bulk moduli By from WGC, HC,
KGAP, VT84F, SOF-CFD, and LKT. These are calculated as

TABLE I. KEDF performance on solid metals and semiconduc-
tors: MARE of equilibrium volumes Vj, energies E, and bulk moduli
By, as percentages. See text for notation.

Metals Semiconductors

KEDF Vo Ey By Vo Ey By
WGC 0.7 0.0 2.7

HC 5.5 0.6 12.3 1.5 0.5 4.9
KGAP? 4.0 5.1 3.0 16.2
VT84F 6.0 0.1 11.6 10.5 3.6 56.4
SOF-CFD?* 5.2 0.6 8.5 34 0.9 10.0
LKT 4.0 0.2 7.7 2.1 2.8 4.3

“Note: only metals with cubic symmetry were included and PBE XC
was used.
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|(QOF - QKS)/QKS' X 1()O/Ivsystemh where Q is Vo, Eo, or
By. (More detailed tabulations are in the Supplemental Material
[42].) For V, and By, LKT is a significant improvement over
VT84F. The Vy and By MAREs are reduced by 33% in
metals. The reduction is more dramatic in the semiconductors,
a factor of 5 for V) and 13 for By. The semiconductor
Ey MARE is reduced by 22% but worsened slightly from
0.1% to 0.2% for the metals. Except for performance on
semiconductor Ej, italso is clear that the LKT GGA is superior
to the more-complicated nonempirical SOF-CFD meta-GGA
KEDE. Despite noticeable discrepancies in absolute energies
for semiconductors, it is important to note that LKT OF-DFT
gives the same phase ordering as does conventional KS (see
Table III in the Supplemental Material).

Regarding the two-point functionals, WGC outperforms
all the other functionals on the metals but is inapplicable
on semiconductors; recall above [13]. Conversely, HC with
averaged parameters exhibits balanced error, with all three
MARE:s within 5% (except By for metals). KGAP does well
on volumes in both classes but not By. Remarkably, LKT
exhibits performance competitive with both HC and KGAP
in prediction of equilibrium volumes for both material classes.
Moreover, LKT outperforms HC for By and is much more
balanced than KGAP for Bj. (Comparison with the recent MGP
two-point functional is of no avail, since its parametrization is
tuned to match KS results for each system [15].)

For the case of AP, we found that LKT converges for rela-
tively smaller energy cutoff than needed with VT84F and HC.
Typically, LKT also requires fewer self-consistent iterations
for solution to a given tolerance than are needed by either HC or
VT8A4F and each LKT iteration is typically about one-fifth the
time of an HC iteration. Thus the one-point LKT is more useful
as abroadly applicable functional than the highly parametrized
two-point HC KEDF or the experimentally parametrized two-
point KGAP KEDF yet is simpler, faster, and mostly better
than the SOF-CFD one-point KEDF. LKT seems therefore to
be currently the most promising candidate for general AIMD
OF-DFT use or with small-box algorithms [49]. Although it
remains to be tested, we anticipate the finite-7" generaliza-
tion [50] of LKT will be of value for warm dense matter
simulations.

As to limitations, LKT does not yield a good value of Vj
for bee Li with a three-electron LPP. So far as we know, all
GGA KEDFs developed so far share this limitation. The extent
of transferability to another distinct class of pseudopotential,
along with the post-scf determination of a, remains to be
examined.
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