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I. MICROSCOPIC CONSERVATION LAWS

The quantum mechanical microscopic conservation laws for the number, momentum, and energy density operators
are given in Refs. 1 and 2. However, the details of the derivation are not given and the results do not include an
external force. For completeness the general derivation is given here.

The time dependence of an operator A(t) which depends on the position and momenta of the system particles is
given by
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Associated with the continuous symmetries are the usual conservation laws for particle number, linear momentum,
energy, and angular momentum. Here only point particles are considered so the relevant conservation laws are those
of particle number, momentum, and energy. The associated local densities are defined by
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where [A, B], = AB + BA is the anticommutator. The symmetrized products ensure the Hermitian nature of these
local density operators. In Eq. (2) v***(q,,t) is an external potential. As this external potential has not been
included in the definition of e(r) in Eq. (5), e(r) is referred to as the “intrinsic” energy density.

The following identities will be used below:

s 0] = —i201%=), )

12 A@)] = i | 5o Ala)] )

aj 4
HA>B]+7C] = [[B,C},A}++[[A,C}7B]+, (8)
Pas F(a,)G(a0)], = 3 [IPas Flau)], Gl )



A. Number conservation

Local conservation laws follow exactly from the Hamiltonian dynamics. The simplest is the conservation of number

density. In all derivations below the Greek letters, «, 3,7, - - index the particles while Latin indices ¢, j, k, - - -

Cartesian coordinates. Unless noted, Einstein summation is assumed for repeated indices.
Beginning with the time derivative of the number density,

Using Eq. (7),
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B. Momentum conservation

The time derivative of p(r,t) is
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Using [[A, B], ,C| =[[B,C],A], +[[A,C],B], from Eq. (8), this is
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The two commutators appearing in the above equation will be treated separately. The former is
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The other commutator is
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Using Egs. (16) and (17) in Eq. (15) yields
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Define the kinetic part of the total momentum flux to be
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The force density arising from the external potential is defined by
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The second term on the right side requires some care. First, interchanging the dummy labels «, 8 and using
Newton’s third law gives
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Taking half of the sum of these two equivalent expressions gives
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Consider a parameter A defining an arbitrary path from x(\g) = qz to x(Aa) = q,. The following identity then
holds,
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Using Eq. (29) in Eq. (24) gives
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Defining the total momentum flux density as the sum of its kinetic and potential parts, t;, = tﬁ +t§3 1> gives a compact
form for the conservation of momentum equation,
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C. Energy Conservation

The conservation of energy equation also follows from the time derivative of the local energy density, using Egs.

(2) and (5),
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The following two sections deal separately with each commutator appearing in Eq. (34).



1. First term of Eq. (34)

The first commutator can be written as the sum of three terms,
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2. Second term of Eq. (34)

Returning to the final commutator of Eq.(34), use the relationship [p, A(q,)0(r—ay)]+ = 1 [Pas A(dy)]+, 0(r — da)] 4
from Eq. (9) in several places in the following,
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In going from Eq. (36) to (37), Newton’s third law has been used,
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3. Combining results

Using Egs. (35) and (38) in Eq. (34),
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The terms in the third and fourth lines can be combined,
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The third term can further be rewritten as
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where use has been made of Eq. (28) in the next to last line and dummy indices r, k have been swapped in the last
line. The energy equation is therefore
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Moving the three derivative terms to the left side, this can be rewritten as
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with the energy flux
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and the work done by the external potential
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This work term can be simplified as follows,
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This yields the final form for the work term as

w(r,t) = %p (r) - F™ (r,t). (47)

II. UNITARY TRANSFORMATION TO REST FRAME MOMENTA

Operators and phase functions of interest include those in the local reference frame. For simplicity consideration
here is restricted to single particle functions,

A= A(q,p — mu(q)), (48)

where u (q) is the average flow velocity at the particle position q. In the classical case a change of variables in the
momentum average to

p'=p-mu(q), d=q (49)
gives the simpler form

A= A(d,p), (50)



which is independent of the velocity field. The objective here is to find a unitary operator that does the same for
quantum mechanical operators,

A= A(d',p") = UA(q,p — mu(q))U~". (51)
The generator of the classical canonical transformation in Eq. (49) obeys?
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Using the identity generator q - p’ a new generator for the deviation is introduced
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In the following G(q, p’) will be referred to as the generator rather than F(q,p’). Note that for this generator
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Now consider the associated infinitesimal transformation, mu; (q) — emu; (q), G(q,p’) — €¢G(q,p’). To first order
in e,
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where {, } denotes the Poisson bracket.
The Dirac - Weyl quantization of this procedure is given by

{46}~ 2 [4.@ (58)

i
although some limitations exist. According to this quantization procedure, the classical infinitesimal transformation
corresponds to the finite transformation

Ad,p) =UA(@pU™", U=enc (59)
To demonstrate that this transformation does in fact give the desired result, transform a quantity A(q’,r’),
Ald,p') = e 7% A(q, p)em? = A(e” T qem @ e Cpein ). (60)
Since G = G (q) it commutes with q and so
qe = q. (61)
Next define
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which obeys

Oxp (N) = —¢~F0 - G (a)  p] A = e V4G () 70
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The following identity was used above:
[f (@), p] = ihVqf(q). (64)
Integrating (63) from 0 to 1 gives
p (1) =p(0) —mu(q) (65)
or
e 5 C0pe® = p—mu(q). (66)
Therefore (60) gives the desired result
A(d',p') = e A(q, p)em = A(q,p — mu(q)). (67)

In the text, most final results are expressed as local equilibrium correlation functions in the rest frame, e.g.

Co (r,x' | u) = Ay () Bo (7)) - (68)

Recall that the subscript zero denotes the chosen operator with all momenta replaced by their local rest frame momenta
Pa — Pa — mu(qy). The local equilibrium ensemble also has this form. Then by cyclic invariance of the trace

/
£

Co (r,x' |u) = e~ %A (r) emnCe~wC By (r/) e~ C
=Cy(r,r' |u=0) (69)

and such correlation functions are independent of the local flow velocity.

III. TIME REVERSAL SYMMETRY

The objective of this section is to prove a property of local equilibrium correlation functions for operators that have
a definite sign with respect to changes in the sign of the particle momentum operator. In the classical case this is
accomplished by introduction of the parity operator for the momentum variables only. In the quantum case the parity
operator changes both the momentum and position operators and the analysis no longer holds. Instead, an operator
that changes the momentum sign but not the position operator sign is considered.

As in the classical case the quantum time-reversal operator T' generates a reversal of motion operator in the sense

TpT '=-p TaT ' =q. (70)
It follows (e.g., coordinate representation for p) that 7¢ = —i7, and hence 7 is an anti-unitary operator
T (crla) + e2]B)) = i Tlew) + &3 T18), (71)

where ¢; and ¢ are arbitrary complex numbers. In addition it is required that 7 be norm-preserving

|(Bla)| = 1(8la)] (72)
where |a) and |3) are members of a complete basis set {a}, and

@) = Tla),  |B)="TIB). (73)
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It then follows that 7 is anti-unitary*
(Bla) = (Bla)" (74)

Consider again the correlation function of (68)

Co (r,r' | u=0) = Ay (r) By (') - (75)

It is shown here that this has the property
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Co(r,r |u=0)=(TA(x) T ) (TBy (x')T~1) .

(76)

Thus if both Ag (r) and By (r’) have a definite sign under time reversal, the correlation function vanishes when the
signs are different. The proof of (76) is complicated by the anti-unitary nature of 7 which does not obey the cyclic
invariance of the trace.

The proof is as follows. Define

dual correspondence

) = A'|B)

where A is an arbitrary linear operator. Then

(vl = (814 (77)

(Vla) = (aly)" = (@) (78)
where the second equality follows from the anti-unitarity of 7, (74). Writing (vy|a) and (a|¥) explictly in terms of A
(8l Ala) = (@ TAT|B) = (@ TA'T ! |5). (79)
As a special case, the diagonal elements for a self-adjoint operator are
(o] Ala) = (@] TAT @) (80)
Now the correlation function in (75) can be expressed as

Co (r,r' |[u=0)=> Trdy(r) By (r') p* (81)
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The last line follows from (80). Since |a) and |&) are in one-to-one correspondence the latter is a complete basis set.
Furthermore

T,OZT71 _ pE

and (83) becomes (76).

IV. TRANSFORMATION TO LOCAL REST FRAME

Operator functions of the particle positions and momenta typically refer to a fixed laboratory frame. They define
both convective motion and motion relative to each particle’s local average velocity field. Denote such an operator
by A({q,p}), where {q,p} denotes the N particle positions and momenta. It is convenient to extract from this the
corresponding operator representing only motion relative to the average flow Ag({q,p}) = A({q,p — mu(q)}). They
are related by the generator of Eq. (67),

Ao({a,p}) = e"#CA({q, p})eC. (84)
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Operators of primary interest are the conserved densities and associated fluxes,

{¢(x)} = {n(r),e(r), p(r)}, (85)

{vi} = A{pi,si tij}- (86)

The corresponding rest frame operators are easily found to be

n(r)
e(r) —u(r) - p(r) + yumn(r)
{to(r)} = pa(r) — mn(r)uy(r) (87)
py(r) — mn(r)uy(r)
p(x) — mn(r)us (r)
and the rest frame fluxes are
pir) n(r)
si(r) — uj(r)t;i(r) + % pi(r) e(r) = p(r) - u(r) + gmn(r)u?(r)
{r0i(r)} = th(r) = pi(r)ug(r) —u;(r) Ppa(r) — mn(r)uq(r) (88)
t%Ty(r) — pi(r)uy(r) py(r) — mn(r)uy(r)
ti.(r) — pi(r)u.(r) p2(r) — mn(r)u.(r)
A concise form for these transformations to the local rest frame can be described in matrix representation,
Yo (r) = Aap(u)is (1), (s9)
and the flux vector transforms to the rest frame as
Yot (8) = A (W) (735 — s (1) 95 (r)) (90)
where the matrix A(u) is given by
1 0 0 0 0
%mu2 1 —u, —uy —u,
A(uy=|-mu;, 0 1 0 O (91)
—mu, 0 0 1 0
—mu, 0 0 0 1
1 0 0"
= %mu2 1 —u” (92)
—mu 0 1

The second equality is a simplified notation, whereby u is a three-component column vector, u” is its transpose, 07

is the transposed zero vector, and I is the 3 x 3 identity matrix. To obtain (90) use has been made of the fact that
A7 (u) = A(—u). (93)
It is clear that the results (89) and (90) apply as well for the average conserved densities and fluxes
Doa () = Aag ()i (r) (94)

and the flux vector transforms to the rest frame as

Yoia (t) = Aap(u) (Fig — i (r) P (r)) (95)

since the average is a linear operation and commutes with A.
As an example, consider the local equilibrium ensemble given by (see Eq. (22) in the main text)

o4 [y ()] = e~ QU®I=J drya(rt)da(r) (96)
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where the conjugate fields {y(r,t)} are

) = { (vt + 300 0mi0)) S, -5 Dt} (97)
The local rest frame form for (96) is obtained directly from (89)
[ rua :0) 60 @) = [ dry (r:6) Aap()s (0
— [ dr A @ (1) i ()

_ / dryon (1) tou (r) (98)

Here {yo (r,t)} are the rest frame conjugate variables

Yoa(r) = Agﬂyﬁ(r) ={-v(r,t),B(r,t),0} (99)

where yo(r,t) = y(r,t)|,_, and AT is the transpose of A. The local equilibrium ensemble is therefore expressed in
terms of the rest frame variables

' 1y (8] = p§ [y (£)] = e~ O e o), (100)

As a second example consider the correlations for the derivatives of the average conserved fields with respect to the
conjugate fields (see Eq. (115) in the main text),

2Q) s () sl (r)

/
gap (r, v |y(t)) = = = 101
W) = 5y W00 () De®) oy ) Hov
%Z
= djq (I‘) wﬁ (I‘/, t) ) (102)
y(t)
with the tilde representing a transform closely related to the Kubo transform for correlation functions,
Galely(®) = [ e (1 (6) = T, ely(e))) e Oz (103)
0
and the local equilibrium average is defined by
——t
X(r)Y(r) " = (X(r)Y(r'); pe[y(t)]> . (104)
It is readily seen that
Yoa(rly(t) = Aas(a (1) Ps(rly(1)). (105)
Therefore, in matrix notation, g (r,r’|y(¢)) transforms as
g(r,x" |y(t) = A7 (u(r)) go (r,x" | y(t) AT~ (u(r)) (106)
with
90 (v, 7' | o) = thoa (¥) op (/1) | (107)

y(t)

Since go (r,r’ | yo) is now in the rest frame, the unitary transformation (69) can be used to eliminate the dependence
on u (r). Next, the time-reversal symmetry (76) implies that matrix elements of pairs that transform oppositely under
momentum reversal must vanish. Consider the densities 9, (r). For o = {1,2} the density is unchanged under time
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reversal, while the densities corresponding to o = {3, 4,5} change sign. The local equilibrium ensemble index function

OT
(108)

N]yo(t)] is also unchanged. Therefore, go (r,r’ | yo) has the form
_omf(r)
oB(r") lv

ov(r’)
——0
golrr [y() = | =W _sme g
0 0 2(3 S(r—1)1
where use has been made of (101) in the local rest frame, and for «, 5 = 3,4,5
1 6pE(r) mn(r) n(r)
/ xT /
Joas (r, 1" | y(t)) = da u=0= 0q = 0apd (r—r"). 109
0ap (T, [ y(1)) BB () 5 r(r)l 0= a8 g0y = B r) (r —r') (109)
The inverse matrix g, alﬁ(r, r’), defined by
[ 0 (50 (575 = B (= 1), (110
is required below as well, and is found to be
Sv(r) ov(r)
. / 6731(61.(/) |eo 56((5)/(31(.;)) |n ()T
9o (r,x" [y(t)) = S leo —Femeey In 0" (111)
0 0 S5 (r—1)1

V. LIOUVILLE EQUATION SOLUTION A(¢) IN THE REST FRAME

The formal solution to the Liouville equation for the deviation from local equilibrium is given in Appendix C of the

text
A= [ et [ar (el o (1) Bl T .00 Al ) (122
Bialrly(t) = T (0) — [ de' 06" ly(®) B Il | (113)
o) = [ ' Tatey)gz e 1y 0) (114)
(115)

ialrly() = [ d'Fislo'la(®)g(0'x |y (1),

Since ¥, (r|y(t)) and T';o(r|y(t)) are simply related to the local conserved density 1), (r) and their fluxes ;4 (r), the
transformation of the latter follow directly from the former (recall the transformations of ¥ (r|y(t)) and ¥(r|y(t)) are

the same as those of ¥(r) and ~(r), see (105))

Consider first ¥, (r|y(t))
(rfy(1)) /dr'A (u(r") os(r’ly() (AT (u () g5 (', | y(1) A(u(r)))
= [ ' Goal/lut6) (5" ' x [ 9(0) A (x) 5,
=Woy(rly(t)) Aya (u(r)). (116)
In a similar way, using (95), I'io(r|y(t)) becomes
/dr'Agg %0( ly(t)) + ui( )JOU(r'\y(t))) (AT (u()go " (', [y() A(u(r)),,
[ (on 61916 + ) o 0D (o™ o7 (0) A (0 4)),,
Voo (2 [y(1)) oo, (', | 4(1)) Ava (u (r)) - (117)

Lo (ely () A (0 (1)) + [ e
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Finally, with these results the transformation of ®;(r|y(t)) is obtained,

7/

Pia(rly(t)) :Fm(rly(t))*/dr/ Ws(r") s (r)Lia(rly(t)

y(t)

L5 (rly(t)) Ago (u / ' (s (1 V0w (1)) gy (1| (1)) Ay (1 (1))

= [ e’ o (19(0) o ) | | Age ()

— [ o lye) [ ) s )

Go (" [ 9(0)) Ay (u(x)” (2)

y(t)

) A a0, (113

/

( s (xly(t)) - / dr’ Woo (¢'ly () Dr (P 0T Tg(0)

Dia(rly) = Pois(r|y)Apa (u(r)). (119)

The solution to the Liouville equation (112) is therefore

t
o(e—t 0 _, —
A= [ are =) e (Wop(ela) s (06 5T (08 1) = Dol A (0 ) 5B 1,0 ) sl ()]
(120)
The operators ¥og(r|y(t')) and @105( r|y(¢')) with subscript 0 are the same as those in (112) except with u (r) = 0.
It remains to transform 9,77, (r,t') and 9;1,, (r,t) to the corresponding rest frame form. First, note that Wog(r|y(t'))
and ®o;(r|y(t')) can be written as

Wou tlu(®) = [ dr'dos (0100, (x| 4(0). (121)
Bois(rly(1) = [ /G ()i x| 4(0) (122)

where
G (ely(0) =T elp(®) — [ ax’ [ Do ()i, (0" | 9(0) B0 PGl O) | - (128)

Then

/ drd05(r|y(t) Aga (u (r)) 0, (v, 1) = / dr / dr’' G0 (v'|y(1)) goga (/T | 40) Aaw (1 (r)) iw (r,t)
= [ar [ /G lye) 45 @) [ drgidc' e L) 55, 0

== [ s ) AT ) e 0
= [ G0 ) AL () AT () (00, (124)

Finally, then

[ drasely(t) Ao () 5 (0,0) = [ a (—aom(r’m a0t + o |y<t>>/3<rxt'>£,w(r',t’))

In a similar way

Wos (r1y(0)) A (1) 77 (111 9) = Wo(ely) Asa (0 8) -T2 (1, 10)
= Woaely(1)) (V- S5, tly) + 5y (. 'ly) Biaig) + o (ely(£)) o (r. ) (126)
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In the above solution to the Liouville equation 7} (r,'|y) are the laboratory frame fluxes, 7 (r,t'|y) = {y; (r);t) —
(yi (r):t)". The corresponding rest frame fluxes 7%; (r,'|y) = (y0; (r) ;) — (0i (r); )" differ for the energy flux
Voo (0,8 1y) =73, (v, 8'[y) — vy (0, 8) T (0, |y) =55, (x, t']y).

The form for the solution to the Liouville equation (120) becomes

A(t) = tdt’e*ﬁ(t*t') dr ( dos(xly(t)) aﬂ(r,t')7ggij(r\y(t’))ﬂ(r,t’)iui(r,t’)
0 T

87‘2‘ 0 j
FWor(r|y(t")V - 55(r, t'|y) + Woi(rly(t)dits; (x, t'[y)) piv [y ()]- (127)
More explicitly
doia(rly(t)) = Foi(r / dr’ / dr'” oo (¢'[y(8))goma (', | (1)) ¥y, (F)50:(xly (1)) o (128)
By time reversal symmetry 1, (r")50;(r|y(t)) ‘ " is non-vanishing only for %, (r”) = p;(r”), and similarly
y(t

Jou, (v, ¥ | y(t)) is non-zero only for the diagonal momentum components, so

¢~50i2(r|y(t) = S0:i(r /dr /dr” ;50] r |y )6 (r /_r//)ﬁ(r(;’/t;)/) Do, (r//)gm(r|y(t))£ »
= Sulrly(0) [ ' o062 el )| (129)
Also
Woalely(t)) = [ de'Gos(ly(e)) gy 0 ely(0)
= /dr’ (For (0 ly()gars (¥l (D) + doa ' y(1)) g5z (', xly(1)))
[ (BB 0B
—— [ (e lu(o) + 5o el (o) (130)
and
Goij (Tly(t)) =oi; (rly(t)) — B~ (r,t)Wos (x|y(1))E;; (r,t]y)
o (xly(t)) ~ [ o / 8 o )it (0 00 B oG O) |
— B, ) Vo (rly(1)E; (r,tly) - (131)
To evaluate the second term on the right note that
_ . _ , e ©
Yo (t7)0i (r|y(1)) o = to;;(r)thoa (r"|y(1)) o T o ()
_ _57T¢j(r|y(t)) (132)

5?]0(1 (I‘//, t) ’

where 7;; is the pressure (see Eq. (60) in the main text), so that

s la0) ool + [’ [ Golw'ly)goh, (05" () AL

= B, ) Woa(rly()E; (r,tly) - (133)
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The second term simplifies

[ T 6 Ot 5 o) S
:—ﬁ(r’|y(t))/dr”< gor (/.2 [ y(t ))W\ﬂgm (', x" [ y(t)) m!>

~awlyo) [ i (~agh (0 1o0) SETED b g ' (o) S0 )
— (! e —og=t (¢ ¢ 57Tij(r|y(t)) -1 Y 57Tij(r|y(t))

( |y(t)) /d ( gOll( ) | y(t)) 6V (I‘H‘y(t)) |5 +9021 ( | (t)) H|y(t>) ’V>
—eo(r'|y(t)) /dr” (‘90_12 (x”, x| y(t)) (m‘g "‘90_212 (", x| y(t)) W’V> . (134)

In this last equality use has been made of go_alﬁ (v, |y(t)) = go_ﬂla (r',r | y(t)). Finally, then
Too ) [ g 0" (0 W
uOmi(rly(®)), ov (x"]y(t)) 5% (rly(t)), o8 (r ”\y( )
whio) [ (-5 ‘Ban I =5 @) - o ) )
r|y(t)) ‘ (r"|y(t ) )
(rly(t)) ™ 6B (x"[y(t)) 56 (rly(t)) ™

—eo(r’ y(t))/dr”< dmij (rly ‘ﬁ - (r"|y(¢)) | 5772]

ov (r”ly
dmi; (rly(t))
on (r'|y(t))

With this result (133) becomes

005 (T = r r M eo(r! omiy (rly(t))
Goi; (xly (1)) = toi; (xly(t) +/d ( wly) |« T WO T w) In>

(s 1) Woa x|y (1))E; (tly) (135)

5% (rly(t))

Al (0) e (ly (D) "

le +eo(r'[y(t))

VI. IRREVERSIBLE FLUXES IN THE REST FRAME

The irreversible contributions to the energy and momentum fluxes are defined by

so(r,tly) =Y TrWVso(m)An (1), Toy(r,tly) = ZTr Vtoi; (r) An (t) (136)
N

where so(r) and ¢;;(r) are the operators for the energy and momentum fluxes in the local rest frame. With (127)
these are

P
B(r',t")
y(ar) Ori

85 (r, tly) :/o dt//dl‘/ [(eﬁ(t_t/)so(r)) 50i2(1"'|y(t/))£

— (B D ag ) oty (@)) | B0 )i, 1)

y(t) or;
+ (e£0=1sg(r)) Woa(r,t') | V-55(r,ty)
y(t')
L(t—t") / ¢ 9 -
+ (e so(r)) Wo;(r, 1) b i (rstly) (137)
y(t')




and
- K =~ ¢ d
fy(evtly) = [t [’ | (200, 0) Gl lo@)) | Bt
0 y(t) 9Tk
’ ~ ¢ a
= (57 t05 (1) Gom(xly(t)) | BO ) 5w (x', 1)
’ Tk
y(t')
+ (e£0-t05(r)) Woa(xly(t)) |V -S5(x,t]y)
y(t')
L(t—t") / ¢ 9
+ (e toi; (1)) Yo (rly(t)) Al (T, t[y).
’ a'rk;
y(t')
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