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Importance of finite-temperature exchange correlation for warm dense matter calculations
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The effects of an explicit temperature dependence in the exchange correlation (XC) free-energy functional
upon calculated properties of matter in the warm dense regime are investigated. The comparison is between
the Karasiev-Sjostrom-Dufty-Trickey (KSDT) finite-temperature local-density approximation (TLDA) XC
functional [Karasiev et al., Phys. Rev. Lett. 112, 076403 (2014)] parametrized from restricted path-integral
Monte Carlo data on the homogeneous electron gas (HEG) and the conventional Monte Carlo parametrization
ground-state LDA XC [Perdew-Zunger (PZ)] functional evaluated with T'-dependent densities. Both Kohn-Sham
(KS) and orbital-free density-functional theories are used, depending upon computational resource demands.
Compared to the PZ functional, the KSDT functional generally lowers the dc electrical conductivity of
low-density Al, yielding improved agreement with experiment. The greatest lowering is about 15% for T = 15
kK. Correspondingly, the KS band structure of low-density fcc Al from the KSDT functional exhibits a clear
increase in interband separation above the Fermi level compared to the PZ bands. In some density-temperature
regimes, the deuterium equations of state obtained from the two XC functionals exhibit pressure differences as
large as 4% and a 6% range of differences. However, the hydrogen principal Hugoniot is insensitive to the explicit
XC T dependence because of cancellation between the energy and pressure-volume work difference terms in the
Rankine-Hugoniot equation. Finally, the temperature at which the HEG becomes unstable is 7 > 7200 K for the

T-dependent XC, a result that the ground-state XC underestimates by about 1000 K.
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I. INTRODUCTION

Warm dense matter (WDM), characterized by elevated
temperatures and wide compression ranges, plays an important
role in planetary-interior physics and materials under extreme
conditions, including the path to inertial confinement fusion,
heavy ion beam experiments, and Z-pinch compression exper-
iments [1-6]. Development of computational and theoretical
methods to treat WDM applications is important both for
interpreting experimental results and for gaining insight about
thermodynamic regions that are difficult to access experimen-
tally.

Current practice is to treat the WDM electronic degrees
of freedom via finite-temperature density-functional theory
(DFT) [7-9]. That necessitates use of an approximate exchange
correlation (XC) free-energy density functional F.[n(T),T].
A common approximation [10-12] is to use a ground-state
XC functional evaluated with the finite-7 density, that is,
Fxeln(T),T] = E.[n(T)]. This is the ground-state approxi-
mation (GSA). Reference [13] presented a rationale for why
the GSA might be expected to work well. The essence of
that argument is that the GSA automatically fulfills certain
constraints. The present study gives clear demonstrations
of GSA deficiencies for specific systems in certain ther-
modynamic conditions and physical properties. The study
involves systematic investigations of three essential questions.
What properties are affected by the explicit 7 dependence of
Fxe, over what thermodynamic regime does the dependence
manifest itself, and what are the magnitudes of the effects?

For compactness in what follows we use the phrase “XC
thermal effects” as a shortened expression for “effects of
the explicit T dependence in the XC free energy.” Thus,
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XC thermal effects are those not included in the GSA. As
orientation to the issue, Fig. 1 shows the relative importance
of XC thermal effects as a function of ry [the Wigner-
Seitz radius ry = (3/47n)!/?] and T as logof| fic(rs,T) —
exc(r )|/ fs(rs, T)| + |lexc(rs)|]} for the homogeneous electron
gas (HEG). Here fy. is the XC free energy per particle
[14], ey is the zero-T XC energy per particle [15], and
fs is the noninteracting free energy per particle [16]. Note
that this ratio is the difference of energies per particle
for two small quantities divided by the energy per particle
for what, in most cases, is a larger quantity. In particular,
the denominator of the ratio always is greater than or equal
to the magnitude of the free energy per particle (calculated with
the zero-T exchange correlation): |fs| + |exc| = | fs + excl-
The ratio therefore generally underestimates the significance
of XC thermal effects.

The orange and yellow regions of Fig. I indicate the (ry,7")
domain wherein one may expect the 7' dependence of XC
to be important for accurate predictions. The nearly diagonal
orange-yellow band is particularly useful for insight. First,
it shows that finite-7 XC may be expected to be important
at low T for large ry values. Second, that 7' dependence in
XC dwindles in importance in the large-T limit. Thus the
relative importance ratio has a maximum at some intermediate
temperature that depends on rs. In terms of the reduced
temperature t = T/T¢ [Tr = (1/2)(97/4)*/ 3rs’ 2 the Fermi
temperature], the near diagonal orange-yellow band in Fig. 1
is rendered in the (rg,7) plane as a roughly horizontal band
with a lower border starting at ¢ ~ 0.3 for r;, = 0.1 and rising
to t &~ 1 for r¢ = 100. That band is narrowest at low r, and
broadens by over a factor of 100 at r, = 100.

This plain analysis of a fundamentally important many-
fermion system motivates investigation of XC thermal effects
upon the calculated properties of real inhomogeneous systems.
There have been a few previous studies [ 17-22], but all except
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FIG. 1. Mapinthe (r;,T) plane that shows the relative importance
of the explicit 7 dependence in the exchange correlation free-
energy functional for the HEG measured as logyf| fc(rs,T) —
/1 f:r D] + lexe )N},

one used T-dependent XC functionals [23-26] constructed
from various approximations to the underlying many-fermion
theory, not from parametrization to path-integral Monte Carlo
(PIMC) data. They also involved other approximations, e.g.,
ensemble averaging of core-hole pseudopotentials in Ref. [17],
average-atom and related schemes [18,19], and Car-Parrinello
molecular dynamics (MD) in Ref. [20]. For equations of state
(EOSs), Hugoniot shock compression curves, and conduc-
tivities, Refs. [17-19] predicted significant XC temperature
effects, while Ref. [20] found only small differences for
the electrical resistivity of aluminum. Danel ef al. [22] find
consistent lowering of pressures from thermal XC effects
and small effects on the deuterium Hugoniot. The common
limitation of all those studies was the uncontrolled nature of
the local-density approximation (LDA) XC functionals they
used. Reference [21] did use the modern Karasiev-Sjostrom-
Dufty-Trickey (KSDT) finite-temperature local-density ap-
proximation (TLDA)[14] for F%. but showed results only for
the equation of state of deuterium at relatively high material
density (small rs) and concluded that the fractional pressure
shifts relative to ground-state LDA were small, though not of
one sign.

In contrast, the present work provides an assessment of
XC thermal effects on the basis of the KSDT functional [14]
for several properties in diverse systems and state conditions.
The KSDT functional was parametrized solely to quantum
Monte Carlo (QMC) plus restricted path-integral Monte Carlo
(RPIMC) simulation data for the HEG [27,28] and rigorous
limiting behaviors. The KSDT functional therefore is the
consistent counterpart to the widely used Perdew-Zunger
(PZ) [15] LDA functional, which is a parametrization of
ground-state HEG QMC data. Lack of consistency between the
PZ parametrization and some earlier finite-7 local spin-density
approximations was noted explicitly as a problem in Ref. [20].

The next section gives details about the KSDT finite-7
and PZ XC functionals along with the basics of the method-
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ology employed, including monitoring of entropy positivity.
Section IIT A presents Kubo-Greenwood conductivity cal-
culations on aluminum for those two functionals, as well
as the KS band structures of fcc aluminum at comparable
densities and temperatures. Sections III B and III C provide
the corresponding KSDT vs PZ comparison for the deuterium
equation of state and for the liquid hydrogen Hugoniot.
Section III D gives a brief study of the equilibrium properties
of the electron gas (both HEG and with a point charge
compensating background) at finite 7. A summary is in
Sec. IV.

II. METHODS

A. Exchange correlation free-energy functional

To reiterate, the KSDT finite-7 LDA XC free-energy
functional [14] is a first-principles parametrization of RPIMC
simulation data for the finite-7 HEG [27] and recent zero-T
QMC HEG data [28]. The KSDT functional also has proper
asymptotics and is free of unphysical roughness. Additionally,
it fits the recent data from Schoof et al. [29] well. For
the spin-unpolarized XC free energy per particle, the KSDT
functional has the form

1 a(t) + bu()r” + cult)r
s 14+dyOr? +enOre

The functions a(t) and b,(t) — e, (¢) are tabulated in Ref. [14].
Most calculations require evaluation of the XC free energy
Freln, Tl = f drn(r) f(rs(r),t(r)) and the corresponding
functional derivative. Evaluation of properties that involve the
internal energy (e.g., Hugoniot curves and heat capacities) re-
quires the XC internal energy per particle as well. It follows via
the standard thermodynamic relation Sy, = —9Fx./dT |y.v as

ey

):]c(rsvt) = -

0f e (Ts,1)
ot ’

s

Exe(rsst) = fee(rs,t) —t (2)
so the corresponding XC internal energy is &[n,T]=
f drn(r)ey (r(r),?(r)). Both Egs. (1) and (2) are implemented
in our PROFESS @ QUANTUM-ESPRESSO interface [30-34]. (The
KSDT functional also was implemented in LIBXC [35] re-
cently.) Also, as noted above, the comparison ground-state

XC functional evaluated with T-dependent densities is the
well-known PZ LDA [15].

B. Computational details

Both the KSDT and PZ functionals were used in ab initio
molecular dynamics (AIMD) simulations. We used two forms
of AIMD, with Kohn-Sham (KS) DFT forces and with orbital-
free DFT (OFDFT) forces. For OFDFT, the noninteracting
free-energy functional F; we used was the recently developed
VTB4F approximation [36] in the case of the deuterium
equation of state and a semiempirical tunable functional [37]
for Al at low material density.

The KS calculations used standard projector augmented
wave (PAW) pseudopotential data sets [38] (three electrons in
the valence for the Al atom) and PAWs transferable to high
compressions [34,39,40], all generated with the ground-state
LDA XC. For calculations with PROFESS @Q-ESPRESSO, that

063207-2



IMPORTANCE OF FINITE-TEMPERATURE EXCHANGE ...

LDA XC was PZ [15], while for those done with ABINIT
(see below) it was the Perdew-Wang [41] XC. For the
purposes of this study the difference in behavior between those
two functionals is negligible [39]. The PAW data sets were
generated at T = 0 K. At the highest temperatures involved,
thermal depopulation of the core levels treated by the PAWs
is minuscule. To illustrate, the highest LDA KS eigenvalue
among the frozen atomic Al core states is about —70 eV.
At T =30 kK (the highest 7" of our Al calculations), the
Fermi-Dirac occupation of that level depopulates by about
10~'2. The underlying assumption (and common practice in
WDM studies) therefore is that these PAW data sets are
transferable to various thermodynamic conditions (i.e., the
sets describe an effective core-valence interaction with valence
electrons in various states). Therefore, one assumes validity for
that core-valence interaction at finite 7 as well. Observe that
use of the T-dependent KSDT XC functional in subsequent
calculations does not introduce an inconsistency because the
KSDT functional reduces de facto to the PZ functional in the
zero-T limit at which the PAW sets were generated.

Local pseudopotentials (LPPs) [34,40,42,43] developed for
OFDFT and also transferable to high compressions were used
in the OFDFT calculations. For hydrogen and deuterium,
the LPP only regularizes the bare Coulomb electron-nuclear
interaction singularity, hence does not pose any possible
transferability limitations for high T such as those for systems
with core electrons, as just discussed.

The plane-wave energy cutoff was 500 eV for Al and
1000 eV for hydrogen and deuterium. Further pertinent details
are in Sec. III B.

For conductivities, we did KS AIMD simulations for 7 = 5,
10, and in some cases for 15 kK with I"-point-only sampling
of the Brillouin zone (BZ), the PZ XC functional, and the
PAW data set. At elevated temperatures, T = 15, 20, and 30
kK, and the low material densities of primary interest (see
below), such KS AIMD calculations proved to be unaffordable.
In those circumstances, we used AIMD driven by OFDFT
forces from a semiempirical F; parametrized (tuned) to
extrapolate KS pressure behavior into the low-material-density
region. The reference for parametrization was KS pressure
data for fcc Al at T = 8 kK and material densities 0.6 <
pal < 2 g/cm’. Procedural details will be given elsewhere
[37]. The essential point here is that the AIMD generated
a sequence of ionic configurations from which a sample
set was selected (so-called snapshotting) for use in standard
Kubo-Greenwood calculations [44,45]. The OFDFT AIMD
was performed using an LDA model LPP [42,43], again with
the PROFESS @ Q-ESPRESSO interface [30,31]. Depending on the
particular material density, the AIMD was done with 16 or 32
atoms in the simulation cell such that the finite-system-size
effects were small [11]. Conductivities were calculated as
averages over two to ten well-separated AIMD snapshots
using a 2 x 2 x 2 sampling of the BZ. The calculations used
the PAW formalism and were done with a locally modified
version of ABINIT [46—48], which included the KSDT XC free-
energy functional. We used a three-electron PAW generated as
prescribed in Ref. [38].

To gain insight and illustrate the origin of the XC-dependent
differences in the Al dc conductivity results, a series of KS
band-structure calculations was done with the same PAW data
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set for fcc Al with density 0.2 g/cm® and T =5, 10, and
20 kK. Those include 16, 28, and 80 bands respectively. Those
calculations were highly converged for the fcc primitive unit
cell with a 12 x 12 x 12 Monkhorst-Pack k grid [49].

The hydrogen Hugoniot was studied with KS AIMD forces
upto 7T < 30kK, with 64 atoms in the simulationcelland a3 x
3 x 3 Monkhorst-Pack k grid [49]. Because of computational
demand issues, for 7 > 30 kK, the KS AIMD calculations
used the Baldereschi mean value BZ point [50]. Finally, the
various HEG stability and electron heat capacity calculations
were performed with static background (or lattice) using KS
and OFDFT.

C. Validation of approximate functionals for entropy positivity

Previously, we addressed [40] positivity of the entropy
in OFDFT for a few generalized gradient approximation
(GGA) noninteracting free-energy functionals FOOA. The
entropy density in some cases was contaminated by local
negative contributions. Such contamination typically leads to
a small-magnitude contribution to the free energy compared to
the total 7'Ss value. More critically, the global entropy value
in all calculations was positive, consistent with the positivity
constraint being on the entropy, not on the entropy density.

In the present work we monitored the sign of the total
entropic contribution. For the orbital-free case, that consists of
the noninteracting component

dF[n,T]

Sn,T1=— 3T

3)

N,V

and the XC component (defined as a difference between the
entropies of the interacting and noninteracting systems Sy, =
S-3S5)

_afxc[an]

Sxeln, T] = 3T

N,V

1
7/drn(l')[e;fc(i’s»l)— ;c("s’t)]' )

In our experience, the total entropy is always positive.

For the KSDT XC free-energy parametrization in Eq. (1),
recently it was found [13] that the HEG total entropy becomes
negative at very large ry values and small temperatures
(approximately ry > 10 and ¢ < 0.1). Practically, that regime
is irrelevant to real systems. Analysis of the corresponding
entropic contribution to the free-energy confirms that. Figure 2
shows that for r; = 20 bohr the negative entropic contribution
has a maximum amplitude of order 0.0001 hartree per electron.
This error is negligible, since it is at or below the typical
accuracy of finite-temperature Kohn-Sham and orbital-free
codes. It is also negligibly small in comparison to the total free
energy or total internal energy. The situation is quite similar for
other large ry. The violation is inconsequential, hence seems to
be primarily of an aesthetic character. After-the-fact validation
of the thermal Kohn-Sham and orbital-free calculations in
combination with the KSDT XC free-energy parametrization
(1) show that the total entropy is positive for all materials and
all WDM conditions probed in the present work.
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FIG. 2. Total free-energy, internal energy, internal XC energy,
and entropic component (per particle) magnitudes for the spin-
unpolarized HEG for ry = 20 bohr calculated with the KSDT XC
free-energy parametrization [14].

III. RESULTS

A. Aluminum conductivity and band structure

Experimental study of the electrical conductivity of warm
dense Al was reported in Ref. [51]. Theoretical treatment via
AIMD and the Kubo-Greenwood formula [44,45] is found
in Refs. [10,11,20]. That latter study found the influence
of the finite-7 XC functional on the dc electrical resistivity
(the inverse of electrical conductivity) to be small at material
densities pa; = 1.0 and 1.4 g/cm® (r; = 2.89 and 2.58 bohr,
respectively, assuming the usual three free electrons) and
T =5-20 kK. The earlier studies [10,11] found that dc
conductivities depend weakly upon T in the range 630 kK for
material densities between roughly 0.5 and 2.0 g/cm?. Since
the total T dependence in general is dominated by the nonin-
teracting free-energy contribution and the XC contribution is
comparatively small in magnitude (recall discussion of Fig. 1),
those findings mean that for this density range XC thermal
effects should be small as well.

However, the results of Refs. [10,11] also suggest that
XC thermal effects might be noticeable at low material
densities (between 0.025 and 0.3 g/cm?). In that region, the dc
conductivity has a strong 7' dependence. Figure 1 also suggests
that XC thermal effects should be important at such low
material densities (large r) for temperatures between about 10
and 5S00kK. (At T = 15 kK the reduced temperatureis t ~ 1.0
and 0.6 for pa; = 0.1 and 0.2 g/cm?, respectively.) These
considerations motivated our AIMD calculations of the dc
conductivities for three densities in that range, pa; = 0.1, 0.2,
and 0.3 g/cm3 (rs = 6.22,4.94, and 4.21 bohr, respectively).
(Note that the foregoing r; values are calculated with the
conventional total number of valence electrons, 3, for Al.
However, that could underestimate an effective free electron ry
and thereby diminish the validity of correlation between XC
thermal effects on a particular property, e.g., conductivity, and
Fig. 1. Insight from that figure depends to some extent on how
rs for a physical system is calculated.)
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The average of the Kubo-Greenwood optical conductivity
over a number of snapshots or configurations Ncongg as a
function of frequency w is given in atomic units by

Nconﬁg

D) wiow(@; (R}, )
k

config =1

1
o(w) =

with

yy Mo 3
ok(w; {R}y) = ﬁ DO (ks — fiwn)

ij v=1
X I(‘pj,k,l|Vv|‘pi.k,l>|28(6j,k,l — €k — W).
(6)

Here 2 is the system volume, wy is the weight of BZ point
k, and f; x ; are Fermi-Dirac occupations of KS orbitals ¢; i ;.
Those orbitals and associated eigenvalues €; i ; are indexed as
a band, BZ vector, and lattice configuration snapshot at lattice
coordinates {R};.

The dc conductivity is the limit of o(w) as w — O.
Because of the frequency-difference 6 function, computational
convergence to that limit with respect to the number of KS
bands N, is known to be rapid [11]. Consequences of the
numerical implementation of the § function are a complicating
factor. Gaussian broadening of the § function [10] A = 0.2eV
was used. Increasingly severe local oscillations in o (w) appear
rapidly as A is decreased below that value, especially at lower
temperatures. As a consequence, the dc conductivity does not
converge as A — 0. See the discussion in Ref. [52]. The
chosen value of A is close to being optimal according to
the criterion of Ref. [10] for the system size and density-
temperature range relevant here. Admittedly, however, the
results are sensitive to that choice. A better procedure would
determine the optimal A at each density and temperature.

To ensure convergence with N, our calculations used a
minimum occupation number threshold of order 1076-10~7
such that the number of bands included for ps = 0.1 g/cm?
was N, =208, 672, 1184, 1920, and 3096 at T =5, 10,
15, 20, and 30 kK, respectively. The number of bands
required decreases rapidly with increasing material density,
but increases rapidly with increasing numbers of atoms in
the simulation cell. The effect of these dependences can be
checked by testing for satisfaction of the f-sum rule [44]. It
was satisfied to 90%—-92% at T = 5 kK and to 95%-97% at
higher temperatures.

Results are shown in Fig. 3. The standard deviations shown
there as error bars correspond to averaging over the snapshots.
Note first that for all T, the explicitly 7T-dependent XC
functional lowers the dc conductivity. Beginning at 7 = 5 kK,
the effect increases with increasing 7', is largest near 7 =
15 kK, and then decreases. Figure 4 shows the relative error in
using the ground-state XC functional

KSDT PZ
|Ac| ,_ |Gdc — Odc

. )

That error is 0.5%, 13%, 15%, 11%, and 7% for pa =
0.1 g/cm3 at T =35, 10, 15, 20, and 30 kK, respectively. An
important aspect is that the relative error is not amenable to
correction by some simple, rule-of-thumb shift.
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correspond to 10 kK (triangles up) and 30 kK (triangles down).

The number of snapshots at the lowest temperature
T =5 kK is 10. Nevertheless, the standard deviation at
that 7 is large. To decrease it would require increasing the
number of snapshots or the simulation cell size or both. Such
sensitivity to the nuclear configuration may be explained by
transient formation and dissociation of small Al clusters at
that 7', a process seen in the snapshots. Crucially, however,
the difference between the KSDT and PZ conductivities for
each snapshot depends very weakly on nuclear configuration.
Those differences, as shown in Figs. 3 and 4, are negligible at
T =5 kK. As T increases, the standard deviation decreases
as the system becomes more nearly uniform (10, 8, and 4
snapshots were used for T = 10, 15, and 20 kK, respectively)
and the difference attributable to the two functionals becomes
clearly discernible. Averaging over only two snapshots in fact
provides very small error bars at the highest 7 = 30 kK.
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FIG. 4. Relative error in dc conductivity for Al as a function of
density for five different temperatures.
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There exists also an implicit influence of 7'-dependent XC
on dc conductivities via nuclear configurations. That arises
because a snapshot sequence from AIMD performed with the
KSDT functional will differ from the sequence from the PZ
functional (with T-dependent density of course). To identify
only the explicit dependence, we deliberately used the same
snapshots for both KSDT and PZ conductivity calculations.
Evaluation of the implicit influence would require calculations
of averages over much longer snapshot sequences generated
by AIMD with each XC functional. Given that it is almost
certain that the implicit effects are small compared to the
explicit ones and given the cost of doing the AIMD calculations
and snapshot conductivities (even with the cost effectiveness
of OFDFT AIMD), we opted not to pursue the implicit
influence.

Since the KS eigenvalues and orbitals are inputs to the
Kubo-Greenwood calculations, direct examination of thermal
XC effects upon the rather unfamiliar low-density KS band
structure therefore is of interest. Figure 5 provides comparison
of the fcc Al band structure at p = 0.2 g/cm?® at three temper-
atures. Overall there is a T-dependent shifting upward of the
bands above €r as they become increasingly occupied. For
energies nearest € on either side, the KSDT bands lie below
the PZ ones, whereas that ordering is reversed for the bands
next upward. In those bands, at T = 20 kK the shift is about
0.2 eV, about 10% of the electronic temperature. That is also the
amount of relative increase in interband separation between the
band at the Fermi level and the next higher conduction band.
The separation increase shows up as a lowering of o (w) for
small w induced by the lowering of Fermi-Dirac occupations
and their derivatives (occupation number difference) in Eq. (6).
The density of states D(¢) clearly shows not only the general
shift upward that accompanies increasing 7', but also that the
bandwidth nevertheless is essentially unchanged.

B. Equation of state of warm dense deuterium

To explore XC thermal effects upon bulk thermodynamics,
we did KS and OFDFT AIMD calculations on deuterium
at material densities between 0.2 and 10 g/cm® for T =
2-1000 kK. The familiar unfavorable computational cost
scaling with T limited our KS AIMD results to below T ~
125-180 kK for higher material densities (op > 2 g/cm?)
and up to T = 60-90 kK for pp = 0.2 and 0.506 g/cm>.
Depending on the material density, the simulation cells had 64,
128, or 216 atoms. For some KS AIMD cases, the number of
atoms in the simulation cell was decreased with increasing 7.
Most of the KS calculations were performed at the I" point only,
though for pp = 0.506 g/cm® a 2 x 2 x 2 Monkhorst-Pack
BZ grid [49] was used at the two lowest temperatures.

The pressure converges slowly with respect to the number
of MD steps, but pressure differences (between simulations
with two different XC functionals) typically converge more
rapidly. At each density-temperature point, the system first was
equilibrated for at least 1500 MD steps, followed by 4500 steps
for data gathering. The first 500 of those steps were considered
to be an additional equilibration, hence were discarded during
calculation of statistic averages. For pp = 0.506 g/cm® at
several temperatures, we also did 8500 step simulations to
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for T =5, 10, and 20 kK (bottom to top). The Fermi level € is set
to zero. The right-hand panels display the density of states D(¢) and
Fermi-Dirac occupation f(€).
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FIG. 6. Deuterium electronic pressure as a function of 7 from KS
and OFDFT calculations with the finite-7” KSDT and ground-state
PZ XC functionals. The inset shows the relative difference between
the total pressure from the calculations with the PZ and KSDT XC;
see Eq. (8). The system density pp = 0.20 g/cm? (r, = 3 bohr). The
PIMC results are shown for comparison.

test pressure convergence. The time step was scaled with
increasing T by a factor proportional to 1/+/7.

Figures 6-10 compare the electronic pressure (that is,
without the ionic ideal gas contribution) from the KS and
OFDFT calculations done in conjunction with the finite-7
KSDT and ground-state PZ XC functionals. Error bars shown
in those figures correspond to the standard deviation for the
average electronic pressure. Those error bars are overestimates
of the standard errors. The insets show the percentage relative
difference for the calculated total pressures (i.e., including the
thermal ionic contribution), namely,

APy /Po = (PY — PESPT) [ PEE x 100%.  (8)

tot tot tot

That quantity measures the XC thermal effects upon the total
pressure in the system.

Note first that the relative difference A Piot/ Piot 1S of both
signs, so no simple offset can be used as a correction. Sjostrom
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FIG. 7. Same as in Fig. 6 for deuterium, with pp = 0.506 g/cm?
(rs = 2.2 bohr).
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FIG. 8. Same as in Fig. 6 for deuterium, with pp = 1.964 g/cm?3
(r¢ = 1.4 bohr).

and Daligault [21] found pressure differences of both signs as
well, whereas Ref. [22] did not. We attribute the difference
to the limitations of the F. functional used in the latter
work. The relative difference AP/ Py is largest at the
lowest densities, with a range of about 6% for both 0.20 and
0.506 g/cm®. That range decreases to about 3% (still with
both signs) at pp = 1.9631 g/cm? and then it continues down
to about 2% at pp = 4.048 19 g/cm® and is 1% at most for
op = 10.0 g/cm?. (For reference, the equilibrium simple cubic
density at T ~ 0 K is about 1 g/cm?.) Of course, the relative
pressure shift is practically negligible at low T because the
low-T limit of KSDT was designed to recover the ground-state
LDA. (Reference [14] gives a comparison of the KSDT and
PZ correlation energies at 7 = 0 K.)

The overall behavior is clear. The T-dependent XC first
raises the pressure and then, as T increases, it lowers the
pressure compared to that generated by a ground-state XC
before both go to a common high-7" limit. That limit occurs at
much higher 7' than what is shown in Figs. 6—10. That limiting
behavior occurs even though the two approximate functionals,
KSDT and PZ, have different high-7" limits. However, the XC
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FIG.9. Same as in Fig. 6 for deuterium, with pp =
4.04819 g/cm? (r; = 1.10 bohr).
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FIG. 10. Same as in Fig. 6 for deuterium, with pp = 10.0 g/cm?
(rs = 0.81373 bohr).

contribution becomes negligible compared to the noninteract-
ing free-energy contribution at high 7', so the effect of those
different limits is suppressed. There is some intermediate 7
at which there is no shift between the two functionals (see
the discussion of Fig. 15 below; also see Ref. [39]). The
well-defined maxima of the total pressure relative differences
occur near T ~ 40, 60, 100, 125, and 200 kK for r; = 3, 2.20,
1.40, 1.10, and 0.813 73 bohr, respectively, with corresponding
values of about 3%, 4%, 2.5%, 2%, and 1%. Note also the
nice correlation of the XC thermal effect upon the pressure
with Fig. 1. The maximum effect occurs approximately along
the lower edge of the yellow-orange band and the maximum
magnitude decreases with decreasing ;.

We note also that the OFDFT finite-7 results at high T are
in good overall agreement with PIMC simulation data [5]. The
PIMC data provide a correct description of the T dependence
of all energy terms. On that basis, a correct description of
the term-by-term free energies can be extracted, including
the XC free energy. Figures 6-10 demonstrate that inclusion
of the T-dependent XC provides overall better agreement
between the KS and PIMC data than does use of ground-state
XC. The exception is points where PIMC clearly exhibits
irregular behavior. That occurs at low 7 for some material
densities, with the PIMC pressures seeming to be significant
overestimates relative to the KS results for r; = 3 bohr (see
Fig. 6), r¢ = 2.20 bohr (see Fig. 7), and ry = 1.40 bohr (see
Fig. 8). For r; = 0.81373 bohr the PIMC pressure is low
relative to KS at the lowest available temperature 7 = 125 kK.

C. Hugoniot of liquid hydrogen

Experimentally, the EOS at high compressions is accessible
via shock-wave techniques and the Hugoniot relation
1 1 1
z—%—4P+%(———)=Q ©
2 P Po
where %, P, and p are the specific internal energy, pressure,
and bulk density of a state derived by shock compression from
an initial state at pg, %y, and Py. The initial state presents
some technical challenges for computation. To enable a mean-
ingful comparison between energies of states calculated from
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TABLEI. Pressure (kbar), atomization energy D, (eV/molecule),
and corresponding ZPE-corrected %, (kJ/g) obtained from MD
simulations for hydrogen at py = 0.0855 g/cm? and T = 20 K with
different codes or functionals. Here QE denotes QUANTUM ESPRESSO.
All cases used PAWs.

Code XC Py D, s
QE PZ 2.2 —6.7370 -310.0°
QE KSDT 2.3 —6.7264 —309.5°
QE PBE 0.25 —6.7703 —311.3¢
VASP PBE 0.21 —6.7756 —311.5¢
VASP PBE 3144

D, = [Eny(Hes) — 64E,,(H)]/32.

®ZPE correction Ey;, = wlP*/2 = 0.260 eV.
ZPE correction Eyj, = fBE/2 = 0.267 eV.
dReference [12].

different codes (and possibly with different pseudopotentials),
Fo and Eusually are calculated as effective atomization ener-
gies of the system. Doing so provides some error cancellation,
especially for approximate treatment of core electronic states.
Additionally, zero-point vibrational energy (ZPE) corrections
are needed. For hydrogen, the result is that the initial state
specific energy takes the form

EMHy) + NE,in/2 — NE(H)
B = ;
NmH

(10)

where E;, is the ZPE for the H, diatomic molecule, E(Hy) is
the energy of the N-atom system corresponding to the initial
conditions at material density py and temperature 7, and
E(H) is the energy of an isolated H atom of mass my. Note
that £(H) can be from a spin-polarized or non-spin-polarized
calculation, because eventually these terms cancel in Eq. (9).
Table I shows atomization energies [D, = 2{E,,(Hy) —
NE,,(H)}/N] from the non-spin-polarized calculation Eyp,
and values of pressure and energy %, corresponding to the
initial state with py = 0.0855 g/cm? at Ty = 20 K (essentially
equilibrium bulk Hy). In terms of D,, the specific energy of the
initial stateis givenby %y = (D, + E\ip)/2my. The vibrational
correction is from the theoretical ZPE obtained from DFT
vibrational frequency calculations for the H, molecule with
the aug-cc-pVQZ basis set [53], using the Vosko-Wilk-Nusair
LDA [54] and Perdew-Burke-Ernzerhof (PBE) [55] GGA
functionals. We remark that %, values in Table I are shifted by
Enp(H)/my with respect both to E(Hes)/64my [see Eq. (10)]
and to the value reported in Ref. [56] and used in Ref. [22].
For example, for 32 H, molecules at initial conditions used
here, our QUANTUM ESPRESSO calculation with PZ XC gives
—31.009 eV/molecule or —15.505 eV/atom. Correcting by
the 0.260 eV/molecule ZPE gives —15.375 eV/atom, which is
equivalent to the £ = —1472 kJ/g unshifted value.

Figure 11 compares the hydrogen principal Hugoniot from
the simulations with the KSDT and PZ XC functionals. Results
for the PBE GGA XC (also with T-dependent density) are
shown to provide an alternative perspective on the effects
of changing only the XC approximation. For T < 30 kK,
there is little XC thermal effect. For example, the maximum
compression is 4.41 for KSDT versus 4.43 for PZ at P =
35 GPa. Shifting from the LDA to the GGA (both ground-state
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FIG. 11. Hydrogen principal Hugoniot. The initial density is py =
0.0855 g/cm®.

functionals, PZ vs PBE) changes the result only to 4.44 (PBE)
but at notably higher pressure P ~ 46 GPa. For T > 30 kK
(P > 120 GPa), P and T increase practically at constant
compression for all three curves. The T -dependent XC predicts
slightly lower pressures than those from the PZ functional,
in agreement with the results shown in Sec. III B. This can
be seen in the top panel of Fig. 12, which displays P(T)
along the Hugoniot. At T = 30 kK the effects on P of the
T dependence in XC versus shifting to gradient corrections
in XC are comparable. As T increases, gradient corrections
diminish in importance and the PZ and PBE curves become
closer. In contrast, the effect of an explicit 7 dependence
continues to increase. The bottom panel of Fig. 12 shows
the same comparison for the specific internal energy (relative
to the reference state). At low 7', the KSDT internal energy is
slightly higher than the PZ result, whereas at high 7 the reverse
is true. Overall the two yield nearly identical values. That helps
explain why the Hugoniot curve, Fig. 11, is insensitive to the
use of the KSDT XC rather than the PZ XC. In the region of
primary interest, the KSDT XC lowers both quantities on the
left-hand side of Eq. (9), P and %, relative to PZ XC values,
such that the solution, the material density p, remains almost
unchanged as compared to PZ XC results. This insensitivity
of the Hugoniot to the 7 dependence in XC agrees with the
findings of Ref. [57], namely, that the Hugoniot is determined
mainly by the statistics of nuclear configurations, not by the
electronic T'.

D. Homogeneous and inhomogeneous electron gas at finite T

Insight into the behaviors discussed in the preceding sec-
tions may be gained by going back to basics, namely, the HEG.
The KSDT functional (1) is itself an accurate parametrization
of RPIMC simulation data for the finite-7 HEG. Closely
related to the HEG is static bulk atomic H, a hypothetical
system we have used to test OFDFT noninteracting free-energy
functionals. The system is an abstraction of the experimental
coexistence of hot electrons and cold ions that can occur with
femtosecond laser pulses [3].
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(bottom) along the hydrogen Hugoniot as functions of 7.

For the HEG, consider first its bulk equilibrium density
as a function of T, i.e., that value of r; for which the HEG
free energy per particle is minimum. Figure 13 shows this
free energy per particle (f = fs + fxc) as a function of r, for
selected temperatures calculated with the KSDT functional.
The top panel of Fig. 14 shows the difference for equilibrium
rs between the KSDT and PZ functionals. At T = 0 K the
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FIG. 13. The HEG total free energy per electron as a function of
1 for selected temperatures calculated with the KSDT XC functional.
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FIG. 14. Shown on top is the value of equilibrium r, correspond-
ing to the minimum of the total free energy per electron for the HEG
as a function of T'. The bottom shows the HEG barrier height (binding
energy; see Fig. 13 and the text) as a function of T'.

equilibrium r; equitip = 4.19 bohr for both XC functionals (see
also Ref. [41]). The value remains almost constant up to 7 =
1000 K. The ground-state PZ result starts to deviate from the
finite-7” KSDT values at 7 =~ 4000 K. The HEG explodes,
in the sense that the 7, cquiip increases drastically at about
T. =~ 7200 K for the finite-T XC. Use of the ground-state PZ
XC approximation lowers that substantially, to about 6200 K.
What may be construed as the HEG binding energy is shown in
the bottom panel of Fig. 14. The quantity A f shown there is the
depth of the minimum of the total free energy per particle (see
Fig. 13) relative to the maximum at lower density (higher ry).
AsFig. 13 shows, one may also construe A f as a barrier height.
For both KSDT and PZ XCs, Af decreases with increasing T,
starting from 1 eV at T = 0 K and plunging to essentially zero
at the same critical values of 7 as before, about 7200 K for
the KSDT XC vs 6200 K for the PZ XC, a 14% shift. Given
the structureless nature of the HEG, these comparisons drive
home the point that the low-density regime is rather sensitive
to XC thermal effects.

The effects of reduction in translational invariance to
periodic are illuminated by considering simple cubic bulk
atomic hydrogen (scH hereafter). In essence, it is an inhomoge-
neous electron gas with the simplest conceivable point charge
compensating background. Figure 15 shows the equilibrium
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FIG. 15. Equilibrium ry as a function T for scH. See the text.

rs as a function of 7. The behavior is similar to that for the
HEG, namely, a monotonic increase of the equilibrium r; with
increasing T and substantially lower values of the equilibrium
rs from the T-dependent KSDT XC than from PZ XC athigh-T
20 kK < T < 30 kK). For 5 kk < T < 15 kK the
situation reverses, with the KSDT XC giving slightly larger
rs values than the PZ XC. Thus, either the pressures or the
equilibrium r values from the two XC approximations will
coincide at some intermediate 7. Such behavior was observed
previously for bee Li (see Fig. 11 in Ref. [39]) and is consistent
with the AIMD results discussed above (recall Sec. II1 B). For
T > 30 kK the scH model becomes unstable. Replacement of
the uniform background in the case of HEG with compensating
point charges in scH makes the average equilibrium density at
T = 0 K of the scH much higher than for the HEG (7 equiib =
4.19 bohr for the HEG vs 1.70 bohr for scH), hence scH
is stable to much higher T (7; s &~ 30000 K vs Tt gpc &~
7200 K). Compare Figs. 14 and 15.

Finally, we consider the scH electronic heat capacity at
constant volume as a function of electronic temperature 7',

CS = (3E/aT)y. (11)

It obviously is a measure of the 7' dependence of the electronic
internal energy £°, which of course has an XC contribution
Exc- That T dependence is qualitatively different for the zero-T
and finite-7 XC functionals (see Refs. [14,39]). Therefore,
C¢ provides a different direct measure of XC thermal effects
from that provided by quantities considered thus far. Figure 16
compares C ?,l obtained from the KSDT and PZ XC functionals
for scH. These were done with OFDFT using the VT84F
noninteracting free-energy functional [36]. The maximum
magnitude of the difference ACS = C f,l"pz - Cf,]'KSDT for
pu = 0.60 g/cm® is 0.4 hartree/MK at T ~ 30 kK. That
corresponds to about a 40% relative difference. In the zero-T
and high-T limits the difference between the KSDT and PZ XC
results vanishes as expected. Notice how those limits lead to
broad consistency of behavior with respect to other quantities
discussed above. Exchange correlation thermal effects relative
to a ground-state functional are quite variable in magnitude.
For C¢! the difference is manifested both as a maximum and
as two other extrema of lesser magnitude.
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FIG. 16. Electronic heat capacity at constant volume CY as
a function of electronic temperature for scH at material density
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functionals. The inset shows the difference ACS! = €3 — C€555PT,

IV. CONCLUSION

The increase in resistivity of Al at 0.1 g/cm?® found in
Ref. [18] upon going from the Vosko-Wilk-Nusair (VWN)
ground-state XC functional [54] to the Perrot—-Dharma-
wardana (PDW) T'-dependent functional [25] is qualitatively
consistent with our finding of the lowered dc conductivity
of low-density Al. Quantitatively, however, the results are
quite different. In particular, the low-T behavior of the
resistivity calculated from the PDW functional is drastically
different from our KSDT result, their VWN result, and Perrot
and Dharma-wardana’s earlier calculation [58]. We suspect
methodological differences but cannot say more.

Reference [59] included an analysis suggesting that the
intrinsic T dependence in Fx. did not necessarily mean
there would be a corresponding impact on the 7' dependence
of the Kubo-Greenwood optical conductivity. The nub of
that argument was that the conductivity depends on the KS
eigenvalues and orbitals, which are determined by the KS
potential (for which the XC contribution is v, = § Fxc/0n).
Sums of matrix elements over such KS quantities do not
necessarily have a strong sensitivity to the 7 dependence of
Fxe-

Such arguments tend to overlook state conditions. Here we
have given an example of a system for which oy, has a stronger
sensitivity (in the sense of percentage shift) to XC thermal
effects in a pertinent range of thermodynamic conditions than
does the EOS of a different system over a different but also
pertinent range of thermodynamic conditions. This shows that
both system definition and state conditions are essential for
proper assessment of the GSA.

For the dc conductivity of low-density Al, XC thermal
effects incorporated in the KSDT functional increase interband
separations relative to the GSA above the Fermi level, hence
decrease the Fermi-Dirac occupations relative to the GSA.
That lowers the calculated conductivity [see Eq. (6)] and
thereby yields better agreement with the experimental data. We
remark that the ground-state functionals underestimate band
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gaps, while hybrid functionals (which incorporate a fraction of
exact single-determinant exchange and thus take into account
a part of exchange thermal effects) enlarge such intervals.
Therefore, one expects that a hybrid functional would lower
the conductivity. Notice that in the case of the thermal Hartree-
Fock approximation, thermal occupation at a temperature of 1
or 2 eV reduces the spuriously large interband separations of
ground-state Hartree-Fock states [39]. That in turn would drive
the opposite trend, increasing the conductivity. Interestingly,
the overall XC thermal effect upon the dc conductivity of
low-density Al is to reduce the range of the T variation
at fixed bulk density. In contrast, at higher material density
the Al dc conductivity is essentially insensitive to the XC T
dependence.

The deuterium EOS calculations show that XC thermal ef-
fects must be taken into account in thermodynamic conditions
corresponding approximately to the reduced temperature ¢t ~
0.5. However, because the principal Hugoniot characterizes
the difference of two states separated by a shock, there is a
cancellation that is familiar in other uses of KS DFT (e.g.,
atomization energies) that substantially suppresses the XC
thermal effects. As noted above, this cancellation is consistent
with the findings of Tubman et al. [57] and Danel et al. [22]. We
suspect therefore that the XC thermal effects on the Al Hugo-
niot found in Ref. [17] and on the Be Hugoniot in Ref. [19]
are consequences of the techniques they used. In the former
work a 7' dependence was introduced by adding jellium shifts
to the energy and pressure at rs corresponding to the density at
hand. The second used an average atom. Nevertheless, the XC
thermal effects on the pressure P(T') (recall the top panel of
Fig. 12) are not negligible. Rather the pressure effect is about
the same magnitude as the shift from gradient-independent to
gradient-dependent XC. This also is consistent with what is
reported by Danel et al. [22]. More accurate predictions (for all
properties affected by the XC thermal effects) will require Both
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an explicit T dependence and gradient contributions in the XC
functional, at least.

Even at the LDA level of refinement, however, it is clear
that the GSA (use of a ground-state XC functional as an
approximate free-energy XC functional) is not an unequiv-
ocally valid prescription [13]. That assessment is consistent
with earlier demonstrations of the nontrivial 7 dependence
of the XC free energy [14,39,60]. It also confirms what one
knows in principle, namely, that consistent study of WDM
requires an approximate J. that has a proper high-7 limit, a
correct small-r limit, and a correct small-I" (the dimensionless
Coulomb coupling parameter) limit and delivers a properly
positive entropy. The KSDT functional is built with the first
three included explicitly and is found to satisfy the last a
posteriori in every case considered.
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