Finite-temperature Exchange-Correlation Functionals: Developments and Implications

S.B. Trickey, V.V. Karasiev, L. Calderín, J.W. Dufty

Quantum Theory Project
Department of Physics
University of Florida

http://www.qtp.ufl.edu/ofdft April 10, 2017

© 06 April 2017

Univ. Florida Orbital-Free DFT & Free-energy DFT Group

Sam Trickey
Jim Dufty
Valentin Karasiev
Kai Luo
Daniel Mejia

Affiliates: Frank Harris (U. Utah); Keith Runge (U. Arizona) Alumni: Lázaro Calderín, Deb Chakraborty, Támas Gál,

Olga Shukruto, Travis Sjostrom

Funding Acknowledgments: U.S. DoE DE-SC0002139

U.S. NSF DMR-1515307

Publications, preprints, local pseudopotentials, and codes at http://www.qtp.ufl.edu/ofdft

Motivation, Physical problem

Warm Dense Matter (WDM)

• Challenging region between normal condensed matter and plasmas:

 $T < 100 eV (\approx 1,100,000 K)$

Densities: from gas to $\approx 100 \times$ equilibrium density (i.e. $P \rightarrow$ thousands of GPa).

- Inertial confinement fusion pathway; interiors of giant planets & exo-planets, shock compression experiments
- Both the Coulomb coupling constant $\Gamma = e^2 / r_s k_B T$ and the Fermi-degeneracy parameter $t = \theta := k_B T / E_F$ are in the intermediate region \Rightarrow no perturbation expansion.
- Methods developed for WDM regime also work well for high-energy density physics and dense plasmas.

Motivation, Physical problem

Warm Dense Matter (WDM)

Schematic temperature-density diagrams - Left: Hydrogen [from R. Lee, LLNL] Right: Aluminum [Phys. Today <u>63</u>(6), 28 (2010)]

<u>Left:</u> Interior of Saturn [J.J. Fortney, Science 305, 1414 (2004)]:

- (1) At an age of \approx 1.5 billion years
- (2) The current Saturn according to previous H-He phase diagram
- (3) The current Saturn according to new evolutionary models

Right: ab initio MD snapshot of <u>low density</u> Al (0.20 g/cm³) at T=5 kK. Shows complexity of WDM regime, formation of ions, molecules, and clusters.

Ab initio Molecular Dynamics (AIMD)

Molecular dynamics

$$m_I \mathbf{R}_I = -\nabla_I V(\mathbf{R}_1, \mathbf{R}_2, \cdots, \mathbf{R}_N)$$
Computational Load: the
Born-Oppenheimer free- energy
surface

$$V\left(\left\{\mathbf{R}\right\}\right) = F\left(\left\{\mathbf{R}\right\}\right) + E_{ion-ion}\left(\left\{\mathbf{R}\right\}\right)$$

Current best practice uses Free Energy Density Functional Theory with explicit Kohn-Sham orbitals - cost scales as cube of the number of occupied levels.

$$\Omega[n] = F[n] + \int d\mathbf{r} (v_{ext}(\mathbf{r}) - \mu) n(\mathbf{r})$$
 Grand potential

$$F[n] = F_s[n] + F_H[n] + F_{xc}[n]$$
 Universal free energy functional

 $F_H[n]$ = Hartree free energy, $F_s[n]$ = Non-interacting (KS) free energy,

$$F_{vc}[n] = XC$$
 free energy

Kohn-Sham problem

scales last M^3 is tabeout \bot at p has $\varphi(\mathbf{r}_1; \{\mathbf{R}\}) + v_{xc}(\mathbf{r}_1; \{\mathbf{R}\}; \beta) + v_{ext}(\mathbf{r}_1; \{\mathbf{R}\})$ of the table ares the pensive $-\mathbf{J.W.D.}$

problemly (circa 1975)
$$n\left(\mathbf{r}_{1};\left\{\mathbf{R}\right\}\right) = \sum_{j} f\left(\varepsilon_{j};\beta\right) \left|\varphi_{j}\left(\mathbf{r}_{1};\left\{\mathbf{R}\right\}\right)\right|^{2} ; v_{xc}\left[n\right] = \frac{\delta F_{xc}}{\delta n} ; \beta = 1/k_{B}T$$

Computational Challenge of ab-initio MD

KS computational cost scales as cube of the number of occupied levels. Scaling worsens with increasing T (noninteger occupation).

Orbital-free Free Energy DFT – No explicit KS orbitals. Scales with system size.

Mermin, **Hohenberg-Kohn DFT**

$$\Omega[n] = F[n] + \int d\mathbf{r} (v_{\text{ext}}(\mathbf{r}) - \mu) n(\mathbf{r})$$
 Grand potential

$$F[n] = F_s[n] + F_H[n] + F_{xc}[n]$$
 Universal free energy functional

 $F_{\rm H}[n] = \text{Hartree free energy}, F_{\rm s}[n] = \text{Non-interacting (KS) free energy},$

$$F_{\rm xc}[n] = {\rm eXchange\text{-}Correlation}$$
 (XC) free energy

KS equation

$$\left\{-\frac{1}{2}\nabla_{r_{1}}^{2} + v_{H}\left(\mathbf{r}_{1};\left\{\mathbf{R}\right\}\right) + v_{xc}\left(\mathbf{r}_{1};\left\{\mathbf{R}\right\};\beta\right) + v_{ext}\left(\mathbf{r}_{1};\left\{\mathbf{R}\right\}\right)\right\}\varphi_{j}\left(\mathbf{r}_{1};\left\{\mathbf{R}\right\}\right) = \varepsilon_{j}\varphi_{j}\left(\mathbf{r}_{1};\left\{\mathbf{R}\right\}\right)$$

$$n\left(\mathbf{r}_{1};\left\{\mathbf{R}\right\}\right) = \sum_{j} f\left(\varepsilon_{j};\beta\right) \left|\varphi_{j}\left(\mathbf{r}_{1};\left\{\mathbf{R}\right\}\right)\right|^{2} \quad ; \quad v_{xc}\left[n\right] = \frac{\delta F_{xc}}{\delta n}$$
Electrons Nuclei

Original Image: W. Lorenzen

Finite-Temperature OF-DFT Basics

OF-DFT requirements: reliable, orbital-free approximations for

$$F_{s}[\{\varphi\}] = T_{s}[\{\varphi\}] - TS_{s}[\{\varphi\}]$$

← Non-interacting (Kohn-Sham) free energy

$$F_{xc}[n] = (T[n] - T_s[n]) - T(S[n] - S_s[n]) + (U_{ee}[n] - F_{H}[n])$$

← Exchange-Correlation free energy; REQUIRED for BOTH standard KS and OF-DFT

$$\frac{\delta F_s[n]}{\delta n(r)} + v_s([n];r) = \mu, \text{ where } v_s = v_{ext} + v_H + v_{xc}$$

← Single Euler equation solver

Partial history of finite-T functional development:

• (1949) Feynman, Metropolis: finite-T Thomas-Fermi: $F_s^{TF}[n]$

• (1979) Perrot: Gradient corrections to TF: $F_s^{SGA}[n]$

• (2012) Karasiev, Sjostrom, Trickey: Finite-T GGA formalism: $F_s^{GGA}[n]$ Phys. Rev. B 86, 115101 (2012)

• (2013) Karasiev, Chakraborty, et al.: Non-empirical GGA: $F_s^{GGA}[n]$ Phys.Rev. B 88, 161108(R) (2013)

• (1979-2000) finite-T XC based on different many-body models: $F_{\rm xc}$ [n]

• (2014) Karasiev, Sjostrom, Dufty, Trickey: finite-T LDA XC F_{xc}^{LDA} [n] Phys. Rev. Lett. 112, 076403 (2014)

• (2017) Karasiev, Dufty, Trickey: finite-T GGA XC F_{xc}^{GGA} [n] Phys. Rev. Lett. (submitted) (2017)

Results, then Methods

RESULTS

- 1. DC conductivity of low density Al; ground-state LDA XC vs. genuine F_{xc}
- 2. Band-structure effects of genuine LDA F_{xc} in Al
- 3. Hugoniot effects of genuine F_{xc} in Deuterium
- 4. Finite-T Generalized Gradient Approximation (GGA) F_{xc} effects on calculated Pressures
- 5. Liquid-vapor phase transition in Al

METHODS

- 1. Tunable F_s functionals to treat regions otherwise inaccessible (at present) to OF-DFT
- 2. Finite-T LDA F_{xc} and calibration to QMC data
- 3. Finite-T GGA F_{xc} construction
- 4. New Kubo-Greenwood code for Quantum Espresso

Optical Conductivity & LDA F_{xc} thermal effects

Aluminum DC conductivity as a function of material density from calculations with T-dependent KSDT (dot-dashed) and ground state PZ (dashed) XC functionals for five isotherms: 5, 10, 15, 20, and 30 kK (bottom to top).

Use of explicitly T-dependent LDA XC lowers the DC conductivity of low-density Al, yielding improved agreement with experiment.

[Karasiev, Calderín, Trickey, Phys. Rev. E <u>93</u>, 063201 (2016)]

LDA F_{xc} thermal effects, fcc Al band structure

KS band structure for fcc Al at ρ =0.2 g/cm³ and T=20 kK calculated with ground state (PZ, blue) and finite-T (KSDT, red) XC functionals.

[Karasiev, Calderín, Trickey, Phys. Rev. E <u>93</u>, 063201 (2016)]

LDA XC thermal effects increase the inter-band separation

- ⇒ Fermi-Dirac occupations above the Fermi level are decreasd
- **⇒** the DC conductivity is lowered

GGA F_{vc} optical conductivity effects in low-density Al

Optical conductivity of low-density Al (0.025 g/cm³) at T=30,000K with new KDT GGA F_{xc}

- Drude-like behavior for small-ω
- Blue shift (sharp peak at \approx 5.7 eV) due to XC thermal effects at the GGA level of refinement (explained by increased gap in calculations with thermal XC)

Deuterium Eq. of State; OF-DFT-AIMD (VT84F F_s , KSDT TLDA F_{xc})

Above: $\rho_D = 0.20 \text{ g/cm}^3$

Right : $\rho_D = 1.964 \text{ g/cm}^3$

Karasiev, Calderín, Trickey, Phys. Rev. E <u>93</u>, 063201 (2016) Deuterium <u>total</u> pressure (includes ionic KE contribution) percentage error as a function of T

$$\Delta P = \left(P_{tot}^{LDA} - P_{tot}^{TLDA}\right) / P_{tot}^{TLDA}$$

Hugoniots seem comparatively insensitive to F_{xc}

Hydrogen principal Hugoniot; Initial density $\rho_0 = 0.0855 \text{ g/cm}^3$ Holst et. al (2008) 150 P (GPa) $E - E_0 = \frac{1}{2}(P + P_0) \left(\frac{1}{\rho} - \frac{1}{\rho_0}\right)$ 4.5 ρ/ρ_0

Two issues: (1) Large error bars on most experimental data (not shown). (2) Cancellation between internal energy difference and PV work difference terms in Rankine–Hugoniot equation. [Karasiev, Calderín, Trickey, Phys. Rev. E <u>93</u>, 063201 (2016)]

Thermal GGA XC results on fcc-Al model system

Electronic pressure differences vs. T for the new finite-T GGA ("KSDT16"), KSDT LDA, and ground-state PBE XC functionals, all referenced to PZ ground-state LDA values. Static lattice fcc Aluminum at 3.0 g/cm³.

Karasiev, Dufty, & Trickey, Phys. Rev. Lett. (submitted) arXiv 1612.06266

Thermal GGA XC results on Deuterium EOS

Deuterium electronic pressure vs. T for the finite-<u>T</u> GGA ("KDT16") and ground-state PBE XC functionals, as well as PIMC reference results.

AIMD super-cell simulations, Γ -point only, for 128 atoms (8500 steps, $T \le 40$ kK) or for 64 atoms (4500 steps, $T \ge 62$ kK

Karasiev, Dufty, & Trickey, Phys. Rev. Lett. (submitted) arXiv 1612.06266

PIMC results: S.X. Hu, B. Militzer, V.N. Goncharov, and S. Skupsky, Phys. Rev. B <u>84</u> 224109 (2011).

Low-density System Challenge: Liquid-vapor transition in Al

M.P. Desjarlais [Atom. Proc. Plasmas <u>CP-1161</u>, 32 (2009)] "very tedious" KS-MD calculations

Low-density Al EOS at T=6 kK; pure KS AIMD.

Tunable OF Non-interacting functional: Low density Al KS, Mazevet et al., 10kK - KS, Mazevet et. al. 30 kK 100 ⊧ * KS, QTP, 10 kK **Low-density Al EOS** KS, QTP, 30kK at T=10 kK and 30 → OFDFT, 10kK kK; tunable OF-DFT → OFDFT, 30kK 10 ⊨ functional compared P (GPa) ● OFDFT, 6 kK to KS. Tuned at $T_m =$ 8kK & three ρ_m (1.0, $1.5, 2.0 \text{ g/cm}^3$ **Number of atoms in** simulation cell: $8 \rightarrow$ 108. 10 kK. 30 kK OF-0.1 **DFT** \approx 12,000 steps ρ (g/cm³)

Liquid-vapor critical point -

- Does not model two phases (phase separation or co-existence)
- Searches for the diverging isothermal compressibility = $\left(n \frac{\partial P}{\partial n}\right)$
- Requires very long MD due to slow convergence of averages over MD steps.

 $6 \text{ kK} \approx 6,000 \text{ steps}$

Methods: Low-density System Challenge & Tunable Functionals

Challenge to OF-DFT bypass of Kohn-Sham bottleneck: <u>all</u> known orbital-free non-interacting functionals (including ours) are <u>grossly</u> inaccurate for low density Al.

Pragmatic response: Develop tunable OF-DFT functionals to work with particular system at relevant thermodynamic conditions.

Tuning: Adopt a functional form with parameters, set most of them to match exact conditions, set the rest to match reference Kohn-Sham calculations at some matching temperatures \mathbf{T}_m and material densities ρ_m .

Build transferability to higher $T > T_m$ by incorporating exact high-T limit by construction.

Orbital-free tunable non-interacting functional

1) Zero-T kinetic energy GGA enhancement factor

$$F_{t}(s) = \frac{1 + a_{2}s^{2} + a_{4}s^{4} + a_{5}s^{5} + a_{6}s^{6}}{1 + b_{2}s^{2} + b_{4}s^{4}} \qquad s(n, \nabla n) = \frac{|\nabla n|}{2(3\pi^{2})^{1/3}n^{4/3}}$$

2) Apply the finite-T GGA framework [Karasiev, Sjostrom, Trickey, PRB <u>86</u>, 115101 (2012)]:

$$\begin{split} F_{\tau}(s_{\tau}) &= F_{t}(s_{\tau}); \quad F_{\sigma}(s_{\sigma}) \approx 2 - F_{t}(s_{\sigma}) \\ F_{s}^{\text{GGA}}[n, T] &= \int d^{3}r \tau_{0}^{\text{TF}}(n) \{ \xi(t) F_{\tau}(s_{\tau}) - \zeta(t) F_{\sigma}(s_{\sigma}) \} \\ s_{\tau}(n, \nabla n, T) &\coloneqq s(n, \nabla n) \sqrt{\frac{\tilde{h}(t) - t(\text{d}\tilde{h} / \text{d}t)}{\xi(t)}} \qquad s_{\sigma}(n, \nabla n, T) \coloneqq s(n, \nabla n) \sqrt{\frac{t(\text{d}\tilde{h} / \text{d}t)}{\zeta(t)}} \qquad t = T / T_{F} \end{split}$$

- 3) Most parameters determined from constraints; leave a few free.
- 4) Tune free parameters to match the KS <u>static</u> <u>lattice</u> hot curve (pressure vs. volume), <u>not</u> KS AIMD, at $T=T_m$ and relevant bulk density regime.

Tuning – At how many Temperatures?

 $T_{m}\; sets = \; \{8\;kK\}; \; \{8,\,15\;kK\}; \; \{8,\,15,\,30,\,60\;kK\}; \; \{8,\,15,\,30,\,40,\,60\;kK\} \\ \rho_{m}\; set = \{1.0,\,1.5,\,2.0\}\; g/cm^{3}$

XC thermal effects for the homogeneous electron gas (HEG)

XC thermal effects are significant in WDM regime:

$$log_{10} \frac{\left| f_{xc}(r_{s}, T) - \varepsilon_{xc}(r_{s}) \right|}{\left| f_{s}(r_{s}, T) \right| + \left| \varepsilon_{xc}(r_{s}) \right|}$$

 f_{xc} = XC free energy per particle ε_{xc} = XC energy per particle at T=0 f_s = non-interacting free energy

Rough WDM region in ellipse.

Common practice is to use a T=0 XC functional:

$$F_{xc}[n,T] \approx E_{xc}[n(T)]$$

May not be accurate in WDM regime

Local spin density approximation (LSDA) $F_{xc}[n]$

$$F_{\rm xc}[n(T),T] \approx \int d\mathbf{r} n(\mathbf{r},T) f_{\rm xc}^{\rm HEG}(n(\mathbf{r},T),T)$$

- Note: no gradient or higher derivative dependence
- Determine f_{xc}^{HEG} from fit to restricted path integral Monte Carlo (RPIMC) data [Brown et al., Phys. Rev. Lett. <u>110</u>, 146405 (2013)]
- Fit must extrapolate smoothly to correct large-T, T=0, and small r_s limits
- Fit must be augmented with T-dependent interpolation to intermediate spin polarization
- Procedural issue: Four formally equivalent thermodynamic relationships between XC internal energy density ε_{xc} and XC free energy density f_{xc} are not computationally equivalent. Detailed study led to use of

"Fit A" --
$$f_{xc}(r_s,t) - t \frac{\partial f_{xc}(r_s,t)}{\partial t} \Big|_{r_s} = \varepsilon_{xc}(r_s,t).$$

"Fit B" if you have only the potential energy -- $2 f_{xc}(r_s,t) + r_s \frac{\partial f_{xc}(r_s,t)}{\partial r_s}\Big|_t = u_{ee}(r_s,t)$.

Karasiev, Sjostrom, Dufty, & Trickey; Phys. Rev. Lett. 112, 076403 (2014)

$LSDA F_{vc}[n]$

Fitted solution to thermodynamic differential relation

$$f_{xc}^{\zeta}(r_{s},t) = -\frac{1}{r_{s}} \frac{\omega_{\zeta} a(t) + b_{\zeta}(t) r_{s}^{1/2} + c_{\zeta}(t) r_{s}}{1 + d_{\zeta}(t) r_{s}^{1/2} + e_{\zeta}(t) r_{s}}$$

$$\zeta = (n_{\uparrow} - n_{\downarrow})/n; \quad \omega_{\zeta=0} = 1; \quad \omega_{\zeta=1} = 2^{1/3}$$

a(t), b(t), c(t), d(t), e(t) are functions of $t=T/T_F$ with tabulated coefficients.

Comparison to RPIMC data (red dots) for $\zeta=0$, $r_s=1$ (left) and 40 (right) for ε_{xc} and resulting f_{xc} . Phys. Rev. Lett. 112, 076403 (2014)

Note: we had a bit of trouble regarding the low r_s, low t data

LSDA $F_{xc}[n]$ – small refinements and fixes

K. Burke, J. C. Smith, P. E. Grabowski, and A. Pribram-Jones, Phys. Rev. B 93, 195132 (2016): S < 0 for $r_s > 10$, t < 0.1 (by $< 100 \mu H/electron)$

T. Dornheim, S. Groth, T. Sjostrom, F.D. Malone, W.M.C. Foulkes, and M. Bonitz PRL 117, 156403 (2016) QMC on HEG, new finite size corrections on $0.1 \le r_s \le 10.0$ and t > 0.5 "...reveals significant deviations..." with respect to KSDT. In fact, we very recently discovered a tiny T=0K fitting error in KSDT that causes most of the problem.

Correcting KSDT to fix both issues is straightforward and changes virtually nothing:

LSDA $F_{xc}[n]$ – small refinements and fixes

Karasiev, Dufty, & Trickey, unpublished; "Fit B" identity Dornheim et al. = Phys. Rev. Lett. <u>117</u>, 156403 (2016)

Framework for GGA XC free-energy functional development

A Practical, Non-empirical, Free-Energy Density Functional for Warm Dense Matter

Valentin V. Karasiev, ** James W. Dufty, ** and S.B. Trickey **

1 Quantum Theory Project, Department of Physics and Department of Chemistry,
P.O. Box 118435, University of Florida, Gainesville FL 32611-8435

2 Department of Physics, P.O. Box 118435, University of Florida, Gainesville FL 32611-8435

(Dated: REV-v4; 04 Apr. 2017)

- Identify T-dependent gradient variables for X and C free-energies
- Identify relevant finite-T constraints
- Use our finite-T LDA XC as an ingredient
- Propose appropriate analytical forms, incorporate constraints
- Implementation, tests, applications

Karasiev, Dufty, Trickey, Phys. Rev. Lett. (submitted, 2016) arXiv: 1612.06266

T-dependent GGA for eXchange

Finite-T reduced density gradient variable for

X from finite-T gradient expansion for **X**: $s_{2x}(n, \nabla n, \nabla n)$

$$s_{2x}(n, \nabla n, T) \equiv s^{2}(n, \nabla n)B_{x}(t)$$
Combination of F-D integrals

$$\tilde{A}_{x}(t)$$
 t-dependence of LDA X

 $\tilde{B}_{x}(t) = s_{2x}/s^{2}$ t-dependence of GGA X

Enhancement factor constraints:

- Reproduce finite-T small-s grad. expansion
- Satisfy Lieb-Oxford bound at T=0
- Reduce to appropriate T=0 limit (here PBE X) $F_x^{GGA}[n,T] = \int n f_x^{LDA}(n,T) F_x(s_{2x}) d\mathbf{r}$
- Reduce to correct high-T limit

$$F_{x}(s_{2x}) = 1 + \frac{v_{x}s_{2x}}{1 + \alpha |s_{2x}|}$$

T-dependent GGA for Correlation

Finite-T reduced density gradient variable for C from T-dependent gradient expansion -

$$n^{1/3}s^{2}(n,\nabla n)\tilde{B}_{c}(n,t) \propto q^{2}\tilde{B}_{c}(n,t)$$
$$q_{c}(n,\nabla n,T) \equiv q(n,\nabla n)\sqrt{\tilde{B}_{c}(n,t)}$$

q is a ground-state reduced density gradient for C $\tilde{B}_{c}(n,T)$ is an analytic expression found from FD integrals and numerical QMC data. Its T-dependence is shown at right.

$$f_{c}^{GGA}(n, \nabla n, T) = f_{c}^{LDA}(n, T) + H(f_{c}^{LDA}, q_{c})$$

where the function $H(f_{\rm c}^{\rm LDA},q_{\rm c})$ is defined by the ground-state PBE functional to achieve a widely used zero-T limit.

$$F_{\rm c}^{\rm GGA}[n,T] = \int n f_{\rm c}^{\rm GGA}(n,\nabla n,T) d\mathbf{r}$$

Constraints on f_c^{GGA} :

- Reproduce finite-T small-s grad. expansion
- Reduce to correct T=0 limit
- Reduce to correct high-T limit

Result is Thermal GGA XC shifts shown before (fcc-Al model system)

Electronic pressure differences vs. T for the new finite-T GGA ("KSDT16"), KSDT LDA, and ground-state PBE XC functionals, all referenced to PZ ground-state LDA values. Static lattice fcc Aluminum at 3.0 g/cm³.

Karasiev, Dufty, & Trickey, Phys. Rev. Lett. (submitted) arXiv 1612.06266

PROFESS@Quantum-Espresso package

- Finite-T OF-DFT functionals are implemented in the PROFESS code.
- T-dependent XC implemented in PROFESS and Q-Espresso
- Our analytical representations of Fermi-Dirac integral combinations are implemented
- PROFESS@Q-Espresso interface gives Quantum-Espresso MD driven by OF-DFT forces
- Vers. 2.0 was released recently go to http://www.qtp.ufl.edu/ofdft

Flow chart for MD simulation with PROFESS@Q-Espresso

Karasiev, Sjostrom, Trickey, Comput. Phys. Commun. <u>185</u>, 3240 (2014)

Optical Conductivity & XC thermal effects

OF-DFT MD and subsequent Kohn-Sham and Kubo-Greenwood conductivity calculations -

- Non-interacting free-energy functional is a critical input to OF-DFT MD
- 2 to 10 "snapshots"; explicit KS to get orbitals and eigenvalues
- XC free-energy functional is a critical input for both OF-DFT MD and snapshot KS

Kubo-Greenwood Electron Conductivity Expression and Implementation for Projector Augmented Wave Datasets

L. Calderín, V. Karasiev, S.B. Trickey; QTP, Physics and Chemistry, Univ. Florida 2 Mar 2017; version 3; not for circulation outside UF WDM/OFDFT group

Paper & code in preparation for GPL release.

Summary

- Real progress on orbital-free DFT (both T = 0 K and T > 0 K):
 - * Finite-T GGA formalism (for the non-interacting free-energy)
 - * First non-empirical GGAs for non-interacting free-energies
- * Tunable non-interacting functional enables far-reaching extension of static KS calculations into OF-DFT MD
- Real progress on finite-T XC:
 - * "KSDTcorr" LSDA XC based on parametrization of quantum Monte-Carlo data
 - * Non-empirical "KDT16" GGA XC free-energy (submitted)
- Software:
 - * Profess@QuantumEspresso orbital-free package
 - * Kubo-Greenwood post-pocessing transport properties package for QE (soon)
- Everything downloadable from www.qtp.ufl.edu/ofdft

