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Deorbitalization of a conventional meta-generalized-gradient exchange-correlation approximation
replaces its dependence upon the Kohn-Sham kinetic energy density with a dependence on the den-
sity gradient and Laplacian. In principle, that simplification should provide improved computational
performance relative to the original meta-GGA form because of the shift from an orbital-dependent
generalized Kohn-Sham potential to a true KS local potential. Often that prospective gain is lost
because of problematic roughness in the density caused by the density Laplacian and consequent
roughness in the exchange-correlation potential from the resulting higher-order spatial derivatives
of the density in it. We address the problem by constructing a deorbitalizer based on the RPP deor-
bitalizer [Phys. Rev. Mater. 6, 083803 (2022)| with comparative smoothness of the potential along
with retention of constraint satisfaction as design goals. Applied to the r?SCAN exchange-correlation
functional [J. Phys. Chem. Lett. 11, 8208 (2020)], we find substantial timing improvements for
solid-state calculations over both r*SCAN and its earlier deorbitalization for high precision calcula-
tions of structural properties, while improving upon the accuracy of RPP deorbitalization for both

solids and molecules.

I. INTRODUCTION

The enormous impact of Hohenberg-Kohn-Sham den-
sity functional theory (DFT) upon computational study
of molecular and materials properties is a conse-
quence of the remarkable cost-accuracy balance of DFT
when implemented with modern approximate exchange-
correlation (XC) functionals. The cost-accuracy trade-off
is determined by the intrinsic limits and transferability of
the specific XC approximation used. That compromise
clearly differs by problem class. A small set of very large
molecules can be treated with an XC approximation far
up the Perdew-Schmidt “Jacob’s ladder” complexity hi-
erarchy [I]. In contrast, the computational costs of high-
throughput screening calculations on large data sets of
such molecules or ab initio molecular dynamics (AIMD)
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on counterpart condensed phases compel use of lower-
rung approximations. See, for example, the discussion in
Sections 2.2.21-23 of Ref. 2L

The SCAN meta generalized-gradient approximation
(metaGGA) [3, 4] and its variants [5H7], have proven to
be effective compromises for accuracy and efficiency in
structural and energetic calculations for both solids and
molecules [4, [§] albeit with some limitations [9, [10]. A
design advantage of such meta-GGA functionals is the
introduction of inherently nonlocal density information
through the use of the non-interacting (Kohn-Sham, KS)
kinetic energy density [11], [12],
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with orbitals ¢; and occupation numbers f;. A resultant
design advantage is satisfaction of many more exact con-
straints than possible with a GGA, particularly for the
iso-orbital limit.

Despite the successes, there are difficulties of imple-
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mentation with these metaGGAs that limit their full ex-
ploitation. The explicit orbital-dependence introduced
by 7, causes typical practical application to rely on non-
local XC potentials in generalized KS (gKS) equations.
Solutions to those can be slow relative to pure KS im-
plementations [I3]. This slowness also originates with
the complicated form of the functionals and their po-
tentials, their consequent sensitivity to the density [14],
and concomitant need for dense grids for converged inte-
grals [I5] 16]. Calculations sometimes are done non-self-
consistently, [8, [I7] and self-consistent pseudopotentials
for these functionals have proven difficult to develop. [14]

Effort to resolve these issues has led to the redesign
of SCAN, first by streamlining performance at the cost
of significant constraint noncompliance, [6] then by iso-
orbital indicator redefinition, [5] and, most recently, in
r’SCAN, [7] by restoration of most of the constraints
met by SCAN, while retaining the improvements in nu-
merical performance of prior variants. Nonetheless, some
numerical problems remain. [14] [16]

Deorbitalization [I3], 18, [19] has been developed as a
strategy both to obviate these issues and to retain the
interpretive power of the pure KS equation. In deor-
bitalization, the 7, dependence used in meta-GGA XC
functionals as a local indicator of bond character is re-
placed with a function of the density n(r), its gradient
Vn, and Laplacian V2n. The result is a pure XC density

functional and a pure (local) KS potential.

The obvious deorbitalization requirement is a suffi-
ciently accurate approximate orbital-free kinetic energy
density (KED) functional. That is an active area of re-
search. [20] Practical deorbitalization has come through
the methodology of Mejia-Rodriguez and Trickey [13] 18],
19] (M-RT). They reparametrized existing KED func-
tionals, e.g. Perdew-Constantin (PC) [2I] and others
from orbital-free DFT [20], to match KED-dependent
indicator functions of the first 18 isolated atoms. The
most generally successful case of M-RT deorbitaliza-
tion involves the reparametrization (PCyp) of origi-
nal PC. That gave successful deorbitalizations of both
SCAN [13] [18] and r2SCAN [19], in the sense of provid-
ing what was deemed to be a faithful reproduction of the
parent metaGGA error patterns for structural and en-
ergetic properties evaluated on standard molecular and
crystalline benchmarks.

That faithfulness also has held up in application to
materials and outside the original test sets. [22] 23] Other

KEDs, e.g. Cancio-Redd (CR) [24] actually may lead

to improved error patterns relative to use of the exact
KED for some metaGGAs, but may not for best-in-breed
functionals.

A limitation of the M-RT error-pattern criterion of
deorbitalization faithfulness is that it can lead to ac-
ceptance of deorbitalized XC functionals that deviate
noticeably from the exact form in the limit of slowly
varying density, i.e., constraint violation. In the con-
text of rethinking the PC functional form, the recent
OFR2 study [25] emphasized constraint satisfaction, in-
cluding restoration of correct slowly-varying limit behav-
ior. That recovers fourth-order gradient expansion com-
pliance lost in going from SCAN to r2SCAN [6]. The re-
sulting deorbitalization does well in calculations for solids
(retaining the numerical advantages of rfSCAN) but not
as well as r?SCAN-L (r2SCAN deorbitalized by PCopt,
the reparametrized version of PC used by M-RT[13] [18])
for molecules.

As an aside for clarity, note that a second modifi-
cation of the original M-RT deorbitalization has been
developed[26] to treat metaGGAs that rely on more than
one iso-orbital indicator, particularly the Tao Mo func-
tional (TM) [27]. That is not relevant here.

Alternative strategies to Laplacian-level deorbitaliza-
tion include use of higher-order spatial derivatives [28H30]
and deorbitalization of the exchange potential only [I7].
Those are of only contextual interest here, as they may
have more significant numerical challenges than those
arising from the M-RT procedure.

Given success at reproducing the test-case performance
of existing orbital-dependent metaGGAs, the challenge
is the effective numerical implementation of such a deor-
bitalized functional. The well-known sensitivity to den-
sity Laplacians serves as a caution. See but for one ex-
ample, the discussion in Ref. [13l Nonetheless, some of
the M-RT functionals [I3] 18] have shown marked perfor-
mance improvement, over their gKS parents, with time
per self-consistent-field (SCF) cycle of the Kohn-Sham
solution as much as a factor of three shorter with the
VASP code [31}, [32]. But recent work indicates [26] that
it is quite typical for deorbitalized functionals to require
many more self-consistent cycles to achieve SCF conver-
gence than for their parent functionals with gKS, thus
offsetting the gains made per cycle.

A usefully accurate description of the KED for deor-
bitalizing a meta-GGA indicator functional by a simple
generalized gradient approximation (GGA) alone does
not seem possible [I3]. But, like Laplacian-based KEDFs,



Laplacian-based XC deorbitalizers can be ill-behaved
with regards to integral convergence and require rela-
tively dense grids. [16]. Moreover, they also can have
large, spiky variations in the magnitude of the XC po-
tential. Such variations arise from the high-order spatial
derivatives in the X potential that follow from V?n. [25]

The natural, critical question raised by these issues is
this: can deorbitalization, in fact, succeed in achieving
faster, more reliable metaGGA calculations? At a more
detailed level, how does the difficulty of using V?n com-
pare with the difficulties of gKS calculations? For which
run conditions, and for which applications, if any, does
deorbitalization provide a clear advantage? With respect
to computational efficiency, where and how can M-RT
deorbitalization be improved?

One clear opportunity is to find ways to reduce nu-
merical instabilities induced by the density-Laplacian.
In this work, we take a specific step in that ameliora-
tion by intervening in those aspects of the deorbitalized
functional that are most problematic, while retaining (or
even eventually restoring) important constraints along
the way. Our scheme is based on exploitation of the
Cancio-Redd [24] and Cancio-Stuart-Kuna [33] (CR here-
after) approach of minimizing the structural complexity
of KED functionals. We combine that with the constraint
satisfaction of the “r?>SCAN piece-wise polynomial” (here-
after RPP) deorbitalized indicator function [25] used in
the OFR2 functional to produce a deorbitalizer with a
smoother X potential than OFR2. We show that this
functional performs well compared to r2SCAN and to
r?’SCAN-L (PC,pt) and as well or better than OFR2 for
solid test cases. It improves significantly on OFR2 for
molecular test sets but still is not as good for those as
r’SCAN-L(PCopt). We leave until later a more system-
atic approach to constructing smoothed functionals along
with a measure to assess the result.

Secondly, we report a study of timing characteristics,
using a single compute node. We show that deorbital-
ization can be an attractive option for metaGGA cal-
culations, reproducing similar if not better results than
original metaGGA for solids and for equation of state cal-
culations, being up to twice as fast in total compute time
as gKS calculations. At the same time, we find a number
of situations in which the two approaches are about equal
in performance and slow compared to GGAs, indicating
need for future work.

In the remaining presentation, Section [[] details the
deorbitalization approach and the various KED models

utilized. Sec. [IT]] describes the methods for performing
structural and timing benchmarks. Sec. [[V] reports the
structural bench-marking and detailed timing analysis
for solids, including preliminary ab initio molecular dy-
namics (AIMD) outcomes. Sec. |V| presents our conclu-
sions and prospects for future work.

II. BACKGROUND

A. MetaGGA Structure

A conventional metaGGA XC functional (ignoring
spin-decomposition) is defined by

Exc[n] :i= /dr exc[n(r), Vn(r), 7s(r)] (2)

where both the density n and noninteracting kinetic en-
ergy density 7, are expressed in terms of orbitals ¢; and
occupation numbers f;, with

n(r) := Zfi|¢i(r)l2 3)

and 74 given by Eq. . To cope with the explicit or-
bital dependence in the XC energy (and therefore, im-
plicit density dependence), customarily the ground state
energy is found via the gKS procedure. In it, the XC
potential is calculated as the functional derivative of the
energy with respect to the individual orbitals. The result
is the gKS equation in which the kinetic energy operator
becomes

1_, Oexc
e (e,

thus including a dependence upon the XC energy beyond
that of the multiplicative potential of the pure KS for-
mulation. (In practical implementation, that term can
be rendered as an orbital-dependent potential, hence still
requiring a generalization of the KS procedure).

In SCAN and some of its descendants, 75 enters the
XC functional via the iso-orbital indicator «,

Ts — Tw

a(n,Vn,1g) == . (5)

Trr

Here 7 is the von Weizsdcker KED, namely that of a
system with a single occupied orbital and density n,

oLl
Y8 n

(6)



and 7. is the KED of the homogeneous electron gas of
density n

Trr = 130(3772)2/?)”5/3 : (7)

Akin with other refinements of SCAN, r?SCAN uses a
regularized version of «,

Ts — Tw

= ————————— 8

& e 1 0.0017, ®
This regularization is primarily to handle undesirable be-
havior for exponentially small densities. Nevertheless o
serves as a convenient point of reference from which to
define orbital-free KE density models.

The central roles of & and @ make it helpful to summa-
rize, for context, the key structural elements of r?’SCAN
exchange. Following Eq. with exc = n(r)(ex + €c),
for exchange we have

& 5N (p, a) = P ] 75O (p, ) ()
Pl = —(3/4)(3/m) " *nt/? (10)
F25o (p,a) = {hy(p) + fx(@)[h% — hx(p)] }ox(p)(11)

Here, the dimensionless reduced gradient (squared) is

Vnl|?

pi=s>= 4(37r|2)2/|3n8/3 . (12)
The hl(p) is a GGA form that is a rather complicated
function of p. It enforces the gradient expansion of ex-
change through second order for o ~ 1. Switching be-
tween GGA forms for o ~ 1 and the iso-orbital limit
(a &~ 0), and extrapolation to @ — oo is accomplished
with the function fx(@). It has two exponential regions
(@ < 0 and @ > 2.5) joined by a seventh-order polyno-
mial in @. gx(p) is a damping function that goes to unity
in the limit p — 0 and goes to zero as p grows arbitrar-
ily large. Detailed expressions are in the Supplemental
Material for Ref. [7l

An important bound, given the centrality of «, is
Ts > Tw = a>0. (13)

This may be recognized as the non-negativity of the con-
tribution to the Kohn-Sham kinetic energy derived from
Pauli exclusion. Note that the r2SCAN switching func-
tion f, (&) just described is set up to enforce this require-
ment even if numerical precision errors otherwise would
violate it. The indicator « is related trivially to the Pauli

kinetic energy density which is the subject of much of
orbital-free DFT (OF-DFT)[20],

To 1= Ts — Tw (14)
or
a=T19/Tes =Fp . (15)

Here Fy is the Pauli enhancement factor of OF-DFT.

To deorbitalize a conventional metaGGA according to
M-RT, the exact KS KED is replaced by an approximate
orbital-free (OF) semi-local density functional

Tor = T(n, Vn, Vn) . (16)
The deorbitalized metaGGA then is

Exc[n] =

/exc{n(r), Vn(r), 7or [n(r), Va(r), V2n(r)] pdr . (17)

Minimization of the total energy with respect to n then
yields a pure KS equation with a local XC potential of
the form

Oexc OTor

OTor On

dexc
Uxc =
on

dexc  Oexc OTor
-V ( Vn + OTor 3Vn>

Oexe OT,
2 xc OF
v (37’0F 8V2n> » (18)

In it, the first and third terms treat the explicit depen-
dence of exc on n and Vn respectively, while the others
treat implicit dependence through 7or. A closely related
quantity is the OF kinetic energy potential

([ 97or o OTor 5 [ OTor
o, ._<8n) v (Wn)w (Wn) ()

In the OF-DFT literature this is more commonly ex-

pressed as taking the functional derivative of a model
Pauli KED, 7y. That yields the Pauli potential via

Vg = Us — U, (20)

with vy, the KE potential for 7.
and illuminates the

distinct, key challenges for ordinary versus deorbitalized

Comparison of Egs.
metaGGA XC numerical implementations. A conven-
tional, orbital-dependent metaGGA introduces a compli-
cated kinetic energy operator in addition to the ordinary



local Kohn-Sham potential. A deorbitalized counterpart
produces a purely local potential whose construction in-
volves up to fourth spatial derivatives of the density, with
concomitant possible numerical difficulties.

B. Deorbitalization models

An orbital-free KED functional of the general form Eq.
obviously can be decomposed as in Eq. (14). The
result may be reduced by scaling constraints to

Tor(n, Vn, V2n) = Fy"(p,q)rr(n) + Tw(n,p).  (21)
Here Fy is as in Eq. and

Vin
q:= ] (22)
is the dimensionless reduced density Laplacian, partner
to the reduced density gradient p defined in Eq. (12). In
addition to scaling, other important constraints include
« non-negativity [Eq. ] and the gradient expansion
of Fy for slowly-varying density. [34, 33]

KED functionals that have proven particularly useful
for deorbitalization share several characteristics. They
are proper metaGGAs, in that they depend upon n, p,
and ¢. The design of most has followed, to some de-
gree at least, the strategy employed in the PC KED
functional [21], that is to build a model for the KED in
the slowly-varying density limit. Then, because models
based on the formally correct gradient expansion in that
limit vary much more slowly with p than the iso-orbital
limiting case (the von-Weizsécker functional, 7 ), even-
tually such models fail the non-negativity constraint [36],
Ts > Tw. That failure is taken to indicate the onset of
an iso-orbital or nearly iso-orbital spatial region, and the
slowly varying KED is replaced by 7w by means of a suit-
able switching function.

For PC and PC,p; (the reparametrized PC used by M-
RT [13] [18]), the KED for the slowly-varying limit is a
modified fourth-order gradient expansion for which the
Pauli enhancement function is

1+ AF + AFYY
V1+IAFY /(1 + 5p/3))2

SV __
chi

(23)

The superscript “SV” denotes “slowly varying”. The in-
gredient quantities are the second and fourth-order gra-

dient expansion corrections

AFy) = —40) 4 204 (24)
4
AFO( ) = & 2 - spg+ %p2 (25)

The second-order gradient correction AFG(Q) consists of
a 5p/27 contribution from the kinetic energy gradient
expansion minus a 5p/3 factor from the von Weizsicker
KED (7w = (5p/3)7rr). That yields an overall negative
slope with respect to p. Together with the possibility
of negative ¢, this leads to eventual incipient violation of
KED non-negativity which forces the switch from slowly-
varying to the iso-orbital model forms.

For PC, the interpolation function between the slowly-
varying form of the Pauli enhancement factor and the
von Weizsdcker lower bound Fj¥ = 0 takes the form

0, <0
Opc(r) = fec(z/mo) 0<x<x9 (26)
1, x> T

where

b

14 el/a=)
*e }, 0<t<1. (27)

fPC(t) = |:61/t + 61/(1_t)
Putting things together, the final form is
Fy© = apc = F8 Opc (F17) (28)

The original PC parameter values are zg = 0.5389, b = 3.
The PCopy values are zo = 1.784720, b = 0.258304 [13],
determined by fitting to the KED « values of small-Z
atoms. That reparametrization helps to produce faith-
ful deorbitalization of some metaGGAs but comes at the
cost of a somewhat inaccurate form for the slowly-varying
limit (p,q — 0).

Some drawbacks of the PC model were uncovered in
Ref. 33 which provided a modified form to fix them.
The switching model Oy, was found to cause unphysi-
cal features in the KED in covalent bonds, particularly
for systems treated with pseudopotentials. Concurrently,
the PC limit for ¢ — oo and p finite causes an unphysi-
cal treatment of the exponentially decaying density in the
asymptotic region of a molecule, characterized by ¢ — oo
and p/q — 1. The first problem can be resolved by use of
a switching factor that obeys 7 > 7¢g and is as smooth
as feasible. The second problem can be resolved by rec-
ognizing that the second-order gradient expansion for the



KED has the scaling behavior of the exact KED for an
exponentially decaying density and also is valid for small
p and ¢q. Thus it can suffice as a bare-bones model for
the slowly-varying limit.

Those choices, with further refinement [24], lead to the
CR model, namely

den =1+ AFPOcn (AFéZ)) (29)

with

1/a

e IR Gt LR 16)) )

H(z) is the Heaviside unit step function. The exponent
a = 4.0 produces reasonably close estimates for the to-
tal KE of atoms[24], while a = 2.0 produces somewhat
smaller Pauli potentials.

The RPP deorbitalizer [25] is a PC variant designed
specifically for deorbitalizing r?SCAN whilst retaining
constraint satisfaction. As such it starts with the same

form as Eq. ,
Qrpp = Fs;/p@RPP (Fyf;/p) (31)

where FJY. is, as before, a metaGGA suitable for the
slowly varying limit, to wit

FY, =14+ AFP + AR £ AFSY.  (32)
In this expression, the fourth-order term AF5(4) has the
form of Eq. but with dramatically altered coeffi-
cients: bgq = 1.801019, b,y = —1.850497, and b,, =
0.974002.
r’SCAN exchange functional to restore gradient expan-

Those correct a corresponding error in the

sion compliance to fourth order in the slowly-varying
limit. The last term of Eq. is higher than fourth-
order and defines the asymptotic large p, ¢ behavior. It
is given by

AFy*Y = c3p? (e_lcs”’ - 1) + (AFéM) B C3p2)

2 2 (33)
x{exp l— (p) _(q) 1 —1} .
C1 C2
This imposes the second-order gradient expansion as the

limit for p,q — oo, p/q finite, as in CR. Optimal coeffi-
cient values were determined against appropriate norms

[25] to be
c1 = 0.202352 (34)
¢y = 0.185020 (35)
c3 = 1.53804 . (36)

The switching functional Oxpp involves the same piece-
wise logic as in PC, Eq. (26), but with the nonanalytic
switching function fpc, Eq. replaced by the polyno-
mial

frpe(t) = 203 — 45t 4- 36> — 10t° . (37)

The switching constant zo = 0.819411. (There is no b
constant to set.)

In our context, a rather obvious step is to seek a
smoothed RPP (SRPP) functional by replacing the RPP
switching functional with the CR form,

Ogrpp = 1+ (FSI\?/P - I)GCR(FI§;/P - 1) : (38)

A somewhat smoother functional, denoted SRPP2, arises
from employing the exponent ¢ = 2 in O¢p.

Fig. [I] shows how these design choices affect the be-
havior of the Pauli enhancement factors, i.e., the a to be
used in deorbitalization. That figure presents Fy versus
p for the specific value ¢ = 0. The von-Weizsécker lower
bound value of Fj' = 0 appears as a black solid line.
GEA2 denotes the gradient expansion model 1 + AFQ(Q)
that characterizes the slowly varying limit, p,q — 0. The
slowly-varying limit for the PC metaGGA starts at the
homogeneous electron gas value of 1 at p = 0 and at first
follows along the GEA2 trajectory. But GEA2 trans-
gresses the von-Weizséicker bound before p = 0.8. (Re-
call the negative slope in the p-coefficient of the gradi-
ent expansion discussed earlier.) The switching function
Opc avoids that crossing by inducing the sudden dip in
PC off the GEA2 and subsequent zero value, thus com-
plying with the non-negativity constraint for Fy. That
dip is a fairly clear candidate to suspect as the cause
of fluctuations in the PC Pauli potential and in the po-
tential of a XC functional deorbitalized with PC. The
dip leads to rapid variations in the PC KED in regions
of near iso-orbital density, such as covalent bonds, [33]
which would be exacerbated in calculating the potential.
This supposition is shown to be borne out in the fol-
lowing section. In contrast, the CR model (blue-dashed)
and SRPP (black dot-dashed) make the transition (from
GEA2 to von Weizsdcker bound) in a much smoother



fashion, while RPP is an intermediate case. Finally Fy for
PCope fails to satisfy the homogeneous electron gas limit
(F — 1,p,q — 0) but does have a reasonably smooth

transition.
1.2 — W
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FIG. 1: Pauli enhancement factor Fy for various KED
functionals as a function of reduced density gradient p
with reduced Laplacian ¢ = 0.

C. Kinetic and exchange potentials

The smoothing problems that arise in the deorbitaliz-
ers are well illustrated by a plot of the kinetic potential vy
(Eq. ) for the Hydrogen atom for various Laplacian-
dependent KED functionals. See Fig.

8
6<
—~ 44
S
N
'g [ N
c o\ /
g 0 —7
+J 0N /
5 B
% =21 iRk PC
&£ PCopt
—4
— CR
—6 ---- RPP
—— SRPP2
-8 T T T T
1 2 4 5

distance (a.u.)

FIG. 2: Pauli kinetic potential vy = v, — vy for various
Laplacian-level KED functionals for the hydrogen atom,
evaluated at the exact atomic density. The exact value
for the H atom, vy = 0, is at the solid black line.

Most of the approximate KED functionals deliver po-
tentials that are reasonably close to the exact value (zero)
except in the vicinity of 2.5 to 3.0 a.u. There violent fluc-
tuations in the potential are evident. Those can be traced
to a spurious diagnosis of density behavior. At high den-
sities, the KED functionals diagnose hydrogen to be an
iso-orbital system, which is correct. But at low density
they treat it like a slowly varying electron gas. The fluc-
tuations occur for the values of r at which the transition
between the two limits occurs. The problem is worst for
PC which suffers oscillations larger than 100 hartrees.
The problem is somewhat less severe for PCyp and RPP
with oscillations in the tens of hartrees. Only the CR
model [24] and its extension to the RPP form, SRPP2,
show more reasonable variations, on the order of a few
hartrees. In fact, the size of those variations is correlated
closely (with the exception of PCyp) with the abrupt-
ness of the function used to describe the transition (from
iso-orbital to slowly varying electron gas) in the enhance-
ment factor, as seen in Fig. [l As a caution, we note
that the plot shows potentials evaluated with the exact
ground-state density for hydrogen. The unreasonable os-
cillatory behavior almost certainly would be worse for
self-consistent densities from the associated potentials.

Figures [3] and [4] show plots of the local part of the ex-
change potential (Eq. for the parent meta-GGA func-
tional (r?SCAN) and the full X potential for three deor-
bitalized versions of it (PC,py, RPP, and SRPP). The sys-
tems are the H atom (at two different length scales) and
the Si atom. (Aside: r?’SCAN deorbitalized with the RPP
form has the formal functional name OFR2, but for sim-
plicity in making comparisons with other deorbitalization
options, we will continue to refer to it as RPP.) Note that
the X potential in Fig. 3] is multiplied by the radial co-
ordinate to bring out features nearer the valence edge
where most variation in potentials occurs. For r2SCAN,
the contribution from the functional derivative with re-
spect to the kinetic energy density is omitted, as it is
incorporated in the physics in the gKS scheme via Eq. [d
These potentials are computed using a modified version
of the Python code densities [37] which employs analytic
spherical Hartree-Fock densities. They were evaluated
on a double-exponential grid with 300 to 10,000 radial
points.

Though an unequivocal comparison of the gKS local
part and ordinary KS potentials is not possible, it is clear
that deorbitalization of r2SCAN introduces unphysical
oscillations. In particular, we see large noise in the re-



gion r ~ 3 au for the H atom, where the Pauli potential of
Fig.[2]is seen to fail. However, the SRPP deorbitalization
of r2SCAN results in modestly less noise in the potential
compared to the PC,p, or RPP deorbitalizations. A simi-
lar trend occurs for Si, with SRPP slightly smoother than
RPP and both smoother than PC,p¢. Interestingly, the
RPP and SRPP produce potentials noticeably smoother
overall than the local part of the parent metaGGA, de-
spite use of the density Laplacian.

The noticeable bump in the r’SCAN H atom potential
at large r [Fig.[3[a)|] may be a remnant of a major issue in
the original SCAN. In a region of exponentially decaying
density, v, for SCAN goes to a large positive value rather
than zero [6] [7].
use of extremely fine grids and leads to difficulties in
obtaining pseudopotentials.[14] (Note that the exact KS
exchange potential for the H atom must cancel the self-

That unphysical behavior forces the

Hartree potential, hence rv, must go asymptotically to
—1, which no potential considered here does properly.)

The short-range behavior for any atom is exemplified
by the H atom case. All potentials for it fail by diverging
at extremely small distances, rather than trending to a
small negative value. [38]. Overall v, from PC,py and
SRPP are rather close. Unlike v, from RPP, they are
roughly similar quantitatively to the parent v,.

D. Noise problem quantification

The unphysically noisy features in the Pauli kinetic
potentials shown in Fig. [2| can be diagnosed readily as
arising primarily from the density Laplacian term, i.e.,
the last term of Eq. . Clearly it is closely related
to the last term in Eq. for the exchange-correlation
potential. This makes sense since both have the Lapla-
cian of a functional of the Laplacian of the density. Thus
fourth spatial derivatives of the density arise in both as
well as third derivatives of ey in the latter case. Those
high-order spatial derivatives intrinsically accentuate os-
cillations in a function. Reduction of the magnitude of
this term should lead to smoother potentials. The reduc-
tion in vy oscillations from PC to CR shown in Fig.
is commensurate with that supposition. Such reduction
should yield more efficient numerical performance.

For a quantitative assessment of the extent to which
that supposition is correct, we borrow a measure from

electrostatics. Observe that satisfaction of Laplace’s

equation
V2 =0 (39)

by some function 1 within a specified spatial region is
the condition for minimizing the action defined by

1
I= 5/|vw\2dv (40)
with respect to variations in v, with the value of v on

the boundary of the solution region fixed.

The impact of the Laplacian term in the kinetic poten-
tial thus can be measured by calculating the action for
an appropriate 1. Here we choose

1 or
deorb _ —
= z/’v(av2n>

This technique has been applied previously to minimize

2
v . (41)

the Laplacian term of the overall exchange-correlation
potential. See Ref. 39/ for details. Our choice to focus on
the kinetic potential reflects the fact that the Laplacian
term of the X potential actually generates two plausi-
bly problematic contributions. One, V?(dexc/07), arises
from the functional dependence of exc on 7. The other,
V2(d1/0V?n), arises from the dependence of the deor-
bitalization of 7 on V?n. The effects of the form of exc(7)
upon performance characteristics of both conventional
and deorbitalized meta-GGAs has been the subject of
recent attention. [6, [7, 25] However, comparison of Fig.
to Fig. [B]shows that the location of major error in the hy-
drogen X potential (the bump in deorbitalized potentials
around 2 to 3 au) coincides with that of dramatic noise in
the Pauli potential. This implicates, strongly, the second
term as a culprit in generating X potential noise, hence
that term is a focus of concern. A second benefit of this
choice is that it focuses on an aspect of the potential
that is independent of the choice of XC functional being
deorbitalized.

Minimization of oscillations in that term on a useful
test density or densities would have the potential of min-
imizing its impact on numerical performance in general.
Perhaps that should be be a design goal for a deorbital-
ized functional. We will explore that idea in a followup
to the present study. For now, to get an efficient, useful
estimate of the impact of deorbitalizer-generated noise,
we simply evaluate Eq. for the H atom as calculated
from a given KED functional. The crucial point is that
the exact Pauli potential (Eq. for this case is zero.
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FIG. 4: The local part of the r2SCAN X potential for atomic H compared to deorbitalized X potentials, plotted over
a much larger range in length and energy.

The consequences of that evaluation are shown, along
with the kinetic energy obtained by integrating 7or, in
Table [ with the deorbitalizers PC, PCyp, CR, RPP,
SRPP, and SRPP2. There is a close correlation between
the smoothness of transition between slowly-varying and
iso-orbital limits exhibited by the enhancement factors
seen in Fig. [1| and the quantified measure I4¢°™. The
switching behavior of PC clearly is the most abrupt.
Thus it has an enormous 19°°" value. PCopy and RPP
do much better, with a reduction in I9¢°™ by a factor
of five and an order of magnitude respectively. Clearly,
the functionals with the CR switch (CR, SRPP, SRPP2)

are the best. That pattern is manifest to a considerable
extent in the corresponding kinetic potentials (Figs.
and to a lesser but still significant effect for X poten-
tials, [3). The next issue, obviously, is to address to what
extent (if any) this smoothing endeavor and its quantita-
tive assessment has consequences in calculations on real
systems.



TABLE I: Kinetic energy and integrated noise measure

I7¢om evaluated on the Hydrogen atom for several

deorbitalized models of the KE density.

Model Exact PC PCopt RPP CR  SRPP SRPP2
KE (ha) 1/2  0.507 0.506 0.504 0.514 0.527 0.550
I (au) 0 220 44.0 19.0 1.705 1.755 1.555

III. COMPUTATIONAL METHODS

For molecular system tests, calculations were done
with the NWChem 7.0.2 code [40] using the def2-TZVPP
basis set and xfine grid settings. Test comparisons are
to heats of formation computed according to the now-
standard procedure of Curtiss et al. [41] 42] for the 223
molecules of the G3X/99 test, to bond lengths for the
T96-R test set [43] 44], and to harmonic vibrational fre-
quencies using the T82-F test set [43] [44].

Solid structural properties were calculated with the
VASP-5.4.4 code [45], following the same methodology
and protocol as in Ref. [46l For hexagonal close-packed
structures the ideal ¢/a ratio was used. For cohesive en-
ergies, isolated atom energies were calculated using a 14
x 15 x 16 unit cell and I'-point sampling. Static-crystal
lattice constants and cohesive energies are compared to
published results for 55 solids [47] and, correspondingly,
for bulk moduli of 44 solids [48]. In addition, band gaps
of 21 insulators and semiconductors [49] were computed.
Equilibrium lattice constants ag and bulk moduli By at
T = 0°K were determined by calculating the total en-
ergy per unit cell at twelve points in the volume range
Vo £+ 10%, where Vy is the calculated equilibrium unit
cell volume, followed by fitting to the stabilized jellium
equation of state (SJEOS) [50]. All the error values are
from comparison with tabulated experimental values.

For timing calculations, the same methodology was
used except that for the 55 solids [47] test set, the cal-
culations were redone at the experimental lattice con-
stants. In that way only single-point energy evaluations
were needed for timings. Calculations used a single node
on the University of Florida HiperGator system (Gen. 3)
with an AMD EPYC 75F3 32-core processor with 4GB of
memory per core. They were executed in parallel across
all 32 cores.
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IV. RESULTS

A. Structural properties

Evidently the comparison of interest is primarily for
r?SCAN versus its deorbitalized versions, r?SCAN-L,
built with the PC,p¢ deorbitalizer [19], with RPP [25],
and with SRPP and SRPP2. An underlying issue, dis-
cussed in detail above, is that PC,,; breaks some con-
straints that those other three preserve. This motivates
further comparison, between PC,,¢ and the three more
constraint-compliant deorbitalizers.

Tables [T and [[T]] compile mean errors (ME) and mean
absolute deviations (MADs) for r?SCAN, and deorbital-
ized r2SCAN, for the four deorbitalizers, along with re-
sults from PBE [5I] as a baseline. In addition to these
standard measures of functional performance, we include
the spread of errors as defined by the maximum (most
positive) error minus the minimum (most negative.) This
last measure is motivated by the wide variations in tim-
ing performance that we discuss below. That variability
raises the question whether there might be similar vari-
ability in predictive performance.

For molecular systems, the results presented in Table
show that SRPP is a substantial improvement (40% re-
duction) over RPP for heat of formation MAD. SRPP2
also provides an improvement over RPP, albeit a signif-
icantly smaller one. On bond lengths and vibrational
frequencies, the three (RPP, SRPP, SRPP2) perform
about the same; none proves competitive with PCope. All
three RPP-derived deorbitalizations show a disappoint-
ing degradation of performance, especially for heats of
formation and frequencies, compared to PC,pt deorbital-
ization, and none can be considered a completely faithful
deorbitalization of r?SCAN. Also note the near equality
of the magnitude of MEs and MADs for SRPP2 and to a
lesser extent, SRPP. This, and the fact that the MEs for
both are negative, indicate that they tend to underbind
consistently, leading to larger MADs.

For solids, Table [[T]] shows quite different outcomes.
SRPP, SRPP2, and RPP all have distinctively better



TABLE II: Comparison of molecular structural property results for the r2SCAN XC functional and various
deorbitalized-(r?SCAN-L) variants derived from PC,p, RPP, SRPP, and SRPP2 KED functionals. PBE results
included for context. Heat of formation mean errors (ME), mean absolute deviation (MADs), and spread in

kcal/mol, bond length errors in A, and frequency errors in cm™1L.

1

2
9 r“SCAN-L

PBE  rSCAN pq RPP SRPP  SRPP2

ME -20.878 -3.145 1.845 8.796 -5.918 -9.470

Heats of Formation MAD 21.385 4.488 5.300 13.109 7.804 10.405
Spread 88.091 29.818 42.938 72.117 48.329 46.036

ME 0.018 0.005 0.008 0.014 0.011 0.013

Bonds MAD 0.018 0.010 0.011 0.014 0.012 0.014
Spread 0.168 0.183 0.197 0.182 0.069 0.180

ME -33.781 11.336 -7.248 -26.743 -22.875 -22.945

Frequencies MAD 43.613 30.899 25.709 36.711 36.134 36.800
Spread 261.16 212.42 201.73 266.59 276.09 268.84

TABLE III: As in Table [II| for solid-state structural properties. Mean errors (MEs), mean absolute deviations
(MADs) and spreads for equilibrium lattice constants in A, cohesive energies in eV /atom, bulk moduli in GPa, and
band gaps in €V.

2
2 r*SCAN-L

PBE SCAN po . RPP SRPP  SRPP2

Lattice comstants ME 0.046 0.026 0.022 0.003 20.003 20.002
MAD 0.053 0.037 0.038 0.029 0.028 0.028

Spread 0.222 0.311 0.212 0.154 0.143 0.142

Cohesive energios ME 0.070 0.134 -0.327 20.017 0.051 0.064
& MAD 0.252 0.238 0.349 0.217 0.224 0.227

Spread 2.096 2.343 1.841 1.726 1.773 1.801

Bulk modulus ME 9.704 1.367 -4.249 1.084 1.928 2.298
MAD 11.022 5.963 10.115 8.542 7.866 7.851

Spread 64.09 63.67 96.90 81.64 76.25 76.25

Band Gans ME -1.69 -1.20 -1.38 -1.60 1.58 1.57
P MAD 1.69 1.20 1.38 1.60 1.58 1.57

Spread 4.89 4.32 4.72 4.99 4.93 4.92

MADs than PC,p for lattice constants, cohesive ener-
gies, and bulk moduli. SRPP and SRPP2 are a tiny bit
better than RPP on lattice constant MAD, slightly worse
on cohesive energy, and about 9% better on bulk mod-
ulus. The bulk modulus spread for SRPP and SRPP2
is better than for RPP as well and substantially better
than that from PCopt .

Overall, SRPP and SRPP2 preserve the formal prop-
erties of RPP and either improve on its performance or
maintain it. RPP is already known to be better on metal-
lic solids than PC,py, (and better in some measures than
r’SCAN) but worse on molecules [25]. That behavior is
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confirmed by our results (again, see Tables [[I] and [ITI).
Among the three, SRPP and SRPP2 are slightly better
than RPP for solids, while SRPP is the best of the three
over all systems though not competitive with PC,p for
molecules. These outcomes reinforce the finding by Ka-
plan and Perdew [25] that re-introduction of compliance
with constraints broken by PC,p¢ actually can reduce the
breadth of applicability of the deorbitalization.

The error spread reduction provided by the RPP-
derived models was unexpected. Those spreads are quite
a bit better than the original r2SCAN for both cohesive
energies and lattice constants and not much worse for



bulk moduli. In that regard, PC,p, shows some degra-
dation. Similar results are found if we measure standard
deviations. That is to say, deorbitalization can, in some
cases, lead to a significant reduction in outliers compared
to the gKS calculations with the parent metaGGA XC
functional, an unexpected bonus. The inverse correlation
of spread to our measure of potential smoothness is sug-
gestive. If some of that spread is due to numerical insta-
bility rather than functional accuracy, these results would
be a trade-off between removing numerical problems with
gKS and introducing problems with the Laplacian. The
relative absence of outliers leads us to speculate that the
noise reduction in smoothed deorbitalized potentials may
reduce the risk that geometry optimization procedures
will discover spurious local minima.

B. Timing results

Table[[V]presents timing statistics for the 223 molecule
G3X/99 test set. Table [V| displays the timing data for
the six-molecule subset, denoted AE6, of the G3 test set.
Each table shows the total time for the run of a test set,
and the average time taken per system. In addition, each
table shows the average number of SCF cycles needed to
converge to self-consistency, (defined as the total number
of SCF cycles divided by the number of systems) and the
average time per SCF cycle, taken as the average time
divided by the average number of cycles. In Table [[V]
spreads in these last two measures are shown also. Those
are defined, as before, as the difference between the max-
imum and minimum values of a quantity observed across
a data set.

Table [V] shows that both SRPP and SRPP2 are sub-
stantially faster than RPP for the molecules.
to the PCopt
ers a speed advantage over the parent, orbital-dependent

Similar
deorbitalization, neither of them deliv-

functional. The effects of test-set sampling are shown in
Table [V] The AE6 timings give a much more favorable
comparison of SRPP2 over RPP but no meaningful gain
for SRPP2 versus either PC,,¢ or the parent r?SCAN
functional.

Methodological effects are shown in Table [VIl It gives
the timings for the G3 test with the VASP 5.4.4 calcu-
lations done as isolated systems in a large orthorhombic
box. Distinct from the solid calculations, the default cut-
off energy was set to 600 eV and I" point sampling was
used. Unlike the G3 calculations in NWChem, the VASP
tests exhibit a large degradation in performance by both
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RPP and SRPP deorbitalizations with respect to the par-
ent functional. Interestingly, the time per SCF cycle for
the SRPP deorbitalizer is 1.29 s/cycle in VASP, while
in NWChem it is 1.28 s/cycle. However, for the parent
functional r2SCAN, VASP takes 2.87 s/cycle compared
to 1.34 s/cycle in NWChem. Unfortunately, the num-
ber of SCF cycles is much higher for the deorbitalized
forms, roughly a factor of 2.5 for SRPP and a factor of 3
for RPP. In NWChem the average number of SCF cycles
is roughly the same for all three. The speed advantage
per cycle of the deorbitalized forms is lost thereby in
the quasi-molecular case. This brings to light the dras-
tic effect basis set methodology (plane-wave PAW versus
gaussian) can have on the performance of the deorbital-
ized forms.

For solids, Table [VII] presents a clearly different story.
Both SRPP and SRPP2 outperform the parent, orbital-
dependent functional on total time. SRPP2 in particular
needs only about 75% of the time of r2SCAN. Notably,
SRPP2 also requires only about 72% more time than
PBE. This overall gain compared to the PC,p¢ deorbital-
ization comes from a drastic reduction in the number of
SCF cycles needed by SRPP and SRPP2, about half of
the number required by PC,p. Importantly, the times
per SCF cycle for SRPP and SRPP2 are essentially the
same as for RPP, less than half that for r2SCAN, and
actually faster than even for PBE. The combined result
is an overall speedup.

The required number of cycles follows, reasonably
closely, the measure of smoothness in the Laplacian con-
tributions in the exchange potential (Table , hence
strongly implicates those terms in the slow SCF con-
vergence performance seen in some of the deorbitaliza-
tions. We surmise that the sensitivity of such terms to
rather small changes in the density makes achievement
of a self-consistent density harder than in gKS or GGA
calculations. This diagnosis is supported in the extreme
spread of numbers of cycles for deorbitalized functionals
compared to the parent functional as evaluated via gKS.
The spread in observed cycle counts for r2’SCAN (gKS) is
only slightly more than twice the average number of cy-
cles, while for the deorbitalized forms (KS), the spreads
range from 4.4 to 6.0, with SRPP2 the best performer.

More insight can be found by visualizing the timings
for the individual members of the solid test set. These
are shown as average time per SCF cycle in Fig. [fa] and

number of SCF cycles in Fig. Results for r?SCAN
itself as well as versions deorbitalized with PCgp¢, with



TABLE IV: Timings and number of SCF cycles required for computing the 223 molecules of the G3X /99 test set.
Time measurements are expressed in seconds (s).

2
2 r*SCAN-L
223 molecules r*SCAN PC. RPP SRPP  SRPP? PBE
Total time 2432.00 2410.90 3036.90 2433.60 2373.70 1417.70
Average time 10.91 10.81 13.62 10.91 10.64 6.36
Avg. number SCF cycles 7.79 8.07 8.42 8.19 8.28 8.45
Spread 23 24 24 24 24 22
Avg. time per SCF cycle 1.34 1.28 1.56 1.28 1.23 0.72
Spread 6.27 6.25 7.38 6.14 6.13 4.10
TABLE V: As in Table [IV|for the AE6 test set.
2
9 r*SCAN-L
AE6 SCAN - po.. RPP SRPP  SRPP2
Total time 25.40 25.40 35.00 27.20 26.00
Average time 4.23 4.23 5.83 4.53 4.33
Avg. number SCF cycles 6.50 6.33 8.33 7.17 7.17
Avg. time per SCF cycle 0.66 0.67 0.76 0.65 0.62

RPP, and with SRPP are shown. The distribution for
SRPP2 is only modestly better than SRPP, so it was
omitted for clarity.

Fig. shows the clear SCF cycle-time advantage
of the deorbitalized functionals versus their orbital-
dependent parent, including the nearly 3 times faster
performance of PC,p originally reported by M-RT. The
other deorbitalizers are slightly less swift but still well
above twice as fast as r?’SCAN per cycle. Notably, the
issue is one of outliers. For about half the data set,
the 12SCAN (gKS) time is under 5 s and not quite two
times slower than the deorbitalized forms (with KS po-
tentials). But there are multiple bad actors in the orbital-
dependent case. For them the slowdown is much worse.
Deorbitalized functionals do poorly on a much smaller
data set of nine transition metals, all with nearly empty
d shells, e.g. Y or Sc, or nearly empty spin subshells, like
Fe.

Fig. [Bb] shows the number of SCF cycles needed for
r2SCAN and the three deorbitalized versions considered
in the preceding plot. One sees clearly how the SCF pro-
cess for original r2SCAN converges in consistently fewer
cycles than for any of the three deorbitalized variants.
The RPP-type deorbitalizers perform quite reasonably
but with a number of outliers. In contrast PC,; has
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a rather larger number of outliers which cancel its edge
in the time-per-cycles metric. Note also the scatter plot
of SCF cycles needed versus the r2SCAN requirement in
Fig.[6] The smoothed SRPP and SRPP2 do provide con-
sistent improvement upon the performance of RPP, with
a few exceptions among the semiconductors and simple
metals.

In sum, while there will be remaining issues in achiev-
ing self-consistency with Laplacian-dependent function-
als, it is clear that such issues are ameliorated signifi-
cantly by having a smoother potential.

C. Detailed analysis of computational parameter

dependence

Given the importance of materials calculations with
plane-wave basis codes such as VASP and the significant
performance differences between molecules and solids for
such codes, investigation of computational technique and
parameter choice effects is imperative. We pursue that in
two ways. In this subsection we examine the dependence
of timing results on various run parameter choices. In
the following subsection we consider the equation of state
(cold curve) of Al and a short AIMD calculation for it.

Table provides timing information for r?SCAN



TABLE VI: As in Table [IV]for the 223 molecules, but with the calculations done in VASP 5.4.4. for the
deorbitalized functionals RPP and SRPP as compared to the parent functional.

2
9 r*SCAN-L
223 molecules r“SCAN RPP SRPP
Total time 11100.38 13573.66 13030.01
Average time 49.78 60.87 58.43
Average SCF cycles 17.22 51.90 43.14
Average time per SCF cycle 2.87 1.10 1.29

TABLE VII: Timings and number of SCF cycles required for computing the 55 solids. Times are expressed in
seconds (s).

p)
. 9 r*SCAN-L

55 solids r*SCAN PClop RPP SRPP SRPP? PBE
Total time 6052.81 7812.30 6024.63 4892.41 4553.67 2650.44
Average time 110.05 142.04 109.54 88.95 82.79 48.19
Avg. number SCF cycles 15.64 60.31 40.35 30.49 31.42 14.20
Spread 32 341 242 176 138 19
Ave. time per SCF cycle 6.93 2.56 291 2.97 2.89 3.26
Spread 22.39 7.87 7.30 6.97 7.46 7.7

versus r2SCAN-L deorbitalized via RPP and SRPP for
the 55 solid test set. It shows the effects of differ-
ing choices of the energy cutoff, convergence parameter,
and minimization algorithm. Cases labeled “0” through
“3” successively reduce the convergence tolerances while
keeping the SCF minimization procedure fixed as the pre-
conditioned conjugate gradient method. That is the rec-
ommended option for meta-GGA exchange-correlation
functionals. Cases 4, 5, and 6 explore effects of the use
of less-expensive diagonalization algorithms.

Note that for all cases there is a significant advantage
for the deorbitalized forms with respect to the parent
functional for the time taken by a single calculation of
electronic orbitals. The speed-up stays a little over a

factor of two, maybe better for the fastest eigensolver.

In contrast, the advantage in terms of the number of
cycles needed to reach self-consistency for the gKS pro-
cedure used with r2SCAN over the deorbitalized forms
and their pure KS potential does vary quite a bit de-
pending on the tightness of convergence criteria. gKS
loses its advantage relative to deorbitalized KS as conver-
gence is loosened and SRPP loses its advantage relative
to RPP. Ultimately, for Case 3, the sloppiest one for pre-
conditioned conjugate gradients and Case 6, the sloppi-

14

est overall, there is basically no difference in performance
among the three strategies in this regard. Therefore the
total time speed-up of deorbitalization is quite dramatic,
almost a factor of 2. (It may seem peculiar that all func-
tionals in Case 6 take substantially more cycles to achieve
self-consistency than Case 3, with both larger plane-wave
cutoff and stricter convergence tolerance. This is a result
of the instability of the RMS-DIIS, which makes sacrifices
in stability to achieve faster overall times [52].

There is a very plausible, simple explanation for such
a finding. Reducing the cut-off energy amounts to in-
troducing a low-pass filter that eliminates a good deal
of noise in the potential. Though the RPP and SRPP
potentials have very different noise characteristics, it is
reasonable to suppose that those differences are substan-
tially removed by smoothing with a low energy cutoff.
Similarly, a less demanding tolerance means greater ac-
ceptance of effects of noise in the potential, reducing their
consequences. We hypothesize that the smooth atomic-
like basis used in molecular calculations is coarse rela-
tive to individual plane waves, therefore causing a similar
noise reduction in the potential and yielding the “egali-
tarian" timing results seen for these calculations.



TABLE VIII: Parameter and SCF algorithm dependence of timing for computing the set of 55 solids, for r?SCAN
itself, and r2SCAN-L deorbitalized with RPP or SRPP. E., is the plane-wave cut-off energy; Fqg is the energy
tolerance used to end the self-consistency cycle. The algorithms to solve the KS or gKS equation, using the keyword
terminology for the ALGO input parameter in VASP, are: (All) preconditioned conjugate gradient, (Normal)
blocked Davidson iteration, (Fast) hybrid of block-Davidson and RMM-DIIS (Residual Minimization Method with
Direct Inversion in the Iterative Subspace), and (Very Fast) RMM-DIIS.

Case 0 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
Algorithm All All All All Normal Fast Very Fast
Eaig (eV) I1x107% 272x107° 1x107% 272x10° 1x10% 1x106 1x107*
Ecus (V) 800 800 600 600 800 800 500
Average time
r’SCAN 110.05 101.28 95.51 81.47 112.26 104.26 58.37
RPP 109.54 63.78 55.23 42.02 103.97 63.11 22.66
SRPP 88.95 59.11 55.56 45.56 111.93 79.25 23.62
Average SCF cycles
r2SCAN 15.64 12.67 15.78 12.78 12.91 12.93 17.36
RPP 40.35 20.93 20.11 13.75 29.96 27.33 18.51
SRPP 30.49 17.55 17.49 13.69 29.09 30.80 18.75
Average time/cycle
r’SCAN 6.93 7.74 5.96 6.16 8.59 7.91 3.34
RPP 291 3.14 2.77 2.98 3.73 2.45 1.21
SRPP 2.97 3.32 3.03 3.21 4.11 2.83 1.24

D. Molecular dynamics of Aluminum

For context, in Table [X] we provide the timing and
SCF count for calculating the static lattice fcc Al equa-
tion of state at zero temperature. The data are aver-
ages over runs at 12 lattice parameters, 3.8484 A<ag <
4.1146 A. (At each lattice constant, the calculation was
started from the same density, not from the equilibrium
density of the preceding lattice constant. This technical
aspect is of importance later.)

Solid Al is a particularly advantageous case for deor-
bitalization. Consistent with the discussion above about
the 55 solid test set (recall Table, all three deorbital-
izations (PCqp¢, RPP, SRPP) are substantially faster in
total time than the parent functional. The spreads are
even better for RPP and PC,, and as good as the parent
for SRPP. Also as expected, RPP and SRPP outperform
PC,p¢ substantially with regard to the required number
of SCF cycles.

Those rather encouraging timing and cycle count re-
sults would lead to the expectation that the SRPP and
RPP functionals would outperform the parent in driving
AIMD. To investigate that, we obtained timing statistics
for a short AIMD simulation of liquid-phase aluminum.

The simulation system consisted of 108 atoms, at
bulk density p = 2.34 g/cm® in a 12.7239 x 12.7239 x
12.7239 A3 cell. The I-point was used to sample the Bril-

15

louin zone. In VASP 5.4.4, the system was treated with a
three-electron pseudopotential (3s2 3p' valence, 10 elec-
trons in the core; denoted PAW PBE Al GW). Non-
spherical contributions within the PAW spheres were in-
Minimization used the RMM-
DISS algorithm with energy cutoff set to 500 eV, as in
Case 6 in Table [VITI} The self-consistent energy conver-
gence tolerance Egiz was le™* eV. Approximate Fermi-
type thermal smearing with a width of 0.0881555 eV was
applied, and the initial temperature set to 1023 K. Molec-
ular dynamics used the Verlet algorithm and a Nosé ther-
mostat. 6501 steps of time-step 0.941 femtoseconds were
taken for each simulation.

cluded self-consistently.

Each calculation utilized 5
nodes on the University of Florida HiperGator cluster
(Gen. 3), with 64 cores per node (total of 320 cores) and
4 GB of memory per core (1280 GB total).

Fig. |7 gives the resulting timing statistics. Total times
in hours are in the upper panel, Fig.[7a] along with the
total number of SCF cycles. The time per SCF cycle is
shown in the lower panel Fig. [7b] The outcome is that
all of the deorbitalized functionals are at a disadvantage
with respect to the parent functional r2SCAN for total
run time. This is in contrast to what one would have
expected from the fcc Al equation of state results just
discussed.

Clearly, the problem is not in the time per SCF cycle.
As with the Al equation of state, the best performers on



TABLE IX: Timings (in seconds, s) and number of SCF cycles required for computing the zero-temperature fcc Al
static lattice equation of state for r’SCAN and three deorbitalizations, with PBE values for context.

2
9 r*SCAN-L
fee Al r“*SCAN PCopy RPP  SRPP PBE
Total time 990.89  611.87 366.93 415.89 296.04
Average time 82.57 50.99 30.58  34.66  24.67
Avg. number SCF cycles 26.75 45.00 17.58  20.83 1242
spread 23.00 51.00 9.00 19.00 4.00
Avg. time per SCF cycle 3.12 1.16 1.75 1.68 2.00
spread 0.42 0.32 0.21 0.41 0.30

a per-cycle basis are the deorbitalized functionals, par-
ticularly RPP and SRPP. They out-perform even PBE.
But for the AIMD, the number of SCF cycles needed
for those deorbitalized functionals is almost prohibitively
high, over four times the number needed for the parent
functional, and over five times that needed for PBE.

This excessive SCF cycle count also is in marked con-
tradiction to our findings for the 55 solids. Recall Table
[VIII] It shows that for the lowest accuracy tolerances in
cutoff energy and SCF convergence (Case 6), the same as
employed in the AIMD, the number of cycles needed for
the deorbitalized functionals and the parent functional
are roughly the same. That clearly is not the case in the
AIMD driven by any of the deorbitalizers.

One way to characterize this problematic cycle count
is that convergence to self-consistency from the fully con-
verged density of the previous MD step is not that much
quicker than convergence from an LCAO density (12 cy-
cles average per MD step for SRPP, in contrast to 14 cy-
cles average over the test set and 18 to 21 for the equation
of state calculation for Al). The behavior also is in con-
trast with the dramatic reduction of PBE and r?SCAN
requirements to less than 3 cycles average per step. This
may be an unpleasant consequence of the inclusion of
the density Laplacian in the X functional and associated
sensitivity to seemingly small changes in the density. A
peculiarity is that a tolerance of Eqig = 2.75 x 10~° needs
an average of 14 cycles to converge in the case of the 55 el-
ement test set (see Table while, on the other hand,
use of Egiyg = 1 x 10* in the MD needs 18 cycles. The
difficulty is that though RMS-DIIS is extremely fast it is
less stable than the other solvers.

We have pursued two diagnostic follow-ups which in-
dicate that the issue is quite complex and not readily
resolvable. First, altering the MD timestep should pro-
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vide a quick consistency check regarding the behavior.
We find remarkably that the convergence issues, if any-
thing, increase as the timestep is decreased. See Table[X]
Since this obviously cannot be the case in the limit of zero
time-step, something peculiar is happening but we have
been unable to identify the cause.

Secondly, investigation of the number of SCF cycles
needed as a function of simulation time shows a rather
intriguing trend. The RPP and SRPP deorbitalized func-
tionals start out with convergence times that are quite
competitive to r2SCAN and PBE. Only gradually, over
about 10 MD steps, do they settle down to the more
slowly converging behavior. The slowdown in conver-
gence is correlated to increased fluctuations in conver-
gence performance, symptomatic of an unresolved stabil-
ity issue. This behavior is documented in Fig.[8] Perhaps
it is noteworthy that, of the three deorbitalizers, the one
with smoothest potential, SRPP has the smallest fluc-
tuations in cycles-per-step. We have sought diagnostic
insight from calculating mean-square-displacements and
radial distribution functions for both T=1093K and 298K
AIMD but without much gain in understanding. Plots
of the results are in the Supplemental Information.

The behavior suggests that tendencies to instability in
the deorbitalized forms take some SCF cycles to show
up and might be ameliorated by taking an occasional
step using, e.g. PBE, to find the density. We tried one
such strategy. At each MD step, the first five SCF cycles
were done with PBE, then continued with the selected
deorbitalized functional. Unfortunately, this strategy ac-
tually increased the number of SCF cycles instead of re-
ducing them.
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FIG. 5: Bar charts showing timing performance for
r’SCAN, and r>SCAN-L with the PC,p, RPP, and
SRPP deorbitalizers for the entries in the 55-solid test
set. Indexing of materials: 1-4 elemental
semiconductors; 5-16: compound semiconductors; 17-22:
ionic compounds; 23-31: simple metals; 32-55 transition
metals.

V. DISCUSSION AND CONCLUDING
REMARKS

We have constructed a measure, 1%¢°™ to control in-
stability sources in the XC potential of deorbitalized
metaGGAs, in terms of a metric derived from the Pauli
potential (the functional derivative of the deorbitalized
kinetic energy density with respect to the density). This
measure clearly diagnoses the relative instability or relia-
bility of performance of standard deorbitalizers and helps
motivate a modified form of RPP, the SRPP and SRPP2.

In consequence, SRPP and SRPP2 produce noticeably
smoother kinetic and exchange potentials than other de-
orbitalizers. Both modified forms preserve or modestly

enhance the predictive performance of RPP in the de-
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FIG. 6: Scatter plot showing the number of SCF cycles
for 55 solids calculated using the deorbitalized
functionals relative to the number of cycles required
with the r2SCAN functional. The red dotted line is the
locus of values for the deorbitalized functionals that are
equal to the r2SCAN values.

orbitalization of the r?SCAN functional on a standard
But
for the smoothed functionals, this constraint compliance

test set for the structural properties of solids.

for slowly varying densities comes with a much smaller
penalty in predictive performance for highly inhomoge-
neous systems than one might expect from the behav-
ior of the RPP. The smoothed functionals improve upon
RPP markedly for the G3 molecular test set, though the
deorbitalized form still is not competitive with r2SCAN-
The SRPP2 variant,
though less effective than SRPP on the molecular cases,

L(PCqpt) for heats of formation.

is equal or better on the solids and delivers better timing
performance. It is plausible that this gain is a conse-
quence of the SRPP2 X potential being smoother than
the SRPP one.

The implications for timing performance are com-
For

molecules, both the time per SCF cycle and the number

plicated and unfortunately somewhat obscure.

of cycles needed to reach convergence are essentially the
same for both the parent and deorbitalized functionals.
For fixed (static) solid geometries, the story is different.
Unlike earlier deorbitalized functionals, these particular
deorbitalized metaGGAs significantly outperform the ex-
plicitly orbital dependent, metaGGA parent (used in gKS
form) so far as time per SCF cycle is concerned. While
the deorbitalized forms (r?SCAN-L with L either SRPP
or SRPP2) need more cycles to reach self-consistent con-
vergence, the increment is not so large as to offset the
much shorter cycle time. As a result, SRPP and SRPP2
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FIG. 7: Timing statistics for 6,501 step AIMD
simulation of liquid Al, using PBE, r2SCAN, and
r?’SCAN-L with several deorbitalization strategies.

are much faster than r2SCAN for static lattice solid cal-

culations, as seen in Tables [VII] [VITI] and [[X]

That advantage does not propagate into the one AIMD
example we have tried. It appears that the density Lapla-
cian dependence in the deorbitalized functionals intro-
duces instabilities that greatly increase the number of
SCF cycles needed in the AIMD context. Our specula-
tion has been that since the XC potential is sensitive to
small perturbations in the density because of the Lapla-
cian, potentials for successive AIMD steps may occasion-
ally be different enough to lead to unusual variation in the
density, and thus slower SCF convergence. However, the
limited testing we have done with reduced AIMD step-
time is not consistent with this argument. Similarly, one
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FIG. 8: Number of SCF cycles to convergence per
Molecular Dynamics step for different approximations,
plotted for the first 100 MD time steps.
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might think that there could be a clue as to the cause
of this behavior in the average SCF cycle time versus its
spread. But Table [VII] shows that SRPP, SRPP2, and
RPP itself all have similar ratios of spread of time per
cycle to average time per cycle. In fact, the ratio for
SRPP (2.35) is slightly below that for RPP (2.51).

In the case of plane-wave pseudopotential calculations
of solids, we see two outcomes for equation-of-state cal-
culations:

1. For high accuracy calculations, the performance of
deorbitalized metaGGA XC functionals relative to
the parent is markedly dependent on the smooth-
ness of the the XC potential, with smoothed func-
tionals (SRPP and SRPP2) significantly outper-
forming not only the earlier deorbitalizers (e.g.
PCqpt), but the parent orbital-dependent func-
tional itself. In that regard, this work has achieved
one of the long-standing goals of the deorbitaliza-
tion endeavor.

. Reducing accuracy requirements via either low-
ered energy cut-off for orbital representations or
the energy tolerance for achieving self-consistency,
causes all the metaGGA forms (orbital or deorbital-
ized) to reach rough parity of the number of cycles
needed to achieving self-consistency. The orbital-
dependent gKS calculations continue to be inferior
compared to pure KS from the deorbitalized func-
tionals on a per-cycle basis. But the relative advan-
tage of SRPP and SRPP2 versus the other deor-
bitalizers is largely lost because lowering the cutoff
effectively smooths all potentials to the same de-
gree, while reducing the SCF tolerance reduces the
sensitivity of the calculation to instabilities from



the potential, so the wall-clock times for all tend to
converge.

Because Gaussian basis functions are themselves
smooth and are equivalent to fixed combinations of many
plane waves, molecules calculated with them behave,
oddly enough, like the cruder and faster plane-wave cal-
culations, with little distinction in timing among forms
of deorbitalizers. Apparently, the nature of limiting the
basis has a counterpart smoothing, hence stabilizing ef-
fect as does reducing the energy cutoff in a plane-wave
code.

AIMD calculations provide a third, somewhat discom-
fiting pattern of behavior. As for the case of lower accu-
racy calculations for the equation of state, deorbitalized
functions outperform the orbital-dependent parent on a
per-cycle basis, while smoothed and unsmoothed deor-
bitalizers have similar SCF convergence rates. But PBE
and r2SCAN perform the task specific to MD, namely
finding orbitals for a new set of nuclear positions starting
from the density for a modestly different set of positions,
in two or three SCF cycles. In contrast, the deorbitalized
forms used here take almost the same number of cycles
as they do when starting from, say, an LCAO density.
An attempt to start at each position with a PBE density
did not help.

One ansatz for AIMD that remains to be investigated
would be to take the density from some numerically sta-
ble method (PBE to keep it simple), and evaluate the
total energy and forces with a single non-self-consistent
calculation with the metaGGA-L functional of interest.
For the comparatively coarse convergence levels required,
that should give nearly the same forces (and energies) as
from the conventional self-consistent metaGGA-L, and
better than those from self-consistent PBE, at a fraction
of the timing cost of self-consistent metaGGA-L.) Doing
so would combine best-time performance vis-a-vis finding
the density at any step with something that is fast (for
a single SCF step) and accurate to calculate forces.

As another line of pursuit, it may be advantageous to
take the measure of noise defined in this paper and use
it as an aid to construct deorbitalizers with yet smoother
potentials, either by optimizing the switching function
between iso-orbital and slowly-varying limits or strategi-
cally modifying “appropriate norms" in the deorbitalizer
or parent functional. This is the focus of ongoing re-

search.
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SUPPLEMENTARY MATERIAL

The following file is available free of charge.

e SRPP_Timing.SupplInfo: In this file, we provide
a detailed, system-by-system tabulation of the nu-
merical results of the test calculations against stan-
dard molecular and solid test sets. We also provide
system-by system SCF timing and SCF cycle count
tabulations, corresponding to the plot of SCF cycle
count for each of the first 100 AIMD steps in Fig.
above.

e Plots of mean-squared displacements and radial
distribution functions of Al from the various XC
functionals driving AIMD at T—=298K and 1023K.
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TABLE X: Total times for the molecular dynamics of Al using the SRPP deorbitalizer for different values of
timestep.

XC functional

timestep (POTIM)

Total time (s)

Number of SCF cycles

Time by cycle (s)

Average Temperature (K)

1.4 87897.82 78872 1.11 1023.021

r’SCAN-L(SRPP) 0.940793 83935.23 79156 1.06 1022.869
0.5 95314.36 86477 1.10 1022.973

2 0.940793 80395.09 79266 1.01 1022.995
r"SCAN-L(RPP) 0.5 86879.67 87786 0.99 1023.052
[2SCAN 0.940793 65212.99 18744 3.48 1023.058
0.5 54600.70 13554 4.03 1023.056

22



	Performance Improvement of Deorbitalized Exchange-Correlation Functionals
	Abstract
	Introduction 
	Background 
	MetaGGA Structure 
	Deorbitalization models
	Kinetic and exchange potentials 
	Noise problem quantification

	Computational methods 
	Results 
	Structural properties
	Timing results 
	Detailed analysis of computational parameter dependence
	Molecular dynamics of Aluminum 

	Discussion and Concluding remarks 
	Supplementary Material
	Acknowledgments
	References


