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I. Introduction 
      Density functional theory (DFT) [1–3] is the 
standard tool of modern computational materials 
physics and much of quantum chemistry. The 
present-day range of materials science, nano-scale, 
and bio-molecular applications of DFT is vastly 
wider  than  that  of   wave-function-based   methods
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because DFT methods are faster (require less computational resources) 
especially for relatively large systems (~ 1000 atoms). Only at high order and 
great computational expense do wave-function-based methods (so-called “ab 
initio” methods) routinely excel in accuracy relative to DFT. 
 To establish notation and terminology, we summarize the conventional 
Kohn-Sham (KS) approach [4] in non-spin-polarized form. To use the 
variational principle in DFT, Kohn and Sham introduced a reference (or 
“fictitious”, a somewhat misleading term) system of Ne non-interacting 
fermions with the same electron density n = nΨ as the real many-electron 
system in its ground state ⏐Ψ〉. These independent particles move in the 
effective potential vKS. The total energy then is decomposed into an explicit 
functional of individual one-particle orbitals,  and several explicit 
functionals of the electron density: 
 

    (1) 
 
Here  are respectively the usual nuclear-
electron attraction, Hartree (or classical Coulomb) electron repulsion, and 
electron exchange-correlation energy functionals, and Eion is the energy of 
nuclear-nuclear repulsion (or that of ion-ion repulsion in the case of 
pseudopotentials). The orbitals are implicitly functionals of the electron 
density, n, through the requirement 
 

                                                                                    (2) 

 
The explicitly orbital-dependent term Ts on the RHS of Eq. (1) is the kinetic 
energy (KE) of the model non-interacting system: 
 

                                                    (3) 

 
(We use Hartree atomic units unless indicated otherwise.) The difference 
between the interacting system KE and the KS model (non-interacting) 
system KE,  is a part of the DFT exchange-correlation functional 
Exc[n]. Variational minimization leads to a system of differential equations 
for the KS orbitals  
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                                                              (4) 

 
The effective potential vKS is the functional derivative with respect to density 
of the sum of the explicitly n-dependent terms on the RHS of Eq. (1): 
 

                                                 (5) 

 
 The main computational disadvantage of the KS approach is the explicit 
use of one-particle orbitals (though that also is part of the ingenuity of the 
method). Their presence is a serious barrier to repeated applications on large 
(> 1000 atoms) systems because of the scaling of computational cost with 
particle number. At least formally the scaling is O(N3), where N is 
proportional to Ne. Even with so-called order-N approximations (which are 
not general), the KS approach has this limitation. A major objective therefore 
is scaling with system volume (unit cell, simulation cell, etc.) rather than 
system population. 
 One of the applications which illustrates the criticality of this objective is 
calculation of Born-Oppenheimer (B-O) forces for driving the so-called 
quantum region of multi-scale molecular dynamics (MD) simulations. In 
such simulations, the system is partitioned into two types of zones. One is the 
chemically active, so-called quantum zone which typically is far from 
equilibrium and in which bond-breaking may occur. The other is an enclosing 
zone in which the internuclear forces are calculated from a classical potential. 
Because MD may require 103 to 105 or more steps, evaluation of forces in the 
quantum zone requires a fast quantum mechanical method that does not 
sacrifice realism. 
 An alternative approach to the use of KS orbitals is orbital-free (OF) 
DFT. In it, the total energy is expressed as a pure, explicit density functional  
 

                                           (6) 
 
Then, instead of a self-consistent field problem for N' KS orbitals, the 
variational minimization yields a single Euler equation: 
 

                                                                                   (7) 
 
Here µ is the Lagrange multiplier associated with density normalization, 

 Thus, in principle, the computational cost of OF-DFT 
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methods does not depend on the number of particles in the system since only 
a single equation, Eq. (7), need be solved irrespective of Ne. The 
computational cost therefore should scale as the spatial extent of the system. 
 The main barrier to widespread use of OF-DFT has been finding reliable 
approximations for the KS kinetic energy Ts as an explicit functional of the 
density. Note that the focus on Ts is important both conceptually and 
practically. The conceptual point is that the Coulomb virial theorem suggests 
very strongly that an effort to find the full T [n] would be tantamount to 
trying to find the universal functional whose existence was demonstrated by 
Hohenberg and Kohn [5]. The practical issue is that successful approximate 
Exc functionals were developed in the context of Ts.  
 The challenge of finding good KE functionals dates to the formulation of 
the primordial DFT, namely the Thomas-Fermi (TF) model [6, 7]. For the 
homogeneous electron gas, the TF noninteracting KE functional is 
 

                                            
(8) 

 
where  Solution of Eq. (7) with the TF model is inexpensive, 
but useless for real systems. The TF functional does not yield even a 
qualitatively correct representation of bound systems. Indeed, it cannot, as 
demonstrated by Teller’s non-bonding theorem [8]. Despite this fundamental 
flaw, one still encounters the TF functional in OF-DFT calculations (see 
Refs. [9–12]). 
 Another simple KE functional is the von Weizsäcker form  
 

                                           
(9) 

 
It is exact for one-electron and two-electron singlet states [13]. A linear 
combination of these two simplest approximations, TF and von Weizsäcker, 
has seen wide use in many OF-DFT applications (see discussion and 
references in Ref. [14]).  
 Generally, explicit KE energy functionals may be presented as 
expansions depending on the density and its higher-order spatial derivatives 
in the following “semi-local” form (for examples, see Refs. [15–24]):  
 

                                             
(10) 

 
Strictly, these are local functionals; “semi-local” refers loosely to the estimate 
of non-local behavior from derivatives.  
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 An alternative approach, which has drawn substantial attention in recent 
years, involves the introduction of two-point or non-local functionals of the 
form 
 

                                            
(11) 

 

Note that the two-point function w also may depend on the density [9–11]. 
The challenge for such two-point functionals again is two-fold: 
computational speed and compatibility with successful one-point exchange-
correlation (XC) functionals.  
 An approximate OF-DFT functional intended to provide B-O forces for 
MD must be correct not only at equilibrium nuclear geometries but also for 
states far from equilibrium. The purpose of the present work is to discuss 
recent advances in developing simple one-point kinetic energy functionals 
capable of predicting correctly the B-O interatomic forces for such MD 
applications of OF-DFT. In Section II, we start with a brief review of explicit 
one-point KE functionals that have been proposed previously by others. 
These functionals are based on the gradient expansion approximation (GEA) 
and the generalized gradient approximation (GGA), and in some cases also 
are motivated by the notion of “conjointness” [25]. In Subsections A and B 
we describe tests that show the failure of these functionals to predict, even 
qualitatively, the interatomic forces in the attractive region (near equilibrium) 
of simple molecules. In Subsections C and D we introduce some essential 
background and examine the extent to which existing functionals satisfy 
important constraints on the behavior of OF-KE approximations. Then, in 
Subsection E we describe the “modified conjoint” functionals we have 
developed for qualitatively or even semi-quantitatively correct prediction of 
B-O forces. Section III introduces new approximations for OF-KE 
functionals which arise from application of new constraints developed to 
eliminate near-nucleus singularities. That Section also includes exploratory 
tests of simultaneous prediction of the absolute value of the total energy and 
B-O forces. In Section IV we summarize the results of some severe tests of 
our OF-DFT approximations on solids. We close with Section V, a short 
Discussion.  
 Please note that, for convenience, in the present work we deal with 
functionals of the total density only, Ts[n]. Spin-polarized (open shell) 
systems could be treated with the appropriate spin-density generalization 
[26], to wit:  
 

                                                                   (12) 
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II. Explicit kinetic energy density functionals 
 

A. Kinetic and total energy 
 First we illustrate the present situation distinct from our own work. Many 
KE functionals have been presented in the literature with supporting 
arguments for claims of accuracy and utility. As an initial test of such claims, 
we selected six representative published KE functionals and studied their 
performance on a collection of diatomic and small polyatomic molecules in 
their equilibrium geometries. We began by determining the geometries and 
electron densities produced by conventional KS calculations in the local 
density approximation (LDA, a standard combination of the Slater exchange 
functional [27] and the Vosko, Wilk, and Nusair (VWN) approximation for 
correlation [28]). Then, for those geometries and densities, we compared, see 
Table I, the KS kinetic energies Ts with those predicted by the various KE 
functionals. Table I includes the Thomas-Fermi (TF) and von Weizsäcker 
(W) functionals, the second-order gradient expansion approximation (SGA), 
a GGA functional proposed by Perdew (GGA-P), the “PW91” functional of 
Lacks and Gordon, and the empirical or semi-empirical functionals of 
DePristo and Kress (DPK), Thakkar, and Tran and Wesolowski (PBE-TW). 
The details of the latter six (newer) functionals are presented in Section II-D. 
What is relevant here is the outcome of the test itself. Notice that the design 
objective of the KE functionals examined here was that they reproduce the 
KS kinetic energy as calculated by Eq. (3), which is therefore the correct 
answer in this context. We see that the TF and W functionals yield significant 
underestimates for all molecules except the two-electron case (the H2 
molecule), for which the von  Weizsäcker functional is exact. As the number 
of electrons increases, however, the W functional rapidly becomes poorer 
than  TF. The      newer  KE  functionals  have  significantly  smaller  percentage 
 
Table I. KS kinetic energy Ts values (in Hartrees) for selected molecules calculated 
using a representative set of explicit semi-local approximate functionals (see Sec. II-D 
for definitions). LDA-KS densities for LDA equilibrium geometries (with TZVP basis 
set) were used as input. 
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errors than the TF and W forms, either because they incorporate more density 
gradient information (SGA, GGA-P, PW91) or because they were fitted to 
give correct results for training sets of atoms (DPK, PBE-TW) or molecules 
(Thakkar). One might be tempted to conclude from Table I that the newer KE 
functionals are qualitatively satisfactory. 
 However, as a second and more crucial test, the same six approximate 
functionals were used for calculation of the KS kinetic energy and 
corresponding total energy for deformed geometries of simple molecules. 
The left-hand panels of Figs. 1 and 2 show  the  total  energy     as  a   function of  
 

 
 
Figure 1. Total energy (left panel) and gradient of the total energy (right panel) of the 
CO molecule as a function of bond length, calculated using six approximate OF-KE 
functionals, with the KS-LDA densities (TZVP basis set) as input. 
 

 
 
Figure 2. Total energy (left panel) and gradient of the total energy (right panel) of the 
H2O molecule as a function of one bond length with the other fixed at the KS-LDA 
equilibrium distance (0.9714 Å), calculated using six approximate KE functionals and 
with KS-LDA densities (TZVP basis set) as input. 
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bond length for CO and H2O (one bond stretched, the other clamped at the 
KS equilibrium value) respectively. Again, the OF-DFT total energy Eq. (6) 
was calculated from the converged KS density in the local density 
approximation. Calculations were done in a triple-zeta basis with polarization 
functions (TZVP) [29–31]) with Ts approximated by one of the selected 
functionals. None of the selected functionals correctly reproduces the 
behavior of the KS-LDA total energy near the equilibrium distance (Re = 
1.1318 Å for CO and R(H1–O)= R(H2–O)= 0.9714 Å for H2O). In particular 
there is no energy minimum; none of the six functionals predicts a bound 
molecular state. The numerical errors increase in magnitude for R ≥ Re. 
 
B. Interatomic forces 
 Because the approximate KE functionals fail to yield energy minima as a 
function of bond length, their predictions of interatomic forces at the LDA  
B-O level of approximation also are qualitatively incorrect. The B-O force on 
nucleus I is simply 
 

                                                                                 (13) 
 
 Continuing with test computations which used the KS-LDA density as 
input, we show gradients of the OF-DFT total energy as a function of bond 
length for the CO and H2O molecules, respectively, in the right-hand panels 
of Figs. 1 and 2. Consistent with the lack of energy minima just discussed, 
the force curves are purely repulsive, and what supposedly is the attractive 
region is described completely incorrectly. Clearly MD simulations cannot be 
based on any of these six approximate OF-DFT functionals.  
 We have not carried out the relatively laborious process of finding the 
density that minimizes the total energy with each of the six functionals 
studied. However, our work shows that these functionals cannot reproduce 
the KSLDA densities and simultaneously yield qualitatively correct B-O 
potential curves for representative small molecular systems. 
 
C. The Pauli term 
 It has been very productive to employ known exact behaviors, (e.g. 
scaling, bounds, limits), as constraints on approximate forms for exchange-
correlation functionals, as evidenced by the success of generalized gradient 
approximations (GGA) for Exc. To extend that constraint-based framework to 
KE functionals, it is beneficial to use known properties, specifically to 
decompose the KS kinetic energy functional Ts[n] into the von Weizsäcker 
term TW[n], plus a non-negative remainder, known as the Pauli term, Tθ[n] 
(see [32–35]): 
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                                                                 (14) 
 
The non-negativity of Tθ is a crucial advantage of this particular 
decomposition. Then the single Euler equation Eq. (7) corresponding to the 
electronic part of the OF-DFT energy EOF−DFT functional takes the following 
Schrödinger-like form [33–35]:  
 

,                                        (15) 

 
where vθ is the Pauli potential 
 

                                                           
(16) 

 
Equation (15) follows from 
 

                                        
(17) 

 
 The exact formal expression for the Pauli KE kernel tθ  in 
terms of KS orbitals is defined [35] by  
 

                                                      (18) 
 
In Ref. [35] it is shown that tθ is also non-negative: tθ ([n]; r) ≥ 0 for all r, as 
one might expect.  
 A useful formal expression for vθ in terms of tθ and the KS orbitals and 
eigenvalues follows from an argument due to Levy and Ou-Yang [35], itself a 
variant on work of Bartolotti and Acharya [32]. Multiply Eq. (4) from the left 
by  sum over i, add εN' to both sides, rearrange, and divide by n(r). One 
gets:  
 

                                    (19) 

 
Now, noting that from the exact asymptotic behavior of the electron density 
[1, 34, 35] we can identify µ of Eq. (7) as εN', we use that equation to replace 
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the RHS of Eq. (19) with δTs[n]/δ(r), which, based on Eq. (14) we write in 
the form δTs[n]/δ(r) ≡ vW([n]; r)+vθ([n]; r). Finally, replacing torb(r) by its 
equivalent as given in the second line of Eq. (18), we reach the exact result 
 

                                          
(20) 

 

We reiterate that the non-negativity of vθ,  
 

                                                                                                  (21) 
 
is an extremely important property. It is explicit in Eq. (20), where vθ is 
presented as a sum of two non-negative terms. As discussed above, the 
applications of OF-DFT we have in mind require that the orbital-dependent 
kinetic energy Eq. (3) be approximated. In view of Eqs. (14) and (18), finding 
an approximation for  means finding an approximation for the Pauli 
term Tθ[n] such that these positivity constraints are respected.  
 Now consider the implications for interatomic force calculations of the 
introduction of approximations to Ts. From Eq. (13) and in notation that 
explicitly exhibits the roles of vW, vθ, and vKS, the force assumes the form  
 

                  (22) 
 
Equation (22) shows that there are three sources of error for the calculated 
forces: errors introduced by approximation of the exchange-correlation 
energy (and the corresponding vKS), those due to use of an approximate vθ 
(obtained from an OF-KE functional), and those due to use of an approximate 
density n. Roughly speaking, an error in the calculated density will be of 
comparable effect in all three of the v terms in the integrand of Eq. (22). 
However, the approximated vθ is much larger than the approximated part of 
vKS, and errors in vθ will dominate the force calculation unless the OF-KE 
functional is obtained to higher relative accuracy than the exchange-
correlation functional.  
 
D. Generalized gradient approximation and conjoint KE 
functionals 
 A gradient expansion for Ts[n] which provides, at least in principle, a 
formal systematic way of improving upon the TF kinetic energy functional is 
given by (see [16–19] for details) 
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                                      (23) 
 
Here t0 = tTF, t2 is 1/9th of the Weizsäcker kinetic energy [Eq. (9)], and t4 is 
 

                           
(24) 

 
The sixth-order term, which depends on n, |∇n|, ∇2n, |∇∇2n| and ∇4n was 
obtained in [17]. The Laplacian term ∇2n affects only the local behavior of 
the kinetic energy density since ∇2n integrates to zero, but there exist 
arguments both for including and for excluding it in the definition of the KE 
density functional; for example, see [19, 36]. 
 Introducing the definition kF = (3π2n)1/3, we define the dimensionless 
reduced density gradient  
 

                                                                          (25) 

 
(familiar in GGA XC approximations) and the reduced density Laplacian 
 

                                                                       (26) 

 
Expressing the von Weizsäcker kinetic energy in terms of s, one finds 

 and using the partition of the KE functional defined by Eq. (14), 
the GEA of Eqs. (23)–(24) can be seen to correspond to the following 
expression for the Pauli KE: 
 

                               (27) 

 
where 
 

                                                           (28) 
 

                                                              (29) 
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and  
 

                                         (30) 
 
 The SGA defined by Eqs. (28)–(29) improves significantly upon the 
Thomas-Fermi model; recall values in Table I. A related class of KE 
functionals has a form motivated by the generalized gradient approximation 
(GGA) for the exchange-correlation energy [20]. These KE functionals can 
be written  
 

                                                         (31) 

 
where Ft is a kinetic energy enhancement factor that is a functional of the 
reduced density gradient s. The SGA is a special case of the GGA form 
defined by the foregoing equation. 
 An equation parallel to Eq. (31) can be written to define the GGA form 
for the Pauli term (see [14]): 
 

                                             
(32) 

 
Here Fθ is a modified enhancement factor related to Ft by 
 

                                                                        (33) 
 
The non-negativity of tθ means that Fθ also must be non-negative everywhere.  
 The consequences of these exact properties are illustrated in Fig. 3. For 
conventional KS calculations with LDA XC and using numerical orbitals, the 
figure shows the exact orbital-dependent tθ, the corresponding Pauli potential 
vθ  and enhancement factor Fθ calculated along the internuclear axis for the N2 
and SiO diatomic molecules with slightly stretched bonds (see figure 
caption). The figure also shows the electronic density, scaled by an atomic-
like radial factor to reveal the shell structure. All three quantities, tθ, vθ, and 
Fθ are everywhere non-negative, as they should be. A point that will become 
important shortly is that the exact vθ is finite at the nuclei for both molecules 
and has local maxima in positions close to the inter-shell minima of the 
electronic density. The  local maxima  between  the  nuclei are lower than the  
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Figure 3. Electronic density (scaled by the factor 4π(|z| − R/2)2, with R the 
internuclear distance), Pauli term, Pauli potential, and enhancement factor Fθ [see Eq. 
(33)], calculated for points on the internuclear axis using KS LDA fully numerical 
orbitals. Left panel: N2, atoms at (0, 0,±0.6993)Å; right panel: SiO, Si at (0, 
0,−0.963), O at (0, 0,+0.963)Å. 
 
maxima in the outer region to form a kind of confinement potential for the 
Schrödinger-like equation, Eq. (15). Analogous atomic results for the kinetic 
energy and modulating factor AN (which is related to the enhancement factor 
Ft) are published in [37]. The relation between AN and Ft is established in [38].  
 The GGA is highly successful in models for Exc. Various authors 
therefore have sought to construct GGA kinetic energy functionals by 
exploiting the “conjoint gradient correction” hypothesis first put forward by 
Lee, Lee, and Parr (LLP) [25]. The LLP conjointness conjecture is that the 
KE enhancement factor Ft(s) has the same analytical form as the 
enhancement factor Fx(s) used in the GGA exchange energy functionals. This 
conjecture leads us to a more detailed consideration of enhancement factors. 
 We therefore examine the detailed form of the six KE functionals which 
were introduced in our initial tests, and also were studied as a representative 
set of semi-local explicit density functionals in Ref. [39]. The first of these 
functionals is: 
 
(i) The SGA defined by t0 + t2, or  
 

                                                             
 (34)

 
 
The other five functionals are defined by their enhancement factors Ft within 
the GGA form: 
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(ii) An ab-initio GGA functional proposed by Perdew [20] (GGA-P), 
 

                                            (35) 

 
(iii) The PW91 kinetic energy functional constructed by Lacks and Gordon 
[21]. It is “conjoint” to the Perdew-Wang-91 exchange energy functional, and 
has the form  
 

                                                                                                                      (36) 
 
(iv) The semi-empirical functional proposed by DePristo and Kress (DPK) 
[22], where Ft(s) is in the Padé approximant P4,3(s) form with some 
parameters fixed from the requirement of satisfaction of exact conditions on 
the KE and others determined by fitting to the known total kinetic energies of 
four closed shell atoms, 
 

     
(37) 

 
with y(r) = tW/9tTF. 
 
(v) A functional introduced by Thakkar [23] with the enhancement factor 
constructed as a heuristic combination of enhancement factors of different 
GGA functionals and with parameters fitted to the kinetic energies of 77 
molecules (this functional is claimed to be one of the most accurate 
functionals of the GGA form), 
 

            
(38) 

 
with b = 2(6π2)1/3. 
 
(vi) The Tran and Wesolowski functional [24] (PBE-TW), which includes an 
enhancement factor defined by a simple form first used for Ex by Becke [40] 
and later by Perdew, Burke, and Ernzerhof [41]: 
 

                                                                            (39) 
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with C1 = 0.2319 and α1 = 0.2748. The two parameters in the PBE-TW 
functional were adjusted to recover the exact KE of the He and Xe atoms. 
Because the enhancement factor is not precisely the same as in the underlying 
Ex approximation, the PBE-TW functional is not strictly conjoint, but close 
enough to be considered as such. It too is claimed to be among the most 
accurate GGA KE functionals.  
 As was mentioned in [39], the KE of finite molecular systems is almost 
totally determined by the behavior of Fθ over a relatively small range of 
reduced density gradient s, not the asymptotic regions. The various 
enhancement factors Fθ as functions of s2 on the interval [0, 2] are shown in 
Fig. 4. Surprisingly, all six enhancement factors are indistinguishable on the 
scale of the figure for s2 < 1 and have linear behavior close to those of the 
SGA: . This behavior is important in analyzing what goes 
wrong with these six functionals.  
 For this purpose we look at the test molecule, N2, whose accurate 
enhancement factor Fθ was shown in Fig. 3. The left panel of Fig. 5 shows 
gradients of the N2 total energy as a function of internuclear distance. As in 
the earlier examples, none of the six tested functionals predicts a bound state, 
and what should be the attractive region of the gradient curve is qualitatively 
completely wrong. As discussed already, the dominant error in the calculated 
forces for such a non-self-consistent OF-DFT calculation (i.e., one with     
self-consistent  conventional                 KS   density  as   input)   is  introduced   by   the  
 

 
 
Figure 4. Enhancement factor Fθ of various GGA kinetic energy functionals as 
functions of s2.  
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Figure 5. Left panel: Gradients of the total energy of the N2 molecule for six KE 
functionals. Right panel, for N2, atoms at (0, 0,±0.6993)Å: Electronic density (scaled 
by the factor (4π(|z| − R/2)2, with R the internuclear distance), Pauli term, Pauli 
potential, and enhancement factor Fθ, calculated for points on the internuclear axis. 
The density is from a KS LDA calculation with fully numerical orbitals; the other data 
are from the conjoint GGA PBE-TW functional. 
 
approximation for the Pauli term Tθ. We chose the PBE-TW functional for 
detailed tests; all six will give qualitatively the same outcomes. The right 
panel of Fig. 5 shows graphs of the approximate  and 

 for N2, calculated along the internuclear axis for the same bond 
length within the attractive region as in Fig. 3. We see that the energy density 
of the Pauli term and corresponding enhancement factor have negative peaks 
in the inter-shell regions, a behavior that violates the condition of non-
negativity of tθ. Note, however, that we should remember the ambiguous 
definition of a kinetic energy density: adding ∇2n to the Pauli term will 
change only the local behavior of tθ and Fθ, not the value of Tθ. The Pauli 
potential for the PBE-TW functional has very sharp negative peaks exactly at 
the nuclear positions, while the “exact” Pauli potential is finite at the nucleus 
and positive everywhere (compare to Fig. 3). The local inter-shell maxima 
are present, just as in the orbital-dependent KS results. Closer inspection of 
the figure shows, however, that the relative heights of these peaks do not 
correspond to those of the orbital-dependent KS results. The outer-region 
peaks are lower than the peaks lying in the inner internuclear space. In that 
sense, vθ is not a confinement potential. 
 To understand the erroneous behavior of the GGA Pauli potential at the 
nuclei, let us analyze this term as was done in [39, 42]. Taking the functional 
derivative of the Pauli term, Eq. (32), we obtain 
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                                                                                                                      (40) 
 
Note that Eq. (34) of Ref. [39] omitted the last line of Eq. (40). In Ref. [39], 
we estimated the potential  near a point nucleus from the nuclear-cusp 
behavior 
 

                                                                           (41) 
 
which follows from Kato’s cusp condition [43] for an exact electron density 
(see also references in [3]): 
 

                                                          (42) 
 
Here nav is the spherical average of the density and ZI is the charge of nucleus 
I. If we take  on the  basis of the numerical evidence summarized 
in Fig. 4, after relatively simple algebra we find that  
 

                                                                                 (43) 
 
which shows that the GGA Pauli potential is singular at the nuclei. Moreover 
the singularity is negative, since a < 0 for the GGA functionals we tested (see 
Fig. 4). It follows that near the nuclei  which contradicts the 
requirement of non-negativity; recall Eq. (21). However, the improper 
negative sign of the singularity could be fixed by choosing an enhancement 
factor with a suitable Taylor series expansion near the nuclei; see subsequent 
discussion. 
 
E. Modified conjoint kinetic energy functionals 
 As summarized in previous sections, all the tested KE functionals fail to 
provide qualitatively correct forces in what should be the attractive region for 
simple molecules (CO, H2O, N2). The situation is similar for many other 
diatomic and polyatomic molecules which we tested; most of these tests were 
on molecules containing Si–O bonds. We next consider how to make 
improvements without complicating the form of the enhancement factors. 
 The criterion for fitting the empirical parameters in many GGA-like KE 
functionals can be  defined  in  terms of an energetic objective function, namely  
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 (44) 

 
where ωE is to be minimized over systems (atoms, molecules) indexed by i. 
When the parameter adjustment is done for fixed-density inputs (i.e., 
conventional KS densities as inputs), this total energy optimization is 
equivalent to optimization of the Ts functional. 
 In Ref. [39], to obtain a KE functional which is qualitatively correct in 
the attractive region for a single molecule, the authors tried to use the 
criterion Eq. (44) for different geometries of the SiO diatomic molecule. In 
that case the index i runs over different geometries of the system. The 
approach failed. In its place, a so-called ∆E criterion was used. The target 
function to be minimized is then  
 

                                                      
(45) 

 
where for nuclear configuration i of molecule  with 

 the energy associated with the equilibrium nuclear configuration as 
predicted from conventional KS computations. The criterion defined by Eq. 
(45) is almost equivalent to the direct fitting of a finite-difference 
approximation for the internuclear forces. Starting from enhancement factors 
with analytical forms equivalent to those for the exchange energy and using 
the ∆E criterion for parameter optimization, we obtained a set of modified 
conjoint KE functionals. 
 The most successful enhancement factors in that study were those 
defined by PBE-like analytical forms 
 

                                                       
(46) 

 
with n = 2 and n = 4. Parameters obtained by using the ∆E criterion for very 
specific small training sets (see details in [39]) are the following: C1 = 2.0309 
and α1 = 0.2942 for the PBE2 enhancement factor, and C1 = −7.2333, C2 = 
61.645, C3 = −93.683, and α1 = 1.7107 for PBE4. The modified conjoint 
PBE2 functional has exactly the same analytical form as the GGA-conjoint 
PBE-TW functional (but in the latter the parameters were chosen to recover 
the KE of the He and Xe atoms). 
 Figure 6 (left panel) compares PBE2 and KS (“exact”) gradients of the 
total energy for N2. The PBE-TW curve is plotted again for comparison. The 
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Pauli KE energy density tθ, the Pauli potential vθ, and the enhancement factor 
Fθ corresponding to the PBE2 functional are shown in the right panel. The 
main deficiency of the GGA KE functionals (the PBE-TW functional is taken 
as the example), namely the negative singularity of the Pauli potential at the 
nuclei, is eliminated in the modified conjoint PBE2 kinetic energy functional 
(compare with Fig. 5). The PBE2 Pauli potential is positive everywhere (see 
further comment below). As a result, the attractive region of the energy 
gradient surface is described at least qualitatively correctly (see right panel). 
Equations (40)–(43) also are valid for the modified conjoint KE functionals, 
and the PBE2 potential is still divergent at the nuclei in accordance with Eq. 
(43). The PBE2 Pauli energy density, tθ and enhancement factor are positive 
in the inter-shell regions.  
 Though vθ is properly positive everywhere, the observant reader may 
notice that this is not true for tθ, which at large internuclear separations is in 
violation of the positivity constraint noted just after Eq. (18). However, the 
violation is inconsequential and does not cause a corresponding violation in 
vθ, as other contributions  to vθ [cf. Eq. (20) for  the  exact vθ] are positive  
and larger     than  the erroneous      negative term. Moreover, vθ is small within the  
 

 
 
Figure 6. Left panel: Gradients of the total energy of the N2 molecule for the PBE2 
modified conjoint GGA potential, compared with results from the PBE-TW potential 
and the exact value. Right panel (in same layout as the right panel of Fig. 5), for N2, 
atoms at (0, 0,±0.6993)Å: Electronic density (scaled by the factor (4π(|z|−R/2)2, with 
R the internuclear distance), Pauli term, Pauli potential, and enhancement factor Fθ, 
calculated for points on the internuclear axis. The density is from a KS LDA 
calculation with fully numerical orbitals; the other data are from the PBE2 modified 
conjoint GGA functional. 
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region in question and in any case would not have a significant effect on the 
total energy. 
 Finally, we note that the exact Pauli potential Eq. (18) is finite at the 
nuclei (see Fig. 3). In contrast, the positive singularity of the PBE2 Pauli 
potential is an example of a remaining flaw that causes our modified conjoint 
functionals to overestimate the noninteracting kinetic energy Ts. 
 

III. Reduced density derivatives approximation 
(RDA) 
 Equations (40)–(43) show that a divergence of the Pauli potential at the 
nuclei is an unavoidable property of any approximation for which the 
enhancement factor depends on the reduced density gradient only as, for 
example, in the GGA, GGA-conjoint and modified conjoint KE functionals. 
A resolution of this problem requires the finding of new variables for 
construction of KE enhancement factors. In Refs. [42] and [44], procedures 
involving such new variables were introduced. A preliminary summary of 
this new approach is presented here. 
 
A. New variables: Reduced derivatives of the density 
 The gradient expansion in Eq. (27) can be rearranged straightforwardly 
into a GGA-like form: 
 

                                                                  (47) 
 
where s, p, . . . are dimensionless density derivatives as defined in Section II; 
recall Eqs. (25) and (26). The first two terms of the expansion yield the SGA 
enhancement factor. From Eqs. (28) and (29), we have 
 

                                                           (48) 
 
with α2 = −40/27. The fourth-order term [cf. Eq. (30)] is F(4) 
 

                                                                            (49) 
 
with coefficients α4 = 8/243, b2 = 8/81, and c21 = −1/9. 
 With the foregoing functional forms as a guide, our objective is to 
identify combinations of the dimensionless derivatives (at this time only s 
and p) which lead to enhancement factors that are finite at the nuclei and 
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respect positivity. The first step is to evaluate the Pauli potential vθ resulting 
from the forms in Eqs. (48) and (49), but with arbitrary values allowed for the 
coefficients appearing therein. Taking functional derivatives, and defining 

 to be the contributions to vθ arising from the corresponding 
contributions to tθ, we find after some manipulation     
 

                                                                 (50) 

 

         (51) 

 
where the new quantities q, q', q'', and q''' are dimensionless derivatives of 
order four: 
 

                                            
(52) 

 
                                                              (53) 

 
                                                                  (54) 

 
                                                        (55) 

 
The operator denoted by a colon in the last two numerators corresponds to 

 
 To find the behavior at the nuclei, we again invoke the form of the 
density at small distances r from a point nucleus of charge Z given in Eq. 
(41), with the result that the dimensionless derivatives s and q remain 
convergent and that  
 

                                                                   (56) 
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The remaining derivatives in Eqs. (50) and (51) have divergent limiting 
behaviors at small r. Substitution of the small-r limits of the dimensionless 
derivatives into Eqs. (50) and (51) gives 
 

                                                 (57) 
 

                         
                                                                                                                      (58) 
 
 Equation (57) confirms our earlier statement that an enhancement factor 
of the SGA form leads to a Pauli potential that is inherently singular (as 1/r) 
at point nuclei. Clearly, without completely removing the s2 term from  
we cannot choose its coefficient in a way that cures the singularity. However, 
the situation is quite different for the fourth-order contribution to the Pauli 
potential, . The singularities in  can be eliminated by the simple 
expedient of choosing α4, b2, and c21 so as to cause the r−2 and r−1 terms of 
Eq. (58) to have vanishing coefficients. That requirement leads to the 
relationships 
 

                                                                                                 (59) 
 
and leads us to define the reduced derivative of density (RDD) at fourth order 
to be  
 

                                                                                (60) 
 
A Pauli term defined by the enhancement factor of fourth order given in Eq. 
(49), but with parameters constrained by Eq. (59) (i.e.   ), would 
produce a Pauli potential with finite values at the nuclei. 
 Though there is no direct means of removing the divergence of  
analogous to the way just shown for , we can define, by analogy with Eq. 
(60), a second-order RDD: 
 

                                                                                                (61) 
 
Then we make the observation that 
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(62) 

 
produces, for small r, the Pauli potential 
 

                                                               (63) 

 
where  are positive constants. 
 The strategy of requiring finiteness of an approximate Pauli potential at 
the nuclei may be used to define RDDs of mixed order in which different 
powers of s are combined. Observe that the Pauli potential for each Fθ(s) = sn 
(n = 2, 4, ...) has the same type of singularity at small r, vθ ~ 1/r. Hence two 
divergent terms corresponding to different powers of s can be combined with 
coefficients that cause cancellation of the divergences. For example, the  
Pauli potential corresponding to the two-term enhancement factor 

 is 
 

                              (64) 

 
and we can cause Eq. (64) not to have a nuclear-site divergence by taking 

 where the reduced density derivative κ24 is defined as 
 

                                                                                      (65) 
 
Thus, we define a class of approximate KE functionals, the reduced 
derivative approximation (RDA) KE functionals, as those with enhancement 
factors written in terms of RDDs 
 

                      
(66) 

 
and having non-divergent Pauli potentials. This route of development of KE 
functionals is under active investigation. As already noted in the second-order 
case, not every enhancement factor or depending on κ2, κ4 etc. will produce a 
Pauli potential which is finite at the nuclei. Table II displays examples of 
analytical forms which produce finite and divergent Pauli potentials. 
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Table II. Examples of analytical forms of the Fθ  enhancement factor that produce a 
Pauli potential with behavior at the nuclei that is finite (“Finite” column) or divergent 
(“Divergent” column). Here n,m = 1, 2, ...; Pn,m(x) is the Padé approximant of order 
n,m; and κ2, κ4, and κ24 are reduced density derivatives defined in the text.  
 

 
 
B. Energy and forces simultaneously: Preliminary results 
 Reference [39] reported unsuccessful attempts to fit the parameters of a 
GGA form of KE functional for simultaneous prediction of energy and 
forces; recall brief mention above. Here we apply the energy criterion defined 
by Eq. (44) to the newly developed RDA functional form, comparing the 
results with our earlier studies in which modified conjoint functionals were 
fitted by the ∆E (optimized force) criterion. 
 The RDA functionals examined so far are of the simple two-parameter 
form  
 

                                                       (67) 
 
the j values we considered were 2, 3, and 4. In this preliminary study we 
fitted the parameters C and a first to the KS interatomic potential for the 
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single molecule SiO, optimizing the parameters for a set of six bond lengths. 
We found it possible both to approach closely the KS data and to obtain 
qualitatively correct behavior in both the repulsive and attractive part of the 
potential curve. A second, separate set of parameters was also found to give a 
quantitatively satisfactory interatomic potential for N2. The SiO data are 
presented in Fig. 7. The left panel of the figure shows that it is possible to 
obtain a potential curve of a qualitatively correct shape and energy from the 
RDA calculation, eliminating nearly all of the extremely large absolute 
energy error associated with the PBE2 calculation. Incidentally, we comment 
that this PBE2 energy error is larger than what we found to be typical. The 
right panel of the figure provides a comparison of the forces predicted by the 
various calculations. We see that both the approximate methods, PBE2 and 
RDA, predict the equilibrium bond length quite accurately, and that (as was 
pointed out in Section II-E) the PBE2 method yields very satisfactory 
interatomic forces in the entire attractive region and for the physically most 
important part of the repulsive region. The RDA curve, constructed with the 
more ambitious objective of reproducing both the absolute energy and the 
interatomic force, is qualitatively correct in both the attractive and repulsive 
regions, but with two to four times as much error as the PBE2 force curve. 
 We next attempted to study the transferability of the RDA parameters by 
optimizing a single parameter set (C, a) for the two molecules SiO and N2. 
We were able to obtain potential curves that exhibited bonding for both 
molecules, albeit with energy errors that were three to four times as large as 
those found for the single-molecule fits. 
 

 
 
Figure 7. Total energy (left panel) and its derivative with internuclear distance (right 
panel) for SiO. Comparison of accurate Kohn-Sham (KS) results with those using the 
RDA kinetic-energy functional, Eq. (67), and the PBE2 modified conjoint kinetic-
energy functional, Eq. (46). The PBE2 total energy is not visible in the left panel 
because it lies approximately 220 hartree higher than the other curves. 
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 We close this section by observing that the methods used for singularity 
removal will only be effective if we ensure that the calculated densities 
satisfy Kato’s cusp condition, and that the use of RDD’s does not 
automatically guarantee the non-negativity of the Pauli potential. While the 
present study neither addresses these questions nor demonstrates full 
parameter transferability within the context of RDA calculations, the RDA 
approach appears quite promising. 
 

IV. Non-self-consistent application to solids 
 Finally, we consider a very harsh test, namely the prediction of the 
equilibrium unit-cell volumes of two polymorphs of crystalline silica, namely 
coesite (48 atoms in unit cell, c/a = 1) and β-quartz (9 atoms in unit cell, c/a 
= 1.09). The objective was to compare the results from selected GGA KE 
functionals with those from a modified conjoint KE functional of the PBE4 
functional form. The functionals were implemented in the SIESTA 
computational package [45] to provide tests similar to those reported for 
small molecules in Section II. Specifically, within SIESTA we used the PBE 
exchange-correlation functional, a norm-conserving NLPP [46] in the 
Troullier-Martins (TM) form [47], and a double zeta plus polarization (DZP) 
numerical atomic orbital (NAO) basis set. Unit-cell integrations were carried 
out by the Monkhorst-Pack scheme [48], with a 3×2×3 point sampling for 
coesite and a 3×3×3 grid for β-quartz. To simplify the calculations, the 
dependence of energy on cell volume was obtained by scaling the unit cell 
vectors without any attempt to optimize intra-cellular atomic positions. 
 The GGA KE functionals we studied for these crystalline systems were 
the SGA and that of Tran and Wesolowski (PBE-TW). The parameters of the 
PBE4 modified conjoint functional were obtained from a training set of three 
molecules with Si–O bonds by procedures discussed more fully in Ref. [39]. 
 Our strategy was to determine how the calculated results are altered 
when we make precisely one change, namely to replace the conventional KS 

 with the approximate Ts[n], using the self-consistent density as 
input [42]. Strictly speaking, this is not the OF-DFT result for that 
approximate functional, because nonlocal pseudopotentials (NLPP) are used 
in the KS calculation, and there are small contributions to the total energy 
which depend on the orbitals through the pseudopotentials. We also note that 
the modified conjoint functionals were parameterized using all-electron 
densities, and there is no guarantee that these functionals will be fully 
appropriate        for pseudopotentials and  their pseudodensities. These limitations 
contribute to the severity of the test, making it provide an interesting 
comparison of the GGA and modified conjoint approximate KE functionals. 
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Figure 8. Total energy per SiO2 unit, relative to equilibrium value, of coesite (left 
panel) and β-quartz (right panel), as a function of volume. Energies obtained using 
approximate KE functionals have been computed using KS densities. 
 
 Figure 8 shows the total energy per SiO2 unit as a function of cell volume 
for each of the two silica polymorphs, calculated using the three OF-KE 
functionals (SGA, PBE-TW, and the modified conjoint functional PBE4), 
together with the results of the conventional (orbital-dependent) KS method. 
The most striking observation provided by the figure is that the PBE4 
functional gives reasonable volumes per SiO2 unit, correctly predicting the 
large specific volume difference between the two polymorphs. From a 
quantitative perspective the PBE4 results are also quite encouraging, yielding 
volumes only about 5% smaller than the “exact” values. In contrast, the GGA 
functionals overestimate the specific volumes by large amounts, with the 
more sophisticated PBE-TW giving poorer results than the relatively simpler 
SGA. 
 

V. Discussion 
 The main ingredient needed for a successful OF-DFT approach is a 
reliable density functional for kinetic energy. While existing semi-local KE 
functionals of the GEA or GGA type predict reasonable values of the KE, 
they do not satisfactorily predict its change with geometric configuration and 
therefore do not yield acceptable interatomic forces, even for simple diatomic 
and polyatomic molecules. We have traced this poor performance to the 
violation of the non-negativity condition that must be satisfied by the Pauli 
potential, and have taken initial steps to remedy the situation by introducing 
modified conjoint KE functionals that correspond to acceptable Pauli 
potentials and generate qualitatively reasonable interatomic forces. The first 
modified conjoint functionals we have examined still have the deficiency that 
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they are singular at the nuclear positions; this does not make them 
qualitatively unacceptable, but does cause them to overestimate to some 
degree the kinetic energy. We have shown that it is not possible to develop 
purely GGA KE functionals that simultaneously satisfy positivity and 
finiteness of the Pauli potential. 
 We have carried out a preliminary investigation of the use of reduced 
density derivatives and related reduced-density-approximation functionals as 
a step toward the simultaneous description of kinetic energies and interatomic 
forces. At this point the functional forms we have examined, e.g. Eq. (67), 
may be too simple to be capable of providing robust and transferable KE 
functionals for practical OF-DFT applications. Work toward those objectives 
is underway. Note that Perdew and Constantin [49] recently have presented a 
KE functional involving a modified fourth-order gradient expansion and the 
decomposition of Eq. (14) (though they do not state it that way). We note that 
the form they propose involves a rather complicated functional interpolation 
between the gradient expansion and the von Weizsäcker functional. The 
paper does not discuss the corresponding potential vθ and the performance for 
small molecule dissociation is characterized as “still not accurate enough for 
chemical applications”. For us, these outcomes are additional confirmation of 
the opportunity for progress along the lines presented above. 
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