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Comparison of density functional approximations and the finite-temperature Hartree-Fock
approximation in warm dense lithium
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We compare the behavior of the finite-temperature Hartree-Fock model with that of thermal density functional
theory using both ground-state and temperature-dependent approximate exchange functionals. The test system
is bcc Li in the temperature-density regime of warm dense matter (WDM). In this exchange-only case, there
are significant qualitative differences in results from the three approaches. Those differences may be important
for Born-Oppenheimer molecular dynamics studies of WDM with ground-state approximate density functionals
and thermal occupancies. Such calculations require reliable regularized potentials over a demanding range of
temperatures and densities. By comparison of pseudopotential and all-electron results at T = 0 K for small Li
clusters of local bcc symmetry and bond lengths equivalent to high density bulk Li, we determine the density
ranges for which standard projector augmented wave (PAW) and norm-conserving pseudopotentials are reliable.
Then, we construct and use all-electron PAW data sets with a small cutoff radius that are valid for lithium densities
up to at least 80 g/cm3.
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I. INTRODUCTION

Warm dense matter (WDM) encompasses the region be-
tween conventional condensed matter and plasmas. WDM
occurs on the pathway to inertial confinement fusion and
is thought to play a significant role in the structure of the
interior of giant planets. The theoretical and computational
description of WDM is important for understanding and
performing experiments in which WDM is created [1]. Two
parameter ranges which are very different from those in stan-
dard condensed matter physics characterize WDM: elevated
temperature (from one to a few tens of eV) and high pressure
(up to thousands of GPa). These ranges are challenging
computationally because the standard solid state physics
methods become very expensive (due to high temperature)
or standard approximations used in those methods cease to
work (due to high material density). From the plasma side,
the temperature and pressure are not high enough to employ
classical approaches.

A combination of a quantum statistical mechanical descrip-
tion of the electrons and classical molecular dynamics for
ions is a standard theoretical and computational approach to
WDM at present. Usually, the quantum statistical mechanics
is handled via finite-temperature density functional theory
(ftDFT) [2–4]. There is a substantial literature, too large
to review here, about such calculations at zero temperature
via Born-Oppenheimer molecular dynamics (BOMD) or Car-
Parrinello MD, with DFT implemented via the Kohn-Sham
(KS) procedure for the electronic degrees of freedom. The
pertinent point is that the same techniques can be applied to
the finite-temperature case [5–19]. The combination, called ab
initio molecular dynamics (MD), is computationally costly at
high temperature (for a given density) because of the large
number of partially occupied KS orbitals which must be taken
into account.

*vkarasev@qtp.ufl.edu

The great majority of the reported finite-temperature
ab initio MD calculations use zero-temperature exchange-
correlation (XC) functionals Exc, with Fermi-Dirac thermal
occupations to construct the electron density. In such calcu-
lations, the only T dependence in the XC contribution to the
free energy Fxc is through the T dependence of the electron
density:

Fxc[n(r,T ),T ] ≈ Exc[n(r,T )] , (1)

with n(r,T ) the electron number density at temperature T .
Most ftDFT calculations with ground-state XC functionals

seem to have been done with the VASP [20] or ABINIT [21] codes
using either the local density approximation (LDA) for Exc

[22–24] or the Perdew-Burke-Ernzerhof generalized gradient
approximation (GGA) functional [25].

The orbital-free density functional theory (OF-DFT) treat-
ment of electronic degrees of freedom is a less expensive
alternative to orbital-dependent methods such as KS. OF-DFT
in principle provides the same quantum-mechanical treatment
of electrons as KS DFT, but the lack of accurate orbital-free
approximations for the kinetic energy functionals has limited
the use OF-DFT, even at standard conditions. In contrast,
the high density of the WDM regime is favorable for use
of the OF-DFT approach, which is a motive for developing
functionals. The standard KS approach clearly must be used to
test and calibrate such OF-DFT functionals. The limitations
and consequences of various choices in those thermal KS
calculations have not seen much detailed attention, however.
Two closely related sets of potentially significant issues occur.

First, the use of ground-state functionals in a ftDFT
calculation inevitably raises a topic for fundamental DFT,
namely, the adequacy, accuracy, and scope of Eq. (1).
Relative to the number of calculations, there are compar-
atively few studies to assess this approach against others
[7,8,14,16–19,26]. Reference [7] shows that the maximum
density of the Al shock Hugoniot is increased about 5%
or less by use of a temperature-dependent functional of the
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Singwi-Tosi-Land-Sjölander (STLS) type [27]. Reference [26]
made essentially the same comparison, but with respect to
simple Slater exchange (in Hartree atomic units)

Ex[n] =
∫

dr n(r)εx,S[n(r)], εx,S[n(r)] := Cx,Sn
1/3(r),

Cx,S := −3

4

(
3

π

)1/3

(2)

and with the added complication [for the purpose of assessing
Eq. (1)] of use of an OF-DFT approximation. Reference [8]
compared calculations for ground-state LDA and PW91 GGA
[28] functionals. Faussurier et al. [14] compared the electrical
conductivity of Al computed with the T dependence from the
classical-map hypernetted chain scheme [29] versus ground-
state LDA. They concluded that the effects on conductivity are
small in the WDM regime but become increasingly important
as the energy density increases. Wünsch et al. [18] reversed the
perspective and used ftDFT calculations with a ground-state
XC functional to calibrate hypernetted chain approximations,
hence assumed the validity of Eq. (1). Vinko et al. compared
ground-state GGA calculations of free-free opacity for Al
with a random phase approximation (RPA) model and found
semiquantitative agreement at lower photon energies with
increasing disagreement at higher ones, all over the range
0 � T � 10 eV [17]. As an aside, we note that the same issues
of use of ground-state approximate XC functionals in a T -
dependent context can arise in average-atom models [30–34].

The second set of issues involves computational technique.
The primary focus is control of the effects of pseudopotentials
(or regularization of the nuclear-electron interaction). These
are ubiquitous in the highly refined codes in use for both WDM
and ground-state calculations. Clear insight into the behavior
and limitations of functionals requires that the regularized
potentials not introduce artifacts of their own. The challenge is
to test those potentials against high-quality all-electron (AE)
results over the appropriate density range.

An obvious issue associated with pseuodpotentials is the
effect of a finite core radius upon compressibility (hence, equa-
tion of state). Reference [35] shows that a norm-conserving
pseudopotential for boron with the standard cutoff radius
(rc = 1.7 bohrs) is not transferable to the high material density
regime. In that work, the authors built an “all-electron”
pseudopotential with small rc = 0.5 bohrs and tested its
transferability to very high material density by comparison
with the Thomas-Fermi (TF) limit calculated using an average-
atom model [30].

Another issue is the extent to which removal of core elec-
trons has an unphysical effect on the distribution of ionization.
A related issue is the effect that removing core levels has on
Fermi-Dirac occupation numbers. At fixed density, such core
levels should be progressively depopulated with increasing
temperature. Does the depopulation of pseudodensity levels
behave correctly? A significant computational practice issue is
the minimum magnitude threshold for retention of occupation
numbers. That threshold is directly related to basis set size
or, equivalently, the plane-wave cutoff. We know of only
one study of any of these questions [36]. In it, all-electron
calculations with the full-potential linearized muffin-tin orbital
methodology were used to benchmark projector augmented

wave (PAW) calculations with a plane-wave basis. Two metals,
Al and W, were treated at T �= 0 K. At least for W, it appears
that different XC functionals were used for the comparison.
Additionally, Ref. [36] used the free-electron expression for
the noninteracting electronic entropy, rather than the proper
explicit dependence on occupation numbers fi :

Ss = −kB

∑
i

{fi ln fi + (1 − fi) ln(1 − fi)} . (3)

Despite these differences, to the extent that their topics and
ours overlap, the findings are consistent.

To establish a basis for comparison, first we consider the
issues of regularized potentials. We consider both ordinary
pseudopotentials (PPs) and the pseudopotential-like PAW
technique. Those tests are against all-electron (bare Coulomb
nuclei potential) calculations for small Li clusters of bcc
symmetry. We establish a PAW which demonstrably is reliable
for the density range of interest. Then, we study the behavior
and limits of the use of ground-state exchange (X) functionals
in ftDFT by comparison of finite-temperature Hartree-Fock
(ftHF) and DFT X-only results. For clarity of interpretation,
all the bulk solid calculations reported here were performed
at fixed ionic positions corresponding to an ideal bcc structure
for Li.

II. CODES

We used the ATOMPAW code [37] to form the PAWs.
For periodic systems, we used three codes: ABINIT version
6.6 [21], VASP version 5.2 [20], and QUANTUM ESPRESSO

version 4.3 [38]. All three are plane-wave PP codes. All three
also implement PAWs. ABINIT and QUANTUM ESPRESSO are
open source. Technical details of the ftHF calculations are
discussed in the following. For the all-electron calculations on
finite clusters, we used conventional molecular Gaussian basis
techniques as embodied in the GAUSSIAN 03 program [39].

III. REGULARIZED POTENTIALS

Diverse PP techniques commonly are used in KS calcu-
lations to reduce computational cost by excluding the core
electrons from the self-consistent field (SCF) procedure and
to regularize the singular external potential in order to use
an efficient, compact plane-wave basis set. Excluding core
electrons implicitly invokes the frozen core approximation
(i.e., the omission of core electrons from the SCF procedure).
That approximation generally is well justified in standard con-
ditions. There, the core electrons are uninvolved in chemical
bonding and their state is essentially independent of the chemi-
cal environment. The validity of this justification is not obvious
for the WDM regime. In it, all electrons become important for
correct evaluation of the Fermi occupancy at high temperature
and correct description of the electron density at high external
pressure. As a consequence, it is mandatory to include at
least some core electrons in the solution of the relevant Euler
equation (DFT or finite-temperature HF) in the WDM regime.
For light atoms, this may mean an all-electron PP. Those are,
of course, a particular form of regularized potential.

Generation of PPs usually is characterized by cutoff (or
pseudization) radii rc. Values of rc are a compromise between
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softness of the PP (for compactness of plane-wave basis sets)
and correct description of the one-electron orbitals close to
the nucleus. Standard PPs are developed for use under near-
equilibrium condensed matter and molecular conditions, hence
their transferability to the WDM regime needs to be explored.
For example, commonly rc is assumed to be somewhat smaller
than half the nearest-neighbor distance between atoms so that
there is no core overlap. There is no guarantee that such
equilibrium prescriptions are satisfactory for WDM studies.

A. Basic PAW formalism

PAW concepts are summarized in Ref. [40]. We outline
the relevant points here. The PAW valence electron energy is
comprised of a pseudoenergy evaluated using a smooth pseu-
dodensity and pseudo-orbitals plus atom-centered corrections.
An energy correction centered on atom a is evaluated using
an augmentation sphere of radius ra

c . Within each sphere, the
correction replaces the valence pseudoenergy of atom a, Ẽa

v ,
by the valence energy Ea

v generated from the valence part of
the all-electron atomic density

Ev = Ẽv +
∑

a

(
Ea

v − Ẽa
v

)
. (4)

Detailed descriptions of each term in Eq. (4) are given, for
example, in Ref. [41]. Here, the issue is treatment of core
density contributions to the XC energy, as discussed in that
reference. In the scheme due to Blöchl [42], the XC energy is
expressed as

Exc = Exc[ñ+ ñc] +
∑

a

(
Exc

[
na + na

c

]− Exc
[
ña + ña

c

])
,

(5)

where na and na
c are atom-centered valence and core electron

charge densities corresponding to all-electron atomic orbitals,
ña and ña

c are atom-centered valence and core electron
pseudodensities, and ñ, ñc are total valence and core electron
pseudodensities. The idea behind Eq. (5) is that the third
term, which corresponds to atom-centered contributions of
pseudodensities (evaluated within augmentation spheres, radii
ra
c ), cancels the corresponding atom-centered pseudodensity

contributions (evaluated over all space) in the first term, and the
canceled contribution is replaced by the second term, which
is evaluated with atom-centered all-electron densities (again
within the augmentation spheres only).

The Kresse scheme [43] introduces a valence compensation
charge density n̂ as well. Its purpose is to reproduce the
multipole moments of the all-electron charge density outside
the augmentation spheres [41]. For the XC contribution, n̂ is
added to the pseudodensities in the functionals in Eq. (5) to
give

Exc = Exc[ñ + ñc + n̂]

+
∑

a

(
Exc

[
na + na

c

] − Exc
[
ña + ña

c + n̂a
])

. (6)

This procedure can cause problems with GGA XC functionals
(see Ref. [40]).

There are what are called all-electron PAWs, which in
essence are regularized potentials for all-electron calculations.
In customary notation, an “N -electron” PAW retains N

electrons in the valence. Thus, a three-electron (“3e−”) PAW
calculation for Li is an all-electron, regularized-potential
calculation.

B. PAW and high density lithium

We tested the PAW approach by calculating the pressure
of bcc Li over a large range of material densities, from ap-
proximate equilibrium ρLi = 0.5 g/cm3 to ρLi = 25.0 g/cm3

(46-fold compression), all at T = 100 K. [The equilibrium
density from simple Slater LDA all-electron calculations is
0.54 g/cm3, or lattice constant 6.59 bohrs, close to the ex-
perimental value (see Ref. [44]). Newer LDAs give somewhat
contracted results (see the following).] Three different PAW
data sets were used for each LDA and GGA exchange-
correlation functional: (i) the standard set with compensation
charge density included from Ref. [45], (ii) a set with the
same cutoff radius (rc = 1.61 bohrs) but without compensation
charge density, and (iii) a set we generated with rc = 0.80
bohrs and no compensation charge density. The Perdew-Wang
(PW) and Perdew-Zunger (PZ) LDAs [23,24] and Perdew-
Burke-Ernzerhof GGA [25] (PBE) XC functionals were used.

The upper segment of Table I compares the calculated
bcc Li equilibrium lattice constants and bulk moduli for the
various combinations. These were done with ABINIT using a
13 × 13 × 13 Monkhorst-Pack k grid [46], and a two-atom
unit cell. The lattice constant and bulk modulus were obtained
by fitting the calculated total energies per cell to the stabilized
jellium model equation of state (SJEOS) form Ref. [47].
One sees that the exclusion of the compensation density
slightly decreases the lattice constant for both PW and PBE
functionals. The results are essentially unchanged when the
rc value is decreased to 0.80 bohrs.

Table I also summarizes results obtained using both
QUANTUM ESPRESSO and VASP. The lattice constant and bulk
modulus again were obtained via fitting to the SJEOS form
in all cases. The results for VASP come from using the
PAW pseudopotentials supplied with the code itself. There is
excellent agreement between QUANTUM ESPRESSO and ABINIT

results when the same 3e− PAW data set is used. The VASP PBE
3e− results do not agree as well, consistent with the findings
of Ref. [40] regarding the effects of the valence compensation
charge density contribution. Two LDA PPs also were used
with QUANTUM ESPRESSO, namely, the 1e− von Barth–Car
and 3e− norm-conserving pseudopotentials (both taken from
the QUANTUM ESPRESSO web page). The lattice constant
corresponding to the first of these PPs is underestimated
as compared to other PZ LDA calculations, independent
confirmation of the importance of the 3e− treatment. For the
1e− (Vanderbilt ultrasoft) and 3e− (norm-conserving) PBE
PPs (again taken from the QUANTUM ESPRESSO web page), the
lattice constant is slightly overestimated and the bulk modulus
is underestimated by the 1e− pseudopotential. The 3e− results
are in nearly perfect agreement with the PAW data.

To assess the PAW method for high material density, we
compared PAW and true all-electron (bare Coulomb potential)
results for two small lithium clusters with local bcc symmetry
(see Fig. 1). The interatomic distances in both clusters were
set equal to the nearest-neighbor distance in bulk bcc Li
for densities in the range 0.5 � ρLi � 150 g/cm3, which
corresponds to compressions of approximately from 1- to
280-fold. The all-electron calculations were done with the
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TABLE I. Equilibrium lattice constant for bcc Li a (bohrs) and bulk modulus B (GPa).

LDA GGA

PW PZ PBE

Method rc a B a B a B

ABINIT (3e−, PAW, c. ch.a) 1.61 6.353 15.1 6.504 14.1
ABINIT (3e−, PAW) 1.61 6.354 15.1 6.351 15.2 6.489 13.9
ABINIT (3e−, PAW) 0.80 6.353 15.1 6.350 15.2 6.488 14.0

Q ESPRESSO (3e−, PAW, c. ch.a) 1.61 6.355 15.1 6.508 14.2
Q ESPRESSO (3e−, PAW, c. ch.a) 0.80 6.353 15.1 6.488 13.9

Q ESPRESSO (1e−)b 6.311 15.1 6.714 12.0
Q ESPRESSO (3e−)c 6.353 15.2 6.491 13.9

VASP (1e−, PAW, c. ch.a) 2.05 6.356 15.3 6.497 14.0
VASP (3e−, PAW, c. ch.a) 1.55-2.00 6.351 15.2 6.491 14.0

aCompensation charge (c. ch.) density is included.
bLDA: PZ exchange correlation, nonlinear core correction, von Barth-Car; GGA: PBE exchange correlation, nonlinear core correction,
Vanderbilt ultrasoft pseudopotentials.
cPZ and PBE semicore state s in valence Troullier-Martins pseudopotentials.

GAUSSIAN 03 code and two basis sets, 6-311 + + G(3df,3pd)
and cc-pV T Z. For the LDA calculations, we used the Vosko,
Wilk, and Nusair parametrization (VWN) [22]; it is very
close to the PZ parametrization and based on the same data.
For the GGA functional, we used PBE. For high densities
ρLi � 50 g/cm3, we did additional calculations with cc-pV 5Z

(8-atom cluster) and cc-pV QZ (16-atom cluster) basis sets.
The PAW calculations were done with the ABINIT code. In it,
the clusters were centered in a large cubic supercell of size L.
For the standard PAW, we used L = 15 Å with an energy cutoff
1000 eV, while L = 12 Å with energy cutoff 3000 eV was used
for the small rc PAW. The PZ LDA and PBE GGA functionals
were used in these calculations. Note that the difference in
behavior between PZ and PW is essentially negligible for the
purposes of this study.

Figure 2 shows all-electron and PAW LDA total energies
for the two clusters as a function of distance corresponding
to the stated bulk density. Figure 3 shows the corresponding
GGA results. The behavior of the two clusters is quite similar.
For the standard PAW data set [labeled (i) previously], the
total energy starts to deviate from the all-electron (AE) values
at a critical density of approximately ρclust-crit1

Li = 8.0 g/cm3

(15-fold compression). For the standard PAW set without
compensation density [set (ii)], the critical density ρclust-crit2

Li
is approximately 25 g/cm3 (46-fold compression). In contrast,
the PAW with small rc and no compensation density [set (iii)]

FIG. 1. (Color online) The bcc Li8 (left panel) and Li16 (right
panel) clusters used to test PAW calculations.

gives essentially perfect agreement with the AE results for the
whole density range. For densities up to 30 g/cm3, two basis
sets, 6-311 + + G(3df ,3pd) and cc-pV T Z, give essentially
the same quality results. At high density (50 g/cm3 and up), the
cc-pV T Z basis set energies lie above the values corre-
sponding to the 6-311 + + G(3df,3pd) basis. For those high
densities, AE calculations done with the larger cc-pV 5Z

(8-atom cluster) and cc-pV QZ (16-atom cluster) basis sets
lower the total energy to the 6-311 + + G(3df,3pd) level
(16-atom cluster) or slightly lower (8-atom cluster). Once
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FIG. 2. (Color online) All-electron (VWN XC) and PAW (PZ
XC) LDA total energies for the Li8 and Li16 clusters.
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FIG. 3. (Color online) All-electron and PAW GGA total energies
for the Li8 and Li16 clusters.

again, there is essential perfect agreement with the set (iii)
PAW plane-wave results.

The corresponding PBE GGA comparison of PAW and AE
results (Fig. 3) shows that the critical densities for each PAW
data set are almost identical for the 8-atom and 16-atom clus-
ters. For the PAW data set (i), ρclust-crit1

Li ≈ 6.0 g/cm3 (11-fold
compression) is slightly lower than for the LDA case. For PAW
data set (ii), the critical density is essentially the same as for
LDA (≈25 g/cm3). Once again, the small rc PAW data set (iii)
gives good agreement with the AE results up to the maximum
density considered (150 g/cm3). We conclude from these
cluster comparisons that PAW data set (iii), namely, rc = 0.80
bohrs and no compensation charge, is completely adequate for
making reference KS calculations in the high density regime.

Another validation issue is the effect of PAW or PP on
the calculated pressure. A study [15] of the EOS for warm,
dense LiH found that the 3e− PAW for Li in VASP calculations
was necessary for T = 2, 4, and 6 eV and densities twice
that of ambient and greater. Figure 4 shows the bulk bcc
Li pressure as a function of material density at T = 100 K
calculated using ABINIT with the same three PAW data sets as
before for both the PW LDA and PBE XC functionals. (Use
of the PZ LDA functional gives results indistinguishable from
those from PW LDA on the scale of the figure.) One sees that
the standard PAW data set (i) starts to overestimate the pressure
at ρbulk-crit1

Li = 6.0 g/cm3 (11-fold compression) for LDA and
at a slightly lower value for PBE. PAW data set (ii) produces
results which agree with the reference calculations [i.e., those
from PAW set (iii)) for densities up to ρbulk-crit2

Li = 15.0 g/cm3

(28-fold compression)]. Comparison of critical density values
in the clusters and in bulk shows that ρbulk-crit1

Li is slightly lower
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FIG. 4. (Color online) Pressure vs material density from PAW
LDA (PW correlation) (left panel) and from PAW GGA (PBE XC)
(right panel) calculations for bulk bcc Li (two-atom unit cell, k mesh
between 9 × 9 × 9 and 13 × 13 × 13 with larger size for higher
densities).

than ρclust-crit1
Li . A crude linear extrapolation of the results from

PAW data sets (i) and (ii) gives an estimated lower bound
for the critical bulk density for the reference PAW data set
ρbulk-crit3

Li to be 80 g/cm3 (150-fold compression). Additional
tests would be needed to get the actual value of ρbulk-crit3

Li . Such
a determination is not required for the present purposes.

We observe that for fcc Al at T = 0 K, Levashov et al. [36]
found that the standard VASP PAW pressures began to deviate
materially from all-electron values at about a compression
of seven. Since it was standard VASP, presumably that PAW
included charge compensation, hence their result should
correspond to our set (i) Li results, those labeled “PAW, rc =
1.61 bohrs, c. ch.” in Fig. 4. It is clear that the deviation they
found in fcc Al is at similar but modestly lower compression
than we find for bcc Li.

The remaining validation issue is intercode differences
in the equation of state. Figure 5 compares pressure versus
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FIG. 5. (Color online) Validation of VASP 1e−, 3e− PAW, QUAN-
TUM ESPRESSO 1e−, 3e− PZ LDA (left panel) and VASP 1e−,
3e− PAW, QUANTUM ESPRESSO 1e−, 3e− PBE GGA (right panel)
pseudopotential calculations: pressure as a function of density for
bcc Li calculated at T = 100 K (two-atom unit cell, 13 × 13 × 13 k

mesh).
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TABLE II. Maximum bcc Li densities for which the deviation in
pressure from the reference values, evaluated using the listed codes
and pseudopotentials, is �5%.

Code Pseudo ρLi,max, g/cm3

LDA
VASP PAW 1e− ≈4.0
VASP PAW 3e− ≈8.0
QUANTUM ESPRESSO 1e− ≈2.5
QUANTUM ESPRESSO 3e− >25.0

GGA
VASP PAW 1e− ≈4.0
VASP PAW 3e− ≈4.0
QUANTUM ESPRESSO 1e− <0.8
QUANTUM ESPRESSO 3e− >25.0

material density (T = 100 K) for LDA (left panel) and PBE
GGA (right panel) for material densities in the range 0.6–10.0
g/cm3 obtained from VASP and QUANTUM ESPRESSO using
standard PPs (the PAW provided with the VASP package and the
norm-conserving PP taken from the QUANTUM ESPRESSO web
page), and reference results obtained with our PAW data set
(iii) (for both the PZ LDA and PBE GGA XC functionals).
For LDA, we also show the earlier all-electron results by
Boettger and Albers [48]. Observe first that our designation of
the PAW (iii) as a reference is substantiated by the agreement
with the all-electron LDA calculation. Second, the VASP 1e−
PAW LDA results start to deviate from the reference values
by 5% at about 4.0 g/cm3 (roughly 8-fold compression). By
the same criterion, the 3e− PAW LDA pressure from VASP

agrees well with the reference data for densities up to 8.0
g/cm3. QUANTUM ESPRESSO results calculated with the 1e−
PZ LDA pseudopotential deviate (by the chosen criterion)
from the reference results for density between 2 and 3 g/cm3

(4- to 6-fold compression), whereas the 3e− potential in
QUANTUM ESPRESSO produces results which agree virtually
perfectly for the full density range. For the GGA case, the
right-hand panel of Fig. 5 shows that the code comparison
is very similar, except that both the 1e− and 3e− PAW VASP

calculations start to deviate from the reference results at almost
the same density (≈4 g/cm3). The QUANTUM ESPRESSO 1e−

calculations overestimate the pressure for ρLi > 0.8 g/cm3.
However, the QUANTUM ESPRESSO 3e− results are in virtually
perfect agreement with the reference PAW results for the whole
range of densities. Table II summarizes these results.

IV. FINITE TEMPERATURES

A. Pseudopotentials and level populations

In finite-temperature calculations (either KS or HF), there
is nonzero occupation of one-electron levels which correspond
to empty levels at T = 0 K (virtual states or simply “virtuals”).
Satisfaction of some computational threshold for the smallest
non-negligible occupation number requires an increasingly
large set of those virtuals to be considered with increasing T .
Concurrently, there is depopulation of levels fully occupied at
T = 0 K. One would hope that PP methods which treat all elec-
trons self-consistently would be applicable for such finite-T
calculations. A related issue is the validity of using PPs which
remove some of the core. A rough estimate of the relevant scale
comes from taking the 1s ionization potential for the Li atom
to be approximately the magnitude of the LDA Kohn-Sham 1s

eigenvalue, about 51 eV. Then, PP treatment of Li 1s electrons
as core might be expected to be applicable for temperatures
much smaller than 51 eV. The question is the validity of any
estimate of this sort, in particular, how much smaller? We
remark that Levashov et al. [36] found that for ambient density
Al, the PAW pressure deviated from the all-electron value at
about T = 5–6 eV. This is less than 10% of the magnitude of
the LSDA 2p atomic KS eigenvalue (about 70 eV).

First consider the comparative performance of the PPs.
Figure 6 shows the hydrostatic pressure as a function of
temperature calculated using 1e− and 3e− norm-conserving
pseudopotentials for the bcc Li structure (fixed nuclear posi-
tions, ρLi = 0.5 and 1.0 g/cm3). Notice that this calculation
uses a ground-state XC functional: there is no explicit
temperature dependence in the PZ LDA XC functional. If the
number of bands taken into account for a two-atom unit cell for
ρLi = 0.5 g cm−3 is 128, the occupation number of the highest
energy bands is of the order of 10−6–10−7. Observe that the
results from the 1e− PP are in almost perfect agreement with
those from the 3e− calculations for T up to 75 000 K, with
small disagreement appearing at higher temperatures. For low
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FIG. 6. (Color online) Comparison of pressure vs temperature for bcc Li obtained with 3e− and 1e− pseudopotentials for the Perdew-Zunger
LDA exchange-correlation functional as implemented in QUANTUM ESPRESSO (two-atom unit cell, 9 × 9 × 9 k mesh, 128 bands). Left panel:
ρLi = 0.5 g/cm3. Right panel: ρLi = 1.0 g/cm3.
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to moderate compression, it appears that the range of applica-
bility of standard 1e− norm-conserving pseudopotentials is at
least up to T = 100 kK or about 8–9 eV. This fits the rough
argument based on the Li 1s KS eigenvalue, with the criterion
for “much smaller” being of order 20% at most.

Implicit in the discussion of the range of applicability of 1e−
versus 3e− pseudopotentials is the notion of a T -dependent
pseudopotential. Putting aside issues of continuum orbital
occupation in the pseudoatom, we note a straightforward
result from Ref. [49]. For bulk hydrogen, all-electron
pseudopotentials regularized at T = 0 K yield both total free
energies and pressures which are in perfect agreement with
truly all-electron calculations with the bare Coulomb external
potential for temperatures up to at least 100 kK and material
densities corresponding to compressions up to 30-fold. There
is no evidence of need for an explicit T dependence in the
pseudopotential.

Next comes the matter of significant fractional occupation
of ever-higher energy orbitals with increasing temperature.
A related issue is energy level shifting and reordering with
increased density, an effect known for T = 0 K Li [44,50].

Again, we did calculations with ground-state XC on bcc
Li, with material density from 0.6 to 4.0 g/cm3 (rs = 3.14
to 1.67 bohrs). For all temperatures and densities, we used a
7 × 7 × 7 Monkhorst-Pack k grid [46], a two-atom unit cell,
and included 128 bands with a plane-wave energy cutoff of
150 Ry. The calculations were done with QUANTUM ESPRESSO

and the 1e− PP just mentioned. The top panel of Fig. 7 shows
a sample of the orbital eigenvalues for a single k point � as a
function of material density for T = 100 kK. The T = 100 K
plot is absolutely indistinguishable, due to relatively small
differences in the eigenvalues. The eigenvalues are labeled in
order of increasing energy: ε1 lowest, ε128 highest. The main
point to be noticed is that as the density increases, the spread in
the lower half (roughly) of the eigenvalues increases. Those are
the eigenvalues most pertinent to the calculation, in the sense
that at a given temperature, excited levels will be depopulated
at higher densities compared to the corresponding levels at
lower densities. (An exception would be a pressure-induced
switch in level ordering.) The middle-bottom panels of Fig. 7
show the occupation numbers for those same eigenvalues. At
low temperature and low density, the results are, as expected,
an almost square-wave Fermi distribution with the lowest band
fully occupied (since there are two electrons in the unit cell)
and the higher bands unoccupied. At higher densities, some k

points, including the � point, as shown in the middle panel,
for densities above 3 g/cm3, have no occupation, while others
have two occupied levels. This repopulation is a consequence
of changes in the KS orbitals caused by changes in the external
potential, hence also in the effective KS potential. The bottom
panel shows that at higher temperatures, there is not only
a temperature dependence of the occupation numbers, but a
significant density dependence because of the spreading of the
orbital energy levels.

Next, we consider the number of bands required for a
stipulated precision, given by a minimum occupation number
threshold, as a function of temperature and density. For the
calculations just discussed, we calculated a zone-averaged
band occupation. For a band of composite index i, we sum the
occupations of the εi level multiplied by the k-point integration
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FIG. 7. (Color online) Top: orbital energies for the � point, at
100 kK. Middle: single-spin occupation number fi of the levels
plotted for T = 100 K. Bottom: same but for T = 100 kK. The legend
for the level number, given in the upper right of the middle plot, is
for all plots.

weight for all k points. This zone-averaged occupation is
plotted for T = 100 kK in Fig. 8. One sees clearly that, for
a given threshold in occupation number, for example, 10−6,
the number of required bands decreases significantly with
increasing density. This decrease again is due to changes in the
KS orbitals. At least at T = 0 K, it long has been known [44,50]
that as Li is compressed, its band structure initially becomes

056704-7



KARASIEV, SJOSTROM, AND TRICKEY PHYSICAL REVIEW E 86, 056704 (2012)

 10-10

10-8

 10-6

 10-4

10-2

1

0  20  40  60  80  100  120  140

A
ve

ra
ge

 o
cc

up
at

io
n

Band number

ρ=0.6
ρ=1.0
ρ=2.0
ρ=3.0
ρ=4.0

10-6

FIG. 8. (Color online) Zone-averaged band occupation numbers
for all bands at T = 100 kK, for the various material densities listed
(in g/cm3).

less like the homogeneous electron gas (HEG) than the bcc
zero-pressure bands. However, eventually, the system passes
over to a Thomas-Fermi-Dirac equation of state, signifying
near-perfect but spread parabolic bands (see top panel of Fig. 7)
and corresponding HEG occupations.

B. Exchange free energy

Although it originated in the Green’s function formalism
of many-fermion theory, the finite-temperature Hartree-Fock
approximation is the thermodynamical generalization of the
variational optimization of a single-determinant trial wave
function which is ubiquitous in quantum chemistry and
molecular physics as the HF approximation [51].

To summarize, the thermal generalization of the familiar
HF single-determinantal exchange energy may be expressed
in terms of the one-electron reduced density matrix (1-RDM)

Fx[n] := −
∫

dx1 dx2 {g12�̄
(1)(x1|x′

2)�̄(1)(x2|x′
1)}x′

1=x1,x′
2=x2 ,

(7)

where x := r,s is a composite space-spin variable, g12 =
1/2|r1 − r2|, and the 1-RDM is defined in terms of the relevant
orbitals {ϕi} and occupation numbers {fi}

�̄(1)(x1|x′
1) :=

∞∑
j=1

fjϕj (x1)ϕ∗
j (x′

1) , (8)

subject to

fj ≡ f (εj − μ) = {1 + exp[β(εj − μ)]}−1 (9)

and ∫
dx ϕi(x)ϕ∗

j (x) = δij ,

∞∑
j=1

fj = N, (10)

with β := 1/kBT as usual. Here, μ is the chemical potential
[determined by Eq. (10)] and the εj are the eigenvalues of the
associated one-particle ftHF equation.

The analog to ftHF in DFT is called finite-temperature
exact exchange (ftEXX hereafter) DFT [52]. In its pure Kohn-

Sham form, ftEXX defines the exchange free energy formally
identically with ftHF, but evaluates the density n(r,T ) from
orbitals which follow from a true KS procedure, that is, from a
one-body Hamiltonian with a local (multiplicative) exchange
potential. That potential follows from the system response
function δn/δvKS. A full ftDFT calculation (not exchange
only) would have a correlation free-energy functional and
associated KS potential as well.

Ground-state DFT with so-called hybrid approximate
exchange functionals has a similar structure for the total
energy, in the sense that hybrids have contributions both from
single-determinant exchange and from exchange-correlation
functionals which are explicitly density dependent. Instead
of a KS procedure, one can go from such a hybrid expression
directly to coupled one-electron equations by explicit variation
with respect to the orbitals. In ground-state theory with a hybrid
functional, this procedure sometimes is called generalized KS.
The relevant point is that the same approach applies directly
to ftHF. Simply switch off the explicit density functionals for
exchange and correlation and leave the exchange functional
which comes from the trace over single determinants. Since
the capacity to do hybrid DFT as a generalized KS approach
exists in both VASP and QUANTUM ESPRESSO, one sees that such
coding is immediately exploitable for doing ftHF.

In parallel with ground-state DFT, an LDA may be obtained
from considering the finite-T HEG. Its exchange free energy
is given in first-order perturbation theory by

FHEG
x = − V

(2π )6

∫∫
dk dk′ 4π

|k − k′|f (k)f (k′), (11)

where f (k) = {1 + exp[β(k2/2 − μHEG
0 )]}−1, and V is the

system volume. With the chemical potential expanded to
the same order as well, μHEG = μHEG

0 + μHEG
x , the exchange

portion is

μHEG
x (n,T ) = δFHEG

x

δn
. (12)

If expressed in closed form, this result may be
used as the finite-T LDA, with exchange free energy
per electron f LDA

x [n(r,T ),T ] = (FHEG
x /nV )|n=n(r,T ), and

vLDA
x [n(r,T ),T ] = μHEG

x (n,T )|n=n(r,T ). Here, we used the
parametrization given by Perrot and Dharma-wardana [53].
The LDA exchange free energy is then

FLDA
x [n(r),T ] =

∫
f LDA

x [n(r,T ),T ]n(r,T )dr . (13)

The one-particle density follows by obvious analogy with
Eqs. (8)–(10).

C. Finite-temperature Hartree-Fock
and DFT X-only calculations

To study the importance of using an explicitly T -dependent
expression for the exchange free energy (rather than a
calculation with a ground-state X functional) and to estimate
the quality of the T -dependent exchange free-energy func-
tional defined by Eq. (13), we compare ftHF calculations
which use the exact exchange free energy [Eq. (7)], Kohn-
Sham calculations with T -independent LDA exchange for
the exchange free energy Fx ≈ ELDA

x , and KS calculations
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FIG. 9. (Color online) Comparison of finite-temperature HF, ground-state LDA X-only (LDAx), and T -dependent LDA X-only [LDAx(T )]
exchange free-energy differences 
Fx(T ) = Fx(T ) − Fx(100 K) per atom as a function of electronic temperature T . Left panel: ρLi =
0.6 g/cm3 (rs = 3.14); right panel: ρLi = 1.2 g/cm3 (rs = 2.49).

done with the T -dependent exchange free-energy functional
FLDA

x . In the following discussion, the ground-state functional
calculations are labeled “LDAx,” while those which used the
explicitly T -dependent LDA are labeled “LDAx(T )”. All the
calculations were done with QUANTUM ESPRESSO using the 1e−
PZ LDA pseudopotential taken from the QUANTUM ESPRESSO

web page. We treated bcc Li with fixed nuclear positions,
here with densities between ρLi = 0.6 and 1.8 g/cm3 (rs

between 3.14 and 2.18) and temperatures between 100 K and
100 kK. This corresponds to a reduced temperature (t = T/TF)
range from near the degenerate limit t = 0 to t = 1.7 and
t = 0.81, respectively. At these densities and temperatures, the
QUANTUM ESPRESSO1e− pseudopotential is adequate; recall
Secs. III B and IV A as well as Figs. 5 and 6.

Convergence of the ftHF and the LDAx calculations with
respect to the k mesh for the bcc Li two-atom unit cell requires
attention. It is known [54] that T = 0 K LDA calculations on
bcc Li exhibit misleading convergence behavior at a relatively
coarse k mesh density. We tested for the smallest real space
cell size used, corresponding to bulk density ρLi = 1.8 g/cm3.
The ftHF total free-energy calculations converge much more
slowly than the ftDFT calculations. For the moderate 7 × 7 × 7
k mesh, the DFT calculations are converged to an iteration-
to-iteration difference of 0.02 eV per atom, while the HF

calculations converge to the same precision only upon reaching
the much denser 17 × 17 × 17 mesh. Moreover, the HF
calculation exhibits a potentially misleading energy minimum
at 15 × 15 × 15. The k mesh convergence becomes faster with
increasing T . For example, at T = 100 kK, both HF and LDAx
calculations already are converged at the 3 × 3 × 3 k mesh. In
all calculations, both HF and DFT, presented in this section,
the 25 × 25 × 25 k mesh was used.

Figure 9 compares changes in the exchange free-energy
contribution with increasing T relative to 100-K values
Fx(T ) − Fx(100 K). The T -independent LDA exchange free
energy practically does not change over that range, i.e.,
FLDA

x [n(r,T )] ≈ FLDA
x [n(r,100 K)]. In contrast, the HF ex-

change free energy increases significantly (by about 4–5 eV
per atom) with increasing T . The T -dependent LDA exchange
free energy reproduces the HF behavior at least qualitatively.

The exchange free energy is, of course, a small portion of the
total free energy. Figure 10 shows total free-energy differences

Ftot(T ) = Ftot(T ) − Ftot(100 K) as a function of electronic
temperature. The free energy is monotonically decreasing with
increasing T , in agreement with non-negativity of the entropy
evaluated from the thermodynamic relation S = − ∂F

∂T
|N,V .

The DFT X-only total free energies from T -independent LDA
X lie below the corresponding ftHF values for all T and both
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FIG. 11. (Color online) Effect of temperature-dependent exchange on pressure. Left panels: pressure as a function of electronic
temperature as predicted by HF, LDAx, and LDAx(T ) calculations for ρLi = 0.6, 0.8, 1.0, and 1.2 g/cm3 (rs = 3.14, 2.85, 2.64, and 2.49
correspondingly). Right panels: differences in pressure between calculations with T -dependent and T -independent X, P (HF)-P (LDAx), and
P [LDAx(T )]-P (LDAx).

densities. At T ≈ 20 kK, the interval is about 2 eV/atom,
growing to about 4–5 eV/atom by 40 kK. The T -dependent

LDA X gives total free-energy behavior much closer to that of
ftHF, with discrepancies not exceeding 1–2 eV/atom.
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The effect of explicit T dependence in exchange upon the
pressure may be estimated from the difference between the
ftHF or LDAx(T ) and the LDAx values. Figure 11 provides
this comparison. As a function of T , the pressure from ftHF
starts below the LDAx curve, then crosses and goes above
it at about 55–75 kK, depending upon the material density.
The temperature of this crossing point increases slightly with
material density. To isolate the effect of exact T -dependent
X upon the pressure, we consider the difference between
ftHF and LDAx values, offset by the near-zero-temperature
difference


PHF-LDAx(T ) = PHF(T ) − PLDAx(T ) (14)

at T = 100 K, i.e.,



PHF-LDAx(T ) = 
PHF-LDAx(T ) − 
PHF-LDAx(100 K).

(15)

One can see from the right-hand panels of Fig. 11 that
the maximum magnitude of this difference at T = 100 kK
is about 10% for all material densities considered. For low
temperatures, the effect of exact T -dependent X on pressure is
stronger. For example, at 30 kK, 

PHF-LDAx(30 kK) ≈ 5 GPa
for material density 1.0 g/cm3, that is, the shift is ≈30% of the
HF pressure (about 15 GPa) at that T . Again, the LDAx(T )
and ftHF temperature dependence resemble one another
qualitatively, whereas the LDAx result does not. Note that
the LDAx(T ) crossing temperature with respect to the LDAx
curve increases much more rapidly with increasing material
density than for ftHF. For material density ρLi = 0.6 g/cm3,
both curves cross at T ≈ 60 kK. At ρLi = 1.2 g/cm3, the
LDAx(T ) pressure crosses the LDAx curve at T ≈ 100 kK,
higher than the temperature of the HF-LDAx crossing point
T ≈ 70 kK. With increasing material density, the shift between
LDAx(T ) and ftHF increases especially for T � 50 kK.

V. CONCLUSIONS

Detailed computational examination of the applicability of
standard PP and PAW methods to the WDM regime, with bulk
Li as the test system, yields several insights. By unambiguous
comparison with all-electron results from small Li clusters of

bcc-derived symmetry, we find that the PAW scheme requires
a small augmentation sphere radius, that the compensation
charge term is not helpful, and that all electrons must be treated
in the SCF calculation. We have constructed such PAW data
sets for LDA and GGA functionals and used them to generate
reference data.

We have located the maximal material density of bulk bcc
Li usable for standard PPs in VASP, ABINIT, and QUANTUM

ESPRESSO codes. And, we have delineated the validity of
using such PPs at high T by comparison of 1e− and
3e− PP results. The transferability of PPs and PAW data
sets developed for near-equilibrium conditions to the WDM
regime is conditional. At near-equilibrium densities, it appears
to be acceptable, but not at high densities. Clearly, such
transferability should not be assumed.

With these issues settled, we have found that there is
nontrivial effect of explicit T dependence in the X functional
in the specific sense of comparison with ftHF. In particular,
the LDA T -dependent exchange contribution to the total free
energy is much closer to the exact HF exchange value than
is the contribution from exchange approximated by the LDA
ground-state X functional. Although the exchange free energy
is a small portion of the total free energy, this difference carries
over into clearly significant differences in the equation of state.
Thus, the effect of explicit T dependence in X is relevant for
an accurate characterization of the Li equation of state in the
WDM regime. We suspect that this may be generally true of
WDM systems. If so, T -dependent LDA exchange may serve
as a starting point for development of more refined GGA-type
exchange free-energy functionals, analogous with the role of
LDA in the ground state.
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Phys. Rev. E 75, 056404 (2007).
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