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The application of density functional theory to materials in the warm dense matter regime has motivated the
development of exchange-correlation functionals which incorporate proper, explicit temperature dependence.
Previous work has yielded fully thermal exchange-correlation free energy functionals at the local density
approximation and generalized gradient approximation (GGA) levels of refinement. Recently, an additive
thermal correction scheme was utilized to construct a meta-GGA exchange-correlation (XC) functional in
which thermal effects are treated at the GGA level. The fTSCAN free-energy XC functional presented here
includes thermal effects through the meta-GGA level in the context of the SCAN (strongly constrained and
appropriately normed) ground-state functional. The fTSCAN functional provides generality while achieving
similar performance to a thermal GGA functional at high temperatures, e.g., pressures within 1% of path integral
Monte Carlo simulations of warm dense hydrogen and a significant improvement over ground-state functionals.
At low temperatures, fTSCAN demonstrates improvements in accuracy relative to lower-level and deorbitalized
functionals, indicating that calculations using fTSCAN may be expected to perform well across experimentally

relevant densities and pressures.
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Introduction. Density functional theory (DFT) [1] has be-
come the computational workhorse for electronic structure
calculations, being a routine part of studies, especially in
materials science and quantum chemistry. In the Kohn-Sham
formalism [2], the sole approximation is in the exchange-
correlation (XC) functional. It is no great surprise, then, that
substantial effort has been devoted to improving and testing
various approximate XC functionals. The surprising success
of the earliest and simplest of these, the local density ap-
proximation (LDA), can be traced to its satisfaction of certain
exact constraints on the true XC functional [3,4]. Construction
of more refined (so-called higher level) XC functionals with
added ingredients—the generalized gradient approximation
(GGA), with added dependence on the density gradient, and
meta-GGAs with added dependence on the kinetic energy
density—frequently has followed constraint-based develop-
ment schemes [5-8].

What might be missed in the face of the staggering array
of XC functionals in the literature is the fact that nearly
all were developed under the assumption that the electronic
temperature 7 =~ 0 K. That is reasonable enough for most
traditional applications in materials science and quantum
chemistry, but over the past decade DFT has become a widely
used tool for accurate simulations of warm dense matter
(WDM). That broad, complicated regime bridges condensed
matter and plasmas. It occurs within giant planet and stellar
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interiors as well as along the path to inertial confinement
fusion [9-11]. Typical maximum pressures surpass 1 Mbar
and electron temperatures range from roughly 1 to 100 eV.
Under such conditions, explicit thermal XC effects cannot be
neglected. Formally, this is done with Mermin’s free-energy
extension of Kohn-Sham DFT, denoted hereafter as MKS
[12]. From a practitioner’s point of view, the use of XC
functionals with explicit temperature dependence improves
the agreement between DFT simulations and experimental ob-
servations [13—-15]. Indeed, even a lower-level XC functional
with proper inclusion of thermal effects has been shown to
outperform a higher-level ground-state XC functional when
applied to warm dense matter [16].

Much as ground-state XC functional development relied at
first on accurate parametrization of the exact XC energy of
the homogeneous electron gas (HEG), thermal XC functional
development starts at the LDA level from parametrization of
the XC free energy per particle fy. computed from quantum
Monte Carlo results [17,18]. Those parametrizations give rise
to the LDA-level XC free energy functionals (corr)KSDT
[19,20] and GDSMFB [21]. At the GGA level, the KDT16
free-energy density functional incorporates density-gradient
thermal effects via temperature-dependent reduced density
gradient variables derived from the finite-7 XC free-energy
gradient expansion [20]. Additive [22] and multiplicative [23]
thermal correction schemes, by which a ground-state GGA
functional is augmented with a LDA-level thermal correction
factor, have been developed as well. An additive GGA-level
correction also was applied to a ground-state meta-GGA-
level functional [14]. To date, however, to the best of our

©2025 American Physical Society
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knowledge, no XC functional which incorporates thermal XC
effects fully at the meta-GGA level has been published.

Here we describe such a functional, denoted fTSCAN,
an extension of the strongly constrained and appropriately
normed (SCAN) functional [5] to finite temperature condi-
tions. SCAN obeys all 17 known exact constraints achievable
at the ground state meta-GGA level and has demonstrated
high accuracy across a broad range of materials [5,24,25]. It
is extremely desirable for a functional to exhibit such breadth
of accuracy, for example, in the construction of wide-ranging
multiphase equation of state (EOS) tables.

To build fTSCAN, we generalize the ground-state in-
put variables—reduced density gradients and kinetic energy
densities—to account properly for constraints on finite-
temperature behavior and limits. The resulting functional is
well-equipped to handle explicit thermal effects in the in-
homogeneous electron densities of real systems. We test the
performance of fTSCAN with model systems chosen to
highlight differences between free-energy and ground-state
functionals at the LDA, GGA, and meta-GGA levels and
compare the performance of fTSCAN in ab initio molecular
dynamics (AIMD) simulations with other thermal function-
als. Finally, we confirm that the formidable accuracy of
ground-state SCAN is unaffected in the low-temperature limit,
positioning fTSCAN as an excellent choice for use from
ambient conditions to and through the WDM regime.

Systematic incorporation of thermal XC effects. At the
meta-GGA level, in addition to the electron density and its
gradient, ground state XC functionals take as input the orbital
kinetic energy density (KED) ¢, = % Zi\il |V;|? of N, elec-
trons in the ground state. Typically, #; is combined with the
von Weizsicker (#,w) and Thomas-Fermi (f1g) kinetic energy
densities into some dimensionless parameter, usually called
an isoorbital indicator. Such indicators are built to distin-
guish orbital overlap types ranging from single-orbital-like
to metallic [26,27]. For SCAN, the only isoorbital indicator
is a(n, Vn, {¢}) := (t; — tyw)/t1r. Exchange and correlation
energies are interpolated between o = 0 (single-orbital-like)
and o = 1 (metallic) cases combined with extrapolation to
o — oo (weakly covalent).

For a fully thermal meta-GGA XC functional, proper T
dependence must be incorporated into « through 7 -dependent
KEDs. An important hint for this procedure is recognition
that the numerator of « corresponds to the Pauli KED, #y :=
ts — tyw. At T = 0K, it is known that t,w[n] < £[n] as shown
in Ref. [28], hence straightforwardly one has « > 0. The
finite-7 analog of the Pauli KED, 7y, also has been proven
to be strictly positive [29,30]. Under these conditions, 7y =
tMKS _ 1w uses the finite-T KED tMXS (defined below) and
the ground-state von Weizsicker KED form. Then the T'-
dependent isoorbital indicator ar becomes

MK (Y}, T) — tyw(n, Vn)
er(n, T)

O57"(”7 Vl’l, {w}’ T) = (1)

In what follows, we simplify notation to a7 (n, Vn, {{/})
or simply o7 to remind the reader of the explicit 7 depen-
dence. The T-dependent orbital kinetic energy is already well
understood according to Mermin’s work [12] via Fermi-Dirac

occupations f;(T):
1 o0
MWW T) = 5 ) AV @
i=1

The remaining term is the finite-7 Thomas-Fermi KED [31],

trr(n, T) = tre(m)é (1), 3

where trp(n) = 0.3(372)*3n’/3, £(t) is a combination of
Fermi-Dirac integrals [32], and ¢ is the reduced temperature,
T /T = 2/B[3n*n]*? with B = (kgT)~'. Both this term and
the MKS T-dependent orbital KED reduce to their respec-
tive ground-state expressions, so limy_.gar(n, Va, {¢}) =
a(n, Vn, {{}). In the high-temperature limit, the MKS ki-
netic energy approaches that of the HEG, t1g, such that with
tyw(n, Vi) — 0, the isoorbital indicator naturally recovers
metallic behavior a7 (n, Vn, {/}) — 1 expected for the HEG.
In addition to o7, the XC free energy depends on the
electron density and its gradient. We note that fTSCAN
is developed under the assumption of non-spin-polarization,
suchthat{ = (ny —ny)/(ny +ny) = 0. We canrely on LDA-
level XC free energies and temperature-dependent density
gradient variables developed in the course of earlier work on
thermal LDA and GGA functionals [19-21]. The temperature-
dependent reduced density gradients for exchange (sx) and
correlation (g.) are derived from the second-order gradient
correction to the XC free energy and recover the ground state
reduced density gradients s and Q (defined below) at 7 = 0 K.
Detailed development is in Ref. [20]. Both are simple ex-
pressions comprised of the ground-state functional variable
multiplied by a #-dependent factor for the former and a 7- and
density-dependent (via r; = (3/4mwn)!/?) factor for the latter:

B.(1)
\v = s*(n, V)=
s2x(n, Vo, T) = s°(n, n)Ax(t) 4)
and
Ge(n, Vn, T) = Q(n, Vn)B.(ry, 1). (5)

Here, Ex(t), Xx(t), and Ec(rs, t) are Padé approximants for
Fermi-Dirac integral combinations [33]. The dimensionless
variables are

5oz VRO ©)
2kgn(r)
__Vn()]

Q= 2kn(r)’ @)

with kg = 372n(r))'/? the Fermi wavevector and ks =
4kg / .

Along with the LDA XC free energy density fy., the three
T-dependent variables enable construction of the XC free
energy density functional with full inclusion of thermal and
inhomogeneity effects up through the meta-GGA level.

The SCAN ground-state exchange energy is given by

Ey[n] = f drn(r)ekPA (n)E (s, @), ®)

where eLPA is the ground-state LDA exchange energy per

particle and Fx(s, @) is the exchange enhancement factor. It
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has the form
Fi(s, &) = hy(s, &) + 0(a)[h) — hy(s, @)]gx(s).  (9)

where 6(«) is an interpolation function governing the balance
between the h! (for « ~ 1) and h? = 1.174 contributions [5]
and fulfilling the conjectured bound F; < 1.174 for all o [34].
In moving to a fully temperature-dependent functional, 6 («)
becomes a function of the 7-dependent a7 variable.

The key term is h!, which in SCAN is given by

klxx
h! =14 — 10
x.SCAN + hi tx (10)

with kx = 0.065. This expression has the same form as the
PBE exchange enhancement factor [7], for which x = s>,
In SCAN, x is more complicated, with dependence on both
s and o, which enables recovery of the fourth-order gradient
expansion for exchange (see Supplemental Material [35] for
detailed expressions). Thermal effects are accounted for by
the use of T'-dependent variables s,x and 7. But the presence
of a sign change [20] in s that has no counterpart in s2 can
cause numerical instability if x — —kix. To avoid that, we
modify h! slightly:
1 k 1xX
hy prscan = 1+ PR (11)

The change is inspired by a similar manipulation [20] in the
exchange enhancement factor of the KDT16 functional.

Finally, there is the matter of the factor gy (s). We leave this
factor unchanged in fTSCAN because of its 7 = 0 K form:

—a
g(s) =1 exp[ 7 } (12)
Since syx has a T-dependent sign change, simply replacing s
with syx in Eq. (12) would introduce unphysical imaginary gx
values or a singularity as spx — 0. As g5 in SCAN enforces
the vanishing of F, oc s71/? as s — oo, it is adequate to use
that same quenching in fTSCAN, thereby avoiding the sy«
sign change problem.
The exchange free energy then is given by

Feln, T1 = f drnf-PA(n, T)Fy(sax, ar) (13)

with the per-particle LDA exchange free energy presented
in the factorized form [36] f:PA(n, T) = eLPA(n)A (1), and
F(s2x, ar) the T-dependent exchange enhancement factor.
The fTSCAN correlation free energy is constructed in a
similar fashion as the fTSCAN exchange free energy via re-
placement of ground-state functional variables with explicitly
T -dependent reduced density gradients and isoorbital indi-
cator. One ground-state ingredient that requires additional
consideration is the so-called LSDAO correlation energy, de-
rived from the correlation energy of a two-electron system
[37]. Unlike the HEG, for which accurate RPIMC XC free
energies permit parametrization of a finite-temperature XC
functional [17-19,21], the LSDAO correlation energy must
be tackled with a different strategy. Absent a parametriza-
tion of two-electron system thermal effects, we use a simple
multiplicative scheme to approximate the 7 dependence. A
T-dependent factor is determined from low-T (T = 10T,
or t =107 and finite-T correlation energies by use of

the corrKSDT thermal LDA functional, ff""KSDT(n, T)=
feomKSDT (5 T') — fLPA(n, T), which is multiplied by the

C
ground-state LSDAOQ correlation energy:

fcorrKSDT(n T)
Cc ’
fCCO'TKSDT(n, T = 10—4TF)'

fCLDAO(n, T) — 8£_DAO(n)

(14)

The remainder of the correlation free energy is constructed
straightforwardly in a manner analogous to the thermalization
of the exchange free energy, with detailed expressions avail-
able in the Supplemental Material [35].

Performance testing. Benchmarking ground-state XC func-
tional performance is a relatively mature process involving
comparison with thermochemical data [38,39], molecular ge-
ometries [40,41], lattice constants and bulk moduli [24,42—
44], and more [45,46]. Experimental data are abundant. The
context for testing thermal XC functionals, especially in the
challenging WDM regime, is rather more grim. Experimental
data are sparse. The gold standard in computational accuracy
under finite-7" conditions is data from path-integral Monte
Carlo (PIMC) calculations. Those, however, become pro-
hibitively expensive at lower temperatures and less accurate
due to the fermion sign problem. Worse, at temperatures for
which PIMC data are accessible, the XC free energy often
is negligible compared to the noninteracting free energy and
the performance of various XC functionals becomes nearly
identical.

To evaluate the performance of the fTSCAN functional,
we start with static calculations on simple test systems, dense
H and Al All computational details are provided in the
Supplemental Material [35] (including Refs. [47-50]). This
allows us to compare the temperature evolution provided
by the fTSCAN functional to that of other thermal and
ground-state functionals. Then we provide a comparison to
PIMC results on warm dense hydrogen. Finally, we consider
more complex systems, confirming that (1) the thermaliza-
tion process to construct fTSCAN has not disrupted the
impressive accuracy of ground-state SCAN and (2) fTSCAN
demonstrates improvements over ground-state functionals un-
der finite-7 conditions.

Warm dense hydrogen. Here, we examine finite-7 XC
effects at the meta-GGA level via static calculations on a
simple cubic (sc) H model system with density p = 0.6 g/cm?
(corresponding to s = 1.6) and temperatures up to about 7 =
35eV. Figure 1(a) shows the electronic pressure calculated
using the KDT16, SCAN, and fTSCAN functionals as a rela-
tive difference to the electronic pressure from the ground-state
GGA PBE functional.

At low T, there is a clear separation between GGA
(PBE and KDT16) and meta-GGA (SCAN and fTSCAN)
pressures. Small differences between ground-state and ther-
mal functionals of the same refinement rung (e.g., PBE vs.
KDT16, SCAN vs fTSCAN) at such temperatures arise from
a small difference between ground-state LDA (PZ) and ther-
mal LDA (corrKSDT) correlation energies [19].

As T goes above about 1 eV, differences between ground-
state and thermal functionals (which highlight thermal effects)
become more prominent than differences between GGA and
meta-GGA functionals (which highlight inhomogeneity ef-
fects). For the ground-state approximation (GSA), the SCAN
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FIG. 1. Electronic pressure percentage differences relative to
PBE values as a function of T calculated using the KDT16, SCAN,
and fTSCAN functionals for (a) sc Hat p = 0.6 g/cm? and (b) dense
fcc Alat p = 3.0 g/cm?.

electronic pressures converge fairly smoothly on the PBE
data. However, electronic pressures calculated with thermal
KDT16 and fTSCAN take a more complicated path. This
indicates that inclusion of explicit T dependence has captured
additional underlying behavior compared to the GSA in the
warm dense matter temperature range. Note that at this density
(p = 0.6 g/cm?), the KDT16 and fTSCAN electronic pres-
sures converge for temperatures above T =~ 12eV but have
clear differences at lower temperatures. Finally, at very high
T the electronic pressures from all the functionals—ground-
state and thermal alike—converge. This convergence is due to
the fact that in the high-7 limit the noninteracting free-energy
contribution dominates such that the XC contribution to the
total free energy becomes negligible.

A recent survey [51] of simulations of warm dense hy-
drogen gave strong evidence for the importance of explicit
thermal effects in XC functionals, with improved agreement
with first-principles (FP) PIMC results from use of the thermal
KDT16 rather than the ground-state PBE GGA functional.
Tests of fTSCAN for selected rs and temperature values show
similar agreement with FP-PIMC data [52] as with KDT16
and improvement over PBE (summarized in Table I). For
the lower densities explored (v =4 or 8), the differences
between GGA and meta-GGA are minor and even at lower
temperatures KDT16 and fTSCAN results are very similar.
At higher density, r¢ = 1.6, some minor difference between
KDT16 and fTSCAN manifests at lower temperatures. But
they are once more nearly identical at the temperatures for

which PIMC data are available. Nevertheless, the importance
of T-dependent XC functionals is reinforced.

Dense aluminum. Static calculations on dense fcc Al (p =
3.0g/cm?) reveal a curious effect manifesting in the T de-
pendence of the ground-state SCAN functional [Fig. 1(b)].
Differences in the behavior of the ground-state (PBE and
SCAN) and thermal (KDT16 and fTSCAN) functionals of
the same level of refinement demonstrate the change due to
inclusion of temperature dependence at the GGA and meta-
GGA levels. Differences in the behavior of two thermal or two
ground-state functionals are the mark of inhomogeneity ef-
fects: the difference between KDT16 and fTSCAN contrasts
between thermal effects at the GGA and meta-GGA levels.

As with the static calculations on sc H, there is a clear
delineation between thermal and ground-state functionals
starting from fairly low temperatures. For temperatures above
about 7 eV, there is a very close correspondence between
KDT16 and fTSCAN, marking the dominance of thermal
effects over differences due to inhomogeneity. However, the
calculations using SCAN follow a distinctive path, aligning
below about 5 eV with the thermal functionals before eventu-
ally converging on the PBE results above roughly 15 eV.

Most plausibly, the source of this mixed alignment with
thermal and ground-state functionals is the orbital kinetic en-
ergy. There is a subtlety in some implementations (including
in the VASP package employed here) of ground-state meta-
GGA s due to the explicit inclusion of Fermi-Dirac occupation
numbers in the KS kinetic energy density. The ground-state
approximation implementation for such a functional therefore
actually relies on the MKS KED [see Eq. (2)], i.e., with
explicit 7 dependence, along with the implicit 7 dependence
inn(r, T).

Such a partial thermalization will be present for any
ground-state  orbital-dependent meta-GGA for which
Fermi-Dirac occupations in the MKS kinetic energy
are evaluated at the system electronic temperature, not
T = 0K. There are consequences to this. First, for T # 0,
orbital-dependent meta-GGAs should be considered neither
as purely ground state nor as fully thermal functionals.
This incomplete thermalization is not the same for every
meta-GGA, as the orbital kinetic energy is incorporated
differently depending on the choice of isoorbital indicator and
how that variable is used in the computation of XC energies.
An important consequence is that correction schemes in
which thermal effects from a lower-level functional are used

TABLE I. Comparison of total pressure data for warm dense hydrogen between PIMC reference data [52] and computed using the
ground-state PBE (GGA) versus the free-energy KDT16 (GGA) and fTSCAN (meta-GGA) XC functionals. Relative differences are given in

parentheses as percentages.

, T (K) PPIMC (Mbar) PPBE (Mbar) PKDTI6 (Mbar) PITSCAN (Mbar)
1.6 50000 N/A 4.53 () 4.45 () 433 ()

1.6 125000 10.85 11.385 (4.9) 11.063 (1.9) 11.057 (1.9)
1.6 181825 16.59 17.069 (2.9) 16.709 (0.7) 16.729 (0.8)
4 15625 0.0452 0.0450 (-0.4) 0.0403 (-10.8) 0.0403 (-10.8)
4 31250 0.1158 0.1213 (4.8) 0.1130 (-2.4) 0.112 (-3.3)
4 62500 0.297 0.308 (3.7) 0.298 (0.34) 0.301 (1.4)

4 95250 0.52179 0.526 (0.8) 0.522 (0.1) 0.525 (0.6)

8 31250 0.0159 0.0163 (2.5)
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to augment ground-state functionals [14,22,23] should not
be applied to orbital-dependent meta-GGAs. One cannot
account systematically for the thoroughness nor accuracy of
temperature dependence in such a scheme [53].

In contrast, deorbitalized meta-GGAs depend on the den-
sity Laplacian rather than the orbital kinetic energy. Thus,
they do not have this uncontrolled thermalization. One such
recently developed functional is SCAN-L [54,55]. It has been
adapted to include thermal effects at the GGA level through an
additive correction strategy, resulting in the T-SCAN-L func-
tional [14]. It has been used successfully in a variety of DFT
explorations of warm dense matter, including calculations of
the EOS of CHON resin [56] and deuterium [57], as well as
examination of shock-induced polystyrene metallization [58].
The crucial distinction, however, is that fTSCAN represents a
technical advance by explicit thermalization not simply at the
GGA level but the full metaGGA level.

Water. The orbital dependence of conventional meta-GGA
functionals can make them an especially fraught choice for
the study of systems in which large numbers of bands are
necessary either because of system size or thermal excitations.
In that context, the absence of orbital dependence in deor-
bitalized exchange-correlation functionals such as SCAN-L
therefore is appealing. An important challenge is that KED
approximations used to deorbitalize some ground-state func-
tional can be of limited accuracy in describing covalently
bonded systems. Furthermore, their 7 > 0 generalizations are
not well-studied.

Among these challenging systems is water, an admittedly
complex substance involving multiple interatomic and inter-
molecular interactions of various strengths. Previous work
had success in using SCAN to model both the structure and
dynamics of water under ambient conditions [59]. We per-
formed AIMD simulations on bulk water at 300 K to examine
the effects of deorbitalization and thermalization, comparing
four functionals: orbital-dependent ground-state SCAN and
fully-thermal fTSCAN as well as deorbitalized ground-state
SCAN-L and thermal (via additive correction) T-SCAN-L.

Differences are immediately apparent between the mean
squared displacements (MSDs) of the oxygen and hydrogen
atoms computed using the orbital-dependent and deorbital-
ized functionals [Figs. 2(a) and 2(b)], suggestive of very
different dynamical behavior. The nearly flat MSD computed
using deorbitalized functionals suggests artificial solidifica-
tion of the system, while the roughly linearly increasing
MSD computed with orbital-dependent functionals indicates
proper liquid character. These differences appear for both
the ground-state and thermal functionals, a clear indication
that deorbitalization, not thermalization, is the cause. Fur-
thermore, examination of the O-O pair distribution function,
goo(r), clearly shows significant deviations from experimen-
tal data [60] when using deorbitalized [Fig. 2(c)] functionals
but excellent agreement with orbital-dependent functionals
[Fig. 2(d)]. Since the deorbitalized functionals fail to capture
the liquid character of water under these conditions, the result-
ing goo(r) displays too-sharp and too-strong peaks, reflecting
the incorrect retention of crystalline ordering.

At 300 K, thermal effects are expected to be negligible.
Indeed, as with the MSD, the SCAN-L and T-SCAN-
L goo(r) are essentially identical, as are the SCAN and

T T T T T T
(@ —H, SCAN || | ®) —H, fTSCAN ||
—-—H, SCAN-L —-—H, T-SCAN-L }
_ —0,SCAN _ —O0, fTSCAN |
Lol --—0, SCAN-L ol ---0, T-SCAN-L||
[=] [=]
2] 2]
= = //
P
0 = 3 T 1 0 1 1 1
0 500 1000 1500 2000 0 500 1000 1500 2000
MD step MD step
T T T T T T
3 _(C) '! i ——Experiment | | 3 _(d) Experiment| |
il SCAN-L ——SCAN
{ —-—T-SCAN-L —-—fTSCAN
i < 2 4
[} Q
o
I >
1k
0 1 1 1
2 3 5 6 2 3 5 6

4 4
r(A) r(A)
FIG. 2. Results of DFT-MD simulations of water at ambient con-
ditions. (a), (b) Mean squared displacements (MSDs) for H (black)
and O (red) calculated using SCAN, SCAN-L, fTSCAN, and T-
SCAN-L. MSDs for deorbitalized functionals are plotted with dashed
lines. Bottom: Comparison of pair distribution functions goo(#) ob-
tained from x-ray diffraction experiments (black) to computations
using (c) orbital-free functionals SCAN-L (teal) and T-SCAN-L
(brown) and (d) orbital-dependent functionals SCAN (blue) and
STSCAN (green).

SFTSCAN goo(r). This confirms that thermalization has not
disrupted the excellent performance of ground-state SCAN
at low temperatures. As T increases, the relative importance
of inhomogeneity effects—seen in the performance of meta-
GGAs compared to lower-level functionals—will diminish
as the importance of thermal effects comes to dominate the
system. fTSCAN includes the best of both worlds, combining
meta-GGA-level accuracy in handling inhomogeneity effects
with full inclusion of thermal effects. Furthermore, although
in this case orbital dependence appears to be necessary for
accurate computations, deorbitalized meta-GGAs remain a
plausible avenue for enabling DFT simulations at very high
temperatures. Deorbitalization of fTSCAN will therefore be
a topic of future investigations.

Cold curve of stishovite SiO,. Generation of material
equations of state across broad temperature-density ranges
necessitates accurate cold curves (usually requiring the use
of meta-GGA functionals) and correct handling of thermal
effects, both of which are readily achieved by the fTSCAN
functional. The inclusion of XC effects through the meta-
GGA level of refinement also improves the calculation of
solid lattice constants [24,25]. It is well-known that LDA
and GGA functionals tend to overbind and underbind, re-
spectively, yielding generally too-small and too-large lattice
constants. The PBEsol GGA functional [61] was developed
specifically to improve the description of lattice constants for
solids by using the correct second-order gradient coefficient
for exchange.

Figure 3 compares the pressure-volume curve at 300 K
for SiO; in the stishovite structure calculated with a variety
of XC functionals with experimental values obtained from
diamond anvil cell experiments [62—65]. Results from the
meta-GGA functionals SCAN and fTSCAN, as well as the
aforementioned GGA PBESsol, are in much closer agreement
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FIG. 3. Comparison of computed cold curves for SiO, in the
stishovite structure for a variety of XC functionals with experimental
data (black points). Meta-GGA functionals SCAN and fTSCAN,
along with the GGA PBEsol functional greatly outperform the re-
maining GGA and LDA functionals.

with the experimental data than those calculated with the PBE
or KDT16 GGA functionals, or the LDA (PZ) functional.

Conclusions. A fully-thermal meta-GGA free-energy XC
functional fTSCAN, based on the ground-state SCAN
(strongly constrained and appropriately normed) functional
has been developed. Thermal effects are incorporated via T
dependence in the ingredients: LDA free energies, reduced
density gradients, and kinetic energy terms. Successful re-
production of the zero-T behavior of ground-state SCAN, a
regime in which meta-GGA functionals typically are more ac-
curate than lower-level functionals, is coupled with adherence
to high-7 limits where XC contributions become negligible.
In the intermediate temperature range characteristic of the
WDM regime, fTSCAN outperforms ground-state function-
als and achieves similar levels of accuracy as the thermal GGA
KDT16 functional while providing greater generality.

The thermalization scheme utilized in the construction
of fTSCAN is readily transferable to regularized-restored
[6] functionals and deorbitalized counterparts [66] derived

from SCAN. Deorbitalization allows for vast improvements
in computational scaling over orbital-based methods, advanta-
geous for calculations in the WDM regime which require large
numbers of bands. The regularization-restoration procedure
follows from the troubling numerical behavior exhibited by
SCAN in the high numbers of iterations required for conver-
gence of an SCF loop and its extreme sensitivity to the density
of numerical integration grids. The recent regularized and
restored (r>SCAN) functional [6] relaxes certain constraints
for drastic improvements in computational stability. The ac-
curacy of r?SCAN remains on par with SCAN over several
test sets [67]. Since numerical stability becomes increas-
ingly important for computations requiring thousands of SCF
iterations—such as AIMD simulations—adapting fTSCAN
to the regularized-restored framework will be key.
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