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In the preceding paper, the structure and thermodynamics of a given quantum system was represented by
a corresponding classical system having an effective temperature, local chemical potential, and pair potential.
Here, that formal correspondence is implemented approximately for applications to two quantum systems. The
first is the electron gas (jellium) over a range of temperatures and densities. The second is an investigation of
quantum effects on shell structure for charges confined by a harmonic potential.
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I. INTRODUCTION

In a companion paper [1], a method was described that
would allow application of strong coupling classical many-
body methods to calculate properties of equilibrium quantum
systems. Within the grand ensemble for equilibrium statistical
mechanics, the thermodynamics and structure are obtained as
functions of the temperature T , the local chemical potential
μ(r) ≡ μ − φext(r), and a pair potential φ(r,r′), where φext(r)
is an external single particle potential. A grand ensemble for a
corresponding classical system is characterized by an effective
temperature Tc, an effective local chemical potential μc(r) ≡
μc − φc,ext(r), and an effective pair potential φc(r,r′). These
three classical parameters are fixed by three correspondence
conditions: equivalence of classical and quantum pressures,
densities, and pair correlation functions. An approximate
inversion of these formal definitions to obtain Tc, μc(r), and
φc(r,r′) was described within classical liquid-state theory. The
objective here is to illustrate this approach for two applications.
The first is to calculate the pair correlation function for the
electron gas (jellium), the prototypical test bed for quantum
correlations [2,3], over a wide range of temperatures and
densities. Corresponding thermodynamic properties can then
be calculated in terms of these correlation functions. The
second application is to harmonically bound charges in a
trap [4]. Specifically, the role of quantum diffraction and
exchange as a mechanism for shell formation is investigated.
While both systems have been studied extensively at both very
low (ground state) and very high (plasma) temperatures, the
relevance here is a method that applies across the intermediate
domain.

The use of effective pair potentials to include some
quantum effects in classical methods like molecular dynamics
simulation has a long history [5]. A new phenomenological
approach proposed by Perrot and Dharma-wardana (PDW) [6]
more recently goes a step further to introduce an effective
classical temperature as well. Applications of this extended
approach to a variety of systems and properties over the past
decade have met with remarkable success [7]. The present
work can be considered as a parameter-free formalization of
this earlier work, and comparisons are discussed critically here
as well.

In the next section, the approach of Ref. [1] is applied to
jellium. The effective classical pair potential is discussed and
illustrated, and then the pair correlation function is calculated
using the classical strong-coupling hypernetted chain integral

equations (HNC) [8]. The dimensionless temperature relative
to the Fermi temperature, t = T/TF , is considered in the
range 0 � t � 10. The dimensionless measure of the density
is rs = r0/aB , the mean distance between particles defined by
4πr3

0 /3 = 1/n relative to the Bohr radius aB . It is considered in
the range 1 � rs � 10. The results are compared to the above-
mentioned model of PDW and to the extension of the self-
consistent generalization of the random phase approximation,
STLS [9], to finite temperatures by Tanaka and Ichimaru [10].
Comparisons with diffusion Monte Carlo simulation data for
t = 0 [11] and recent restricted path integral Monte Carlo
simulations results for finite temperatures [12] show good
agreement.

A second application is described briefly in Sec. III, to
charges in a harmonic trap where classical strong Coulomb
correlations produce shell structure [4]. These results are of
interest for laser-cooled ions in traps, where the quantum
effects are expected to be weak, and for electrons in quantum
dots at low temperatures, where the quantum effects are strong.
In the classical case, strong Coulomb correlations are required
for shell structure—they are absent in a mean-field theory
at any value of the coupling constant. The objective here is to
explore possible new origins for shell structure due to quantum
effects. It is shown that the quantum mean-field theory, without
any Coulomb correlations, leads to shell structure due to
diffraction effects modifying the Coulomb interactions and/or
exchange effects modifying the effective trap potential.

The results are summarized and discussed in the last section.

II. APPLICATION TO UNIFORM ELECTRON GAS

The interacting electron gas is a one-component system
of charges with Coulomb interactions embedded in a uni-
form neutralizing background. The uniform electron gas, or
“jellium,” provides an important model system to discuss
correlations and quantum effects in real physical metals,
solids, and plasmas [2,3]. The classical limit is known as the
one-component plasma. There are two parts to this section.
First, the parameters βc = 1/kBTc, μc(r), and φc(r,r′) for
the effective classical system are determined approximately
from their definitions in Ref. [1] [for the uniform jellium
μc(r) → μc and φc(r,r′) → φc(|r − r′|)]. Second, the result-
ing classical system is applied to calculate the structure and
thermodynamics of jellium from the classical HNC liquid-state
theory.
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To summarize the results of Ref. [1], the classical pa-
rameters are defined as follows. The classical temperature is
obtained from the correspondence condition of equal pressures
and the classical virial equation

βc

β
= βcpc

βp
= n

βp

[
1 − n

6

∫
drh(r)r · ∇βcφc(r)

]
. (1)

The replacement of the pair correlation function g(r) by the
hole function h(r) = g(r) − 1 occurs because of the uniform
neutralizing background. The classical activity βcμc is given
by [13]

βcμc = ln
(
ncλ

3
c

) − n

∫
dr

{
c(r) + βcφc(r)

− 1

2
h(r)[h(r) − c(r)]

}
, (2)

where c(r) is the direct correlation function defined in terms
of h(r) by the Ornstein-Zernicke equation [8]

c(r) = h(r) − n

∫
dr′c(|r − r′|)h(r ′). (3)

Finally, the pair potential is obtained from the inversion of the
HNC equation

βcφc(r) = − ln[1 + h(r)] + h(r) − c(r). (4)

The classical pair correlation functions on the right sides
of these expressions have been replaced by the quantum
functions, according to the third correspondence condition.
Hence, these classical parameters are determined by quantum
input.

The practical approach is to provide the essential quantum
input by specifying h(r) in some approximation. Equations
(4) and (3) then determine βcφc(r) and c(r), and with these
known, βc/β and βcμc can be calculated. The objective here
is to propose a simple approximation for practical application.

A. Classical potential βcφc(r)

The dominant exchange effects are already present in the
ideal gas calculation described in Ref. [1]. Therefore, it is
convenient to write βcφc(r) in the form

βcφc(r) = [φc(r)](0) + �(r), (5)

where [φc(r)](0) is the ideal gas Pauli potential and �(r)
denotes the contribution to the effective potential from the
Coulomb interactions. In the classical limit �(r) → βq2/r .
Another exact limit is the weak-coupling limit for which
the direct correlation function becomes proportional to the
potential, or stated inversely,

βcφc(r) → −c(r), [βcφc(r)](0) → −c(0)(r). (6)

Thus, a possible approximation incorporating this limit is

βcφc(r) → [βcφc(r)](0) − [c(r) − c(0)(r)](w), (7)

where [c(r) − c(0)(r)](w) denotes a weak-coupling calculation
of the direct correlation functions from the Ornstein-Zernicke
equation [Eq. (3)]. For the classical OCP (Coulomb potential)
this yields the Debye-Huckel approximation to h(r). Here it
is required that this should yield its quantum counter part, the

random phase approximation (RPA) [3]. The weak-coupling
calculation from the Ornstein-Zernicke equation is then

c(r)(w) = hRPA(r) − n

∫
dr′[c(|r − r′|)](w)hRPA(r ′). (8)

This has the solution

c(r)(w) = 1

n

∫
dk

(2π )3
e−ik·r SRPA(k) − 1

SRPA(k)
. (9)

Here, SRPA(k) is the RPA static structure factor

SRPA(k) = 1 + n

∫
dreik·rhRPA(r). (10)

Finally, the modified Coulomb potential �(r) in Eq. (5)
becomes

�(r) → 1

n

∫
dk

(2π )3
e−ik·r

[
1

SRPA(k)
− 1

S(0)(k)

]
. (11)

The definition of SRPA(k) in terms of the RPA dielectric is
given in Appendix.

Several limits of �(r) = �(t,rs,r
∗) are established in

Appendix. For large r∗ = r/r0, it behaves as r∗−1

lim
r∗ �(t,rs,r

∗) → �e(t,rs)r
∗−1, (12)

where �e(t,rs) is an effective Coulomb coupling constant

�e(t,rs) = 2

βh̄ωp coth(βh̄ωp/2)
�, � ≡ βq2

r0
. (13)

Here, ωp =
√

4πnq2/m is the plasma frequency. The dimen-
sionless parameter is βh̄ωp = (4/3)(2

√
3/π2)1/3√rs/t , so for

fixed rs the high- and low-temperature limits are

�e →
{

�, βh̄ωp � 1(
4
3 rs

)1/2
, βh̄ωp � 1.

(14)

This asymptotic Coulomb form is exact and its coefficient
follows from the fact that the RPA incorporates the exact
perfect screening sum rule [14]. It is illustrated for r∗�(t,rs,r

∗)
in Fig. 1 at rs = 5 for several values of t .
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FIG. 1. (Color online) Demonstration of crossover for
r∗	(t,rs,r

∗) to Coulomb with effective coupling constant �e(t,rs)
given by Eq. (13), for rs = 5 and t = 0.5, 1, 10. Also shown are the
corresponding results for r∗	PDW(t,rs,r

∗).
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Also shown in this figure are the results from the PDW
classical potential

[βcφc(r)]PDW = [βcφc(r)](0) + �PDW(r). (15)

The Pauli potential [βcφc(r)](0) is the same as in Eq. (5), but
its correction �PDW(r) is given by the Deutsch regularized
Coulomb potential [15]

�PDW(r) = βPDW q2

r
(1 − e−r/λPDW

),
(16)

λPDW =
(

βPDWh̄2

πm

)1/2

.

Here, βPDW = 1/kBT PDW, where T PDW ≡ (T 2 + T 2
0 )1/2. The

only free parameter, T0 = T0(rs), is fit by requiring that the
classical correlation energy matches the quantum exchange
and correlation energy obtained from quantum simulation at
T = 0. The fit given in Ref. [6] is

T0 
 TF

a + b
√

rs + crs

, (17)

with a = 1.594, b = −0.3160, and c = 0.0240. It is seen that
the PDW model is quite similar to the approximation defined
here at rs = 5. Greater discrepancies occur for both larger and
smaller rs , except at higher temperatures. Further comments
on this comparison are given below.

For r∗ � 1, �(t,rs,r
∗) approaches a finite value

�(t,rs,0) = 1

n

∫
dk

(2π )3

[
1

SRPA(k)
− 1

S(0)(k)

]
. (18)

The integral converges because the static structure factors
for large k approach 1 as k−4 due to quantum effects
(cusp condition [16]). The Coulomb singularity is, therefore,
removed in the effective classical pair potential. Finally,
another limit obtained in the Appendix is that for large rs

and large t (low density, high temperature) in which case the
Kelbg potential [17] is recovered:

lim
t,rs�1

�(t,rs,r
∗) = �K (t,r∗)

= �

r∗

{
1 − exp

(
r2

0

λ2
K

r∗2

)
+√

π
r0

λK

r∗
[

1 − erf

(
r0

λK

r∗
)]}

, (19)

with λk = λ/
√

2π . The Kelbg potential is the exact weak
coupling effective classical potential determined from the
two-particle electron-electron density matrix [17]. This limit
is approached to within 10 percent at t = 10 and 1 � rs � 10.

B. Classical effective temperature, chemical potential

The approximate temperature and chemical potential equa-
tions are obtained in a similar way

βc = β(0)
c + (

βRPA
c − βRPA,(0)

c

)
. (20)

βcμc = (βcμc)(0) + (βcμc)RPA − (βcμc)RPA,(0), (21)

2 3 4 5 6

-0.03

0.00

0.03

0.06

0.09

p R
P

A
 /n

 (a
to

m
ic

 u
ni

ts
)

rs

FIG. 2. (Color online) Quantum RPA pressure pRPA at t = 0 as a
function of rs .

where β(0)
c and (βcμc)(0) denote the ideal gas results of Ref. [1],

and from Eqs. (1) and (2)

βRPA
c = n

{
1 − n

6

∫
drhRPA(r)r · ∇[βcφc(r)]RPA

}
pRPA

, (22)

(βcμc)RPA = 3

2
ln

(
βRPA

c

β

)
+ ln(nλ3)RPA

+ 1

2
n

∫
drhRPA(r){hRPA(r) + [βcφc(r)]RPA}.

(23)

The RPA results for pRPA and (nλ3)RPA are computed from the
Pade fits of Ref. [2].

A peculiarity of jellium is the possibility for the pressure
to become negative at large rs and small t , conditions for
which the equal pressures correspondence condition cannot be
imposed. For real systems, the pressure is positive as follows
from the convexity of the free energy as a function of the
volume. This convexity does not hold for jellium [13]. To be
more explicit, it is first noted that the pressure is an increasing
function of t , so its minimum value occurs at t = 0. Figure 2
shows the quantum pRPA at t = 0 as a function on rs . It is seen
that pRPA(t = 0) vanishes for rs 
 4 and becomes negative
for larger rs . Thus, for rs � 4 the pressure pRPA(t) vanishes
at some temperature t0(rs). Then from Eqs. (20) and (22), the
effective classical temperature vanishes at t0

Tc[t0(rs)] = pRPA(t0)

n
{
1 − n

6

∫
drhRPA(r)r · ∇[βcφc(r)]RPA

} = 0.

(24)

For t < t0(rs), pRPA(t) < 0. However, it is found that the
denominator of Eq. (24) remains positive. Since the classical
temperature must be positive, this indicates that the equiva-
lence condition, pcl = p, can no longer be realized. Therefore,
for jellium, this equivalence condition should be replaced by
a different condition (e.g., equivalence of internal energies).
Instead, the analysis here is restricted to t > t0(rs) to assure
positive pressure. Figure 3 shows tc = Tc/TF as a function of
t calculated from Eq. (20) for rs = 0, 1, 3, and 4. Figure 4
shows the corresponding results for μc/EF calculated from
Eq. (21).
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FIG. 3. (Color online) Classical reduced temperature Tc/TF as a
function of t for rs = 0, 1, 3, and 4.

Radial distribution function and thermodynamics

With the parameters of the effective classical system
determined approximately above, they can be used in an
accurate classical many-body method to combine the quantum
properties of these parameters with classical strong coupling
effects (e.g., molecular dynamics simulation). This is illus-
trated here by using the full HNC integral Eqs. (4) and (3)
specialized to calculate g(r) for jellium:

ln g(r) = −βcφc(r) + h(r) − c(r),
(25)

c(r) = h(r) − n

∫
dr′c(|r − r′|)h(r ′).

Of course, these equations are also those used to define
βcφc(r) so the analysis would seem to be circular. However,
the approach has been to use an approximation to the HNC
equations to determine βcφc (here the weak coupling RPA
limit) and then to “bootstrap” this information to solve the full
HNC equations for a g(r) that goes beyond the input gRPA(r) to
include classical strong coupling. One manifest improvement
obtained in this way is positivity of g(r), already noted in
Ref. [6]. In contrast, gRPA(r) becomes negative for small r at
sufficiently large rs .
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FIG. 4. (Color online) Dimensionless classical chemical potential
μc/EF as a function of t for rs = 1, 3, 5.
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FIG. 5. (Color online) Radial distribution function g(r∗) for rs =
6 at t = 0.5, 1, 4, and 8. Also shown are the results of PIMC.

The determination of g(r) from Eq. (25) is straightforward
using the method described in Ref. [18]. Note that these
equations do not use the equal-pressure condition nor the
value of βc. Hence, they do not have the restriction to
positive pressures and the associated restriction on rs . The
results are shown in Fig. 5 for the case of rs = 6 at t = 0.5, 1, 4,
and 8. Also shown are the results from recent restricted PIMC
[12]. The agreement is quite good. Figure 6 shows the same
conditions as Fig. 5 for comparison with the classical map
of PDW. The agreement is remarkable given that the forms
and origins of the effective classical parameters is so different.
This agreement between the predictions here, PIMC, and PDW
extends to other state conditions as well, except for small t and
very large rs .

Other theoretical models for g(r) are based on the same
dielectric formalism of the RPA but including “local field”
corrections. One of the earliest was the self-consistent STLS
model [9] at T = 0, later generalized to finite-temperature
T by Tanaka and Ichimaru (TI) [10]. The discrepancies (not
shown) are largest at lower t and most noticeable at small
distances where TI becomes negative. The RPA results are
significantly more negative in this range. Both RPA and its
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 PDW[t=0.5]
 PDW[t=1]
 PDW[t=4]
 PDW[t=8]

rs=6

FIG. 6. (Color online) Radial distribution function g(r∗) for rs =
6 at t = 0.5, 1, 4, and 8. Also shown are the results of PDW.
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FIG. 7. (Color online) Radial distribution function g(r∗) for
t = 0 at rs = 1, 5, and 10. Also shown are results from PIMC and
diffusion Monte Carlo. The PIMC and diffusion Monte Carlo plots
are indistinguishable.

improved TI overestimate the size of the electron correlation
hole [3] at larger values for rs .

The PDW g(r) is in good agreement with diffusion MC
data at t = 0 [6] for rs = 1, 5, and 10. Although the single-
parameter T0 is fixed by fitting the t = 0 exchange and
correlation energy from MC data, it is, nevertheless, impressive
that this provides good results for g(r) across a range both
rs and r . Figure 7 shows a comparison of the results of the
present analysis with the same T = 0 diffusion MC data [11]
and also the recent PIMC for T = 0.065 at rs = 1 and 10.
The good agreement is quite surprising since there is no MC
parametrization in the present analysis and all quantum input
is via the RPA and ideal gas exchange. However, it is recalled
that the RPA preserves the exact quantum mechanics of the
perfect-screening sum rule that governs the crossover to exact
large r∗ Coulomb limit. This is discussed further in the last
section.

C. Thermodynamics

The predicted pressure, pc, for the effective classical system
is obtained from

βcpc

nc

= 1 − 1

6
n

∫
drh(r)r · ∇βcφc(r) (26)

and the effective temperature Eq. (22). Figure 8 shows this
as a function of t for rs = 1, 3, and 5. Also shown are the
corresponding results for modified RPA (using the fits from
Ref. [19]).

III. APPLICATION TO CHARGES IN A HARMONIC TRAP

As a final application here, consider N charges localized
within a harmonic trap. The Hamiltonian is

H − μN =
N∑

i=1

p2
i

2m
+ 1

2

N∑
i �=j

q2

|ri − rj | −
∫

drμ(r)̂n(r),

(27)
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FIG. 8. (Color online) Dimensionless classical pressure pc/(nεF )
as a function of t for rs = 1, 3, and 5. Also shown are the correspond-
ing modified RPA results.

with the local chemical potential given explicitly as

μ(r) = μ − 1
2mω2r2. (28)

The constant μ determines the average number of charges N .
As a consequence of the harmonic potential, the equilibrium
average density profile for the charges is nonuniform and
depend only on the radial coordinate

n(r) = 
−1
∞∑

N=0

N

∫
dr2...drN 〈r1...rN |e−β(H−μN)|r1...rN 〉,

(29)

where 〈r1...rN |X|r1...rN 〉 is the N particle diagonal antisym-
metric matrix element in coordinate representation, and 
 is
the grand potential. The density profile in the classical limit
has been studied in detail, via simulation and theory [4].
In that case, the dimensionless form depends on rs and t

only through the Coulomb-coupling constant � = βq2/r0 =
(4/3)(2/3π2)1/3rs/t . For sufficiently large �, the formation
of shell structure is observed in n(r). The objective now is
to exploit this effective classical description to explore the
effects of quantum diffraction and exchange via the proposed
effective classical system. Only a preliminary investigation of
new mechanisms for shell structure is described here, with a
more complete discussion to be given elsewhere.

The basis for the study is the HNC description for the
inhomogeneous case, Eq. (37) of Ref. [1]:

ln
[
n(r)λ3

c

] = βcμc(r) +
∫

dr′c(2)(r,r′ | n)n(r′). (30)

The classical studies of Ref. [4] made a further approximation
to this expression, replacing the correlations for the inhomo-
geneous system c(2)(r,r′′ | n) by those for a corresponding
uniform one component plasmas (OCP or classical jellium),
c(2)(r,r′′ | n) → c(|r − r′′|,n). The results based on this ap-
proximation are found to be quite accurate except at very strong
coupling. A partial theoretical basis has been given [20]. This
approximation will be made here as well.
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It is convenient to rewrite Eq. (30) in a Boltzmann form
with an effective potential U (r) defined by

n(r) = N
e−βcU (r)∫
dr′e−βcU (r′) , (31)

so that Eq. (30) becomes

βcU (r) = −βc[μc(r) − μc] − N∫
dr′e−βcU (r′)

×
∫

dr′e−βcU (r′)c(|r − r′|,n). (32)

Practical application of this result requires specification of the
direct correlation function c(r,n) for jellium and the classical
local chemical potential μc(r) − μc. The former is determined
from the equivalent classical calculation described in the
previous section. The latter is the effective classical trap po-
tential corresponding to the actual quantum harmonic trap. Its
approximate determination is described in the next subsection.

The total number of particles appears explicitly. To intro-
duce the density, it is necessary to assign a volume for the
system. This can be defined as the volume of a sphere with
radius R0 corresponding to a particle at the greatest distance
from the center. At equilibrium the average density can be
taken to be spherically symmetric so that the total average
force on that particle is

Nq2

R2
0

− mω2R0 = 0, ⇒ R3
0 = N

q2

mω2
. (33)

This gives the average density to be

n ≡ 3N

4πR3
0

= 3mω2

4πq2
. (34)

In this way, the trap parameter mω2/q2 is specified in terms
of the density.

A. Approximate form for μc(r)

Without quantum effects, μc − μc(r) is just the harmonic
potential of Eq. (28). Modifications for the effective classical
form occur due to both diffraction and exchange effects. The
exchange effects are dominated by those for the ideal Fermi
gas in a harmonic trap. As a first approximation here, μc(r) is
replaced by that for an ideal gas of N Fermions in a harmonic
trap. This is the inhomogeneous ideal gas considered in Sec. IV
of Ref. [1]. The local chemical potential is, therefore, obtained
from Eq. (30) specialized to an ideal gas:

(βcμc)(0)(r) = ln
[
n(0)(r)λ3

c

] −
∫

dr′c(0)(|r − r′|)n(0)(r′).

(35)

Then the effective potential U (r) becomes

βcU (r) = − ln
[
n(0)(r)λ3

c

] −
∫

dr′c(0)(|r − r′|)n(0)(r′) + βcμc

−N

∫
dr′ e−βcU (r′)∫

dr′′e−βcU (r′′) c(|r − r′|,n). (36)

The direct correlation function for the uniform ideal Fermi gas,
c(0)(r,n), is known from the results of Ref. [1]. Furthermore,

1 2 3 4
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6

Δβ
μ(

r*
)/Γ

r*

 Harmonic
 t=0.5
 t=10

FIG. 9. (Color online) Effective classical trap potential
	βcμc(r∗) ≡ [(βcμc)(0)(0) − (βcμc)(0)(r∗)]/� as a function of r∗ for
t = 0.5, 10. Also shown is the harmonic potential.

n(0)(r) has an explicit form in the local density approximation
of Appendix B, Ref. [1]:

n(0)(r) = 2

λ3
f3/2

[
e(βμ(0)− 1

2 �r∗2)
]
, (37)

where � is the same coupling constant as in Eq. (13). The
Fermi function f3/2(x) is given by

f3/2(z) = 4√
π

∫ ∞

0
dxx2(z−1ex2 + 1)−1. (38)

The constant chemical potential μ(0) is determined in terms of
t,rs by the condition that the average number of particles is N :

N = 2

(
r0

λ

)3 ∫
dr∗f3/2

[
eβ(μ(0)− 1

2 �r∗2)
]
. (39)

Hence, n(0)(r)r3
0 is also given by Eq. (37) in terms of

t,rs . Figure 9 shows �βcμc(r) ≡ (βcμc)(0)(0) − (βcμc)(0)(r)
obtained in this way for rs = 5 and t = 0.5 and 10. The
classical trap potential is harmonic at large r , but there are
significant deviations at the lower temperatures for 2 � r � 3.

B. Quantum effects on the mean field density profile

The density profile can now be determined from Eq. (32),
where the effective potential of Eq. (35) becomes

βcU (r) = βcφc,ext(r) − N

∫
dr′ e−βcU (r′)∫

dr′′e−βcU (r′′) c(|r − r′|,n)

(40)

[the potential βcU (r) has been shifted by a constant to simplify
the result]. The effective classical external trap potential is

βcφc,ext(r) = − ln[n(0)(r)λ3] +
∫

dr′c(0)(|r − r′|)n(0)(r′).

(41)

Quantum effects result from the deviation of βcφc,ext(r) from
the given harmonic potential and the deviation of c(r,n) from
its classical OCP form. In this section these two sources
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2 4
0

3

6

r*

 Coulomb

 -c(r*)
 Kelbg [t=0.1]

Γ=3

FIG. 10. (Color online) Comparison of −c(r∗) and �K (r∗) at t =
0.1, 0.27 both corresponding to � = 3. Also shown is the Coulomb
limit βq2/r .

are isolated to explore the possibility of new origins of
shell structure. To do so only the mean field limits of
Eqs. (40) and (41) are explored here. The mean-field limit is
defined by c(r,n) → −βcφc(r) and c(0)(r,n) → −[βcφc(r)](0),
so Eqs. (40) and (41) become

βcU (r) → βcφc,ext(r) + N

∫
dr′ e−βcU (r′)∫

dr′e−βcU (r′)

×{[βcφc(|r − r′|)](0) + �(|r − r′|)}, (42)

βcφc,ext(r) → − ln[n(0)(r)λ3]

−
∫

dr′[βcφc(|r − r′|)](0)n(0)(r′). (43)

The classical mean field limit corresponds to [βcφc(r)](0) = 0
and �(r) = βq2/r . There is no shell structure in this limit,
even at very strong coupling. Instead, shell structure arises
due to sufficiently large Coulomb coupling, such that c(r,n)
differs from −βq2/r inside the correlation length r0, and the
Coulomb singularity at r = 0 is removed. This is shown in
Fig. 10 for � = 3.

1. Diffraction effects

To explore the effects of diffraction only in Eqs. (42)
and (43), the contributions from exchange are set to zero,
i.e., [βcφc(r)](0) → 0, βcφc,ext(r) → mω2r2/2, and �(r) →
�K (r) = Kelbg, Eq. (19). Then Eq. (42) becomes

βcU (r) → βc

1

2
mω2r2 + N

∫
dr′ e−βcU (r′)∫

dr′e−βcU (r′) β�K (|r − r′|).
(44)

This has the same form as the classical limit, except with
the Coulomb potential replaced by the Kelbg form. The latter
differs from Coulomb at short distances, for which it is finite at
r = 0. Thus, diffraction (without Coulomb correlations) leads
to the same qualitative physical effects as classical Coulomb
correlations. This is illustrated in Fig. 10, where the Kelbg
potential is evaluated at rs = 0.042, t = 0.1 corresponding to
� = 3. For this reason it can be expected that the quantum

0 2 4 6
0.0

0.1

0.2

0.3

n(
r*

)

r*

 Coulomb
 t=0.1
 t=0.5
 t=1

Γ=3

FIG. 11. (Color online) Diffraction mean-field approximate den-
sity profile for � = 3 and t = 0.1, 0.5, and 1.

diffraction mean field approximation can give rise to shell
structure not present in the corresponding classical case. This
is shown in Fig. 11 for � = 3 and t = 0.1, 0.5, and 1. A
clear shell formation occurs at the two lowest temperatures,
for which the diffraction regularization of �K (0) is greatest.

2. Exchange effects

Now return to the mean-field form of Eq. (42) and neglect
all diffraction effects to study the effects of exchange only

βcU (r) → βcφc,ext(r) + N

∫
dr′ e−βcU (r′)∫

dr′e−βcU (r′)

×{[βcφc(|r − r′|)](0) + βq2|r − r′|−1}. (45)

This differs from the classical form by the addition of the
exchange Pauli potential to the Coulomb potential and by the
modifications of the harmonic trap form in φc,ext(r), Fig. 9. If
the latter are neglected, it is expected that no shell structure
will appear, since the Pauli plus Coulomb potential is still
singular at short range and behaves as the classical mean-field

0 2 4 6 8
0.0

0.1

0.2

0.3

0.4

n(
r*

)

r*

 t=0.5
 t=1
 t=2
 t=5
 t=10

rs=5

FIG. 12. (Color online) Exchange mean-field approximate den-
sity profile for rs = 5 and t = 0.5, 1, 2, 5, and 10.
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limit. The quantitative changes in φc,ext(r) shown in Fig. 9 are
modest for t � 2, but there is a qualitative change in shape for
2 < r∗ < 3 at lower temperatures. The corresponding density
profiles from Eq. (45) are shown in Fig. 12 at rs = 5. Shell
formation in this range is clearly seen for t = 1 and 0.5.

IV. DISCUSSION

There are powerful many-body methods within classical
equilibrium statistical mechanics that do not apply directly to
quantum systems. Examples are molecular dynamics simula-
tion and liquid-state theory. To bridge this gap, a method to
define an equivalent classical system for the thermodynamics
and structure of a given quantum system has been developed
[1]. The objective here has been to demonstrate and test that
approach with applications to two quite different quantum
systems, the bulk uniform electron gas and charges confined
by a harmonic trap. In the first case, a simple representation for
the pair potential incorporating both ideal gas exchange and
RPA correlations was used within a strong-coupling classical
theory—the HNC. Essential properties such as positivity are
assured by the classical formalism, in contrast to early quantum
theories with mean-field corrections to RPA. Good agreement
with diffusion Monte Carlo simulation over a range of densities
at t = 0. Initial comparisons with recent results at finite t [12]
also show good agreement. A more extensive comparison will
be discussed elsewhere.

The good agreement at t = 0 is more than might be ex-
pected from the RPA input for the classical pair potential. The
PDW model also has similar agreement but is parameterized
by exchange correlation simulation data at t = 0, so agreement
is less surprising. One possible explanation for the results here
is the preservation of the exact perfect screening sum rule.
This assures that the effective potential in the approximation
used here has the exact Coulomb tail for large r , Eqs. (12) and
(13). Elsewhere, a simple analytic model is constructed which
incorporates this asymptotic property [21]. Its comparison with
Monte Carlo simulation data for g(r) has accuracy comparable
to that of the results presented here.

The second application here was to charges confined by
a harmonic trap. This is an interesting test system for strong
correlations since classically this is reflected in the formation
of radial shell structure. Here, only the mean-field theory
(no Coulomb correlations) was considered as a means to
explore the possibility of purely quantum mechanisms for shell
structure. It was found that diffraction effects, which regularize
the Coulomb potential at r = 0, mimic classical Coulomb
correlations and do lead to shell structure. In addition, in the
absence of both diffraction effects and Coulomb correlations,
the changes in the effective confining potential due to exchange
effects also can lead to shell structure. Elsewhere, a detailed
application of this effective classical system will be described
with all mechanisms for shell structure active.
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APPENDIX: RPA FOR THE UNIFORM ELECTRON GAS

In this Appendix, the RPA is defined and it is shown that
the modified Coulomb potential reduces to the Kelbg potential
for weak coupling and weak degeneracy. More generally, the
exact large r dependence of this potential is evaluated.

The static structure factor is related to the Fourier transform
of the hole function by

S(k) = 1 + n

∫
dreik·rh(r). (A1)

As a density fluctuation, it is also related to the dynamic
response function or complex dielectric function ε(ω,k) [3]:

S(k) = − h̄

π

1

Ṽ (k)

∫ ∞

−∞
dω(1 − e−βh̄ω)−1 Im ε−1(k,ω), (A2)

where Ṽ (k) = 4πq2/k2 is the Fourier transformed Coulomb
potential. In the random phase approximation, the dielectric
function is

εRPA(k,ω) = 1 − Ṽ (k)χ (0)(ω,k), (A3)

and χ (0) (k,ω) is the response function for the ideal Fermi gas

χ (0)(k,ω) ≡ (2s + 1)

n
lim

η→0+

∫
dk1

(2π )3

n(ε|k−k1|) − n(εk1 )

h̄ω + iη + ek1 − e|k−k1|
,

ek = h̄2k2

2m
. (A4)

1. Kelbg limit

For weak coupling, ε−1(k,ω) can be expanded to quadratic
order in Ṽ (k) to get

S(k) → S(0)(k) − 2
h̄

π
Ṽ (k)

∫ ∞

−∞
dω(1 − e−βh̄ω)−1

× [Im χ (0)(ω,k)][Re χ (0)(ω,k)]. (A5)

The real and imaginary parts of χ (0)(ω,k) are

Re χ (0)(k,ω) = − (2s + 1)

nλ3
β

1

4
√

πκ
P

∫ ∞

−∞
dx ln(1 + ze−x2

)

×
(

1

ν + κ − x
− 1

ν − κ − x

)
, (A6)

Im χ (0)(k,ω) = (2s + 1)

nλ3
β

√
π

4κ
ln

(
1 + ze−(ν+κ)2

1 + ze−(ν−κ)2

)
. (A7)

The dimensionless variables κ and ν are

κ= kλ

4
√

π
, ν = βh̄ω

4κ
, λ =

(
2πβh̄2

m

)1/2

. (A8)

Next, consider the additional limit of weak degeneracy. This
is implemented by an expansion in z:

S(0)(k) → 1 + O(z), nλ3 → (2s + 1)z, (A9)

Re χ (0)(k,ω) → β

4κ
[g(ν + κ) − g(ν − κ)] (A10)

Im χ (0)(k,ω) → β

√
π

4κ
[e−(ν+κ)2 − e−(ν−κ)2

], (A11)
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with

g(y) = − 1√
π
P

∫ ∞

−∞
dxe−x2 1

y − x
= −2e−ν2

∫ ν

0
dxex2

.

(A12)

The RPA structure factor becomes

S(k) → 1 + βṼ (k)
1

2κ
√

π

∫ ∞

−∞
dνe−(ν−κ)2

× [g(ν + κ) − g(ν − κ)]

= 1 + βṼ (k)
1

2κ
√

2
g(

√
2κ). (A13)

The modified Coulomb potential at weak coupling and
weak degeneracy becomes

�(r) = 1

n

∫
dk

(2π )3
e−ik·r

[
1

SRPA(k)
− 1

S(0)(k)

]
→ −1

n

∫
dk

(2π )3
e−ik·rβṼ (k)

1

2κ
√

2
g(

√
2κ) = βVK (r).

(A14)

This is the Kelbg potential of Eq. (19).

2. Large r limit

The large r behavior of �(r) is governed by the small k

behavior of SRPA(k):

SRPA(k) → h̄k2

2mωp

coth

(
βh̄ωp

2

)
. (A15)

This is the exact perfect screening behavior [14], which is
preserved by the RPA. Since S(0)(0) is finite at finite t and
vanishes as k for t = 0,

�(r) = 1

n

∫
dk

(2π )3
e−ik·r

[
1

SRPA(k)
− 1

S(0)(k)

]
→ mωp

2πnh̄ coth
( βh̄ωp

2

) ∫
dk

(2π )3
e−ik·r 4π

k2

= �e(t,rs)r
∗−1, �e(t,rs) ≡ 2

βh̄ωp coth
( βh̄ωp

2

)�,

(A16)

where � = βq2/r0 is the classical Coulomb coupling constant.
This is the result of Eq. (13).
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