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Abstract
The roles of the large exchange dimensionless gradient limit, s→∞, with s = |∇n(r)|∕
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of dispersion interactions computed by Grimme’s scheme in the context of solids are considered. Two families of recently 
developed generalized gradient approximation exchange functionals in combination with a suitably calibrated dispersion 
contribution are studied. Furthermore, the effects of changing the correlation functional or including exact exchange in the 
calculations also are explored. The results indicate that the large exchange dimensionless gradient limit has a small influ-
ence and that the most important contribution for a better description of the structure and energetics of porous materials is 
dispersion. The functional that provides best overall agreement with the experimental stability trend of a large set of pure 
silica zeolites is an exchange functional (denoted lsRPBE) based on the modified version of PBE, the exchange functional 
RPBE, corrected to satisfy the large exchange dimensionless limit, combined with PBE correlation and including a cali-
brated Grimme dispersion contribution. It outperforms any of the functionals that include exact exchange which were tested. 
Remarkably, the simple local density approximation does almost as well.
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1  Introduction

Zeolites are among the most versatile materials for possible 
technological applications because of their diverse physical 
and chemical properties, including cell size, shape, cavities, 
surface area, presence of heteroatoms, and multiple structures 
[1]. The many possible combinations of these make zeolites 
an enticing option for employment as catalysts in petroleum 
technology [2–4] and chemical reactions [5–7], in the phys-
isorption of industrial gas emissions [8–10], or as molecular 
sieve adsorbents [11]. Despite their popularity, zeolites are not 
an easily definable family of crystalline solids. One criterion 
to distinguish them from denser tectosilicates is the frame-
work density. Pure silica zeolites exhibit high porosity, hence 
comparatively low material density, which makes them less 
stable than tectosilicates, to the point that several zeolites are 
known to collapse after a calcination procedure [12]. Experi-
mental and computational studies [13–16] correlating lattice 
energy and framework density have estimated the energetics 
of several silica zeolites with respect to α-quartz, their most 
stable phase. Additionally, the relative stability trend observed 
in thermochemistry experiments was described by the forma-
tion enthalpy of that family of materials [17]. Recently, it has 
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been shown that their structural stability is dominated by dis-
persive forces [18].

For understanding extended systems, a successful and com-
monly used computational method within density functional 
theory (DFT) is the Kohn–Sham (KS) procedure [19–21]. In 
it, all contributions to the Born–Oppenheimer (fixed nuclei) 
energy are known exactly either in terms of the electronic 
density n(r), or the Kohn–Sham orbitals φi(r), except for the 
exchange–correlation (XC) contribution. For XC, existing den-
sity functional approximations (DFAs) are designed to employ 
not only the ground state density n(r), but also its derivatives 
∇n(r), ∇2n(r), etc., and quantities constructed from the KS 
orbitals φi(r), including the positive definite kinetic energy 
density �(r) = 1

2

∑
i
��∇�i(r)

��
2 and exact exchange (EXX). The 

dependence upon distinct functional variables constitutes the 
basis for the Perdew and Schmidt Jacob’s ladder [22] catego-
rization of DFAs. Its first four rungs, ascending in theoretical 
complexity and computational demand, are the local density 
approximation (LDA) [dependent only on n(r)], the general-
ized gradient approximation (GGA) [dependent on n(r) and 
∇n(r)], the meta-GGAs (mGGA) [that additionally include 
τ(r) or ∇2n(r) dependence], and global hybrids containing an 
EXX contribution.

In the KS context, DFAs for X and C customarily are 
devised separately because of their distinct scaling and asymp-
totic behaviors. Nonetheless, error cancelation between X and 
C by design is familiar in GGAs. It is also well understood in 
bonding regions, because one knows that the X part accounts 
for the regions of overlapping densities and for some inter-
mediate range correlation effects. However, unless specially 
designed to rectify the omission [23], in general, simple DFAs 
lack long-range correlation interactions or they unsystemati-
cally simulate them [24–27]. Multiple suggestions have been 
made [28–37] for improving the treatment of dispersion in 
the context of DFAs. Among them, Grimme’s approach [38, 
39] adds a semiempirical sum over atomic pair contributions 
of damped C6 terms to the conventional KS energy EKS. The 
result is a corrected energy EKS-D,

Here, N is the number of atoms, Rij is the interatomic dis-
tance between atom i and atom j, Cij

6
 is the dispersion coeffi-

cient for atom pair ij, and s6 is a DFA-dependent global scaling 
factor. The damping function, ƒd, avoids near singularities for 
small R and removes contributions for short-range interactions. 
It is given by

(1)EKS - D = EKS − s6
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where R0 is the sum of atomic van der Waals radii and the 
value of α = 20 provides larger corrections at intermediate 
distances while leaving covalent bonding situations negligi-
bly affected. Finally, a geometric mean for the evaluation of 
the dispersion coefficients with the form Cij

6
=

√
Ci
6
C
j

6
 com-

monly is used since it provides better results than other plau-
sible choices.

The question at hand is the effect upon zeolite stability of 
different DFA choices in combination with Grimme’s dis-
persion correction. Our study explores a set of pure silica 
zeolites for which experimental data [14–16] are available. 
It covers three of the four Jacob’s ladder rungs listed before. 
The first is LDA, known to be rather accurate for those solids 
[40] in which n(r) does not vary rapidly and the widely used 
GGAs PW91 [41], PBE [42], its revised version RPBE [43], 
and the more recent lsPBE and lsRPBE families [44] (named 
lsX when referring to both families). The lsX functionals 
were designed to satisfy the 1D and 2D non-uniform scal-
ing conditions that imply that in the large exchange dimen-
sionless gradient limit, the exchange enhancement function 
must satisfy the constraint lims→∞ s1∕2FX(s) < ∞ . Thus, 
asymptotically the exchange enhancement function must 
decay at least as s−1/2, a condition that was included in the 
constraints satisfied by PW91. The analytical forms of the 
lsX enhancement functions are simpler than that of PW91 
and, consequently, the lsX implementation is easier and their 
performance (measured as cycles in the SCF and in geom-
etry optimizations) is better. An important feature of the lsX 
functionals is that asymptotically their enhancement func-
tions decay to zero, unlike PBE and RPBE, both of which go 
to the value of the local Lieb-Oxford bound (Figure 3 of Ref. 
[44]). Then, there are the fourth-rung global hybrid DFAs 
based upon all the aforementioned GGAs except PW91. In 
addition, the s6 coefficients [Eq. (1)] were calibrated for lsX 
DFAs in order to include long-range interactions and com-
pare the results with those previously obtained [18] by one 
of the authors, who used two different DFAs and also two 
distinct approaches to account for dispersion. This selec-
tion enables us to evaluate the performance of these new 
lsX families in periodic systems in both the presence and 
absence of dispersion contributions.

2 � Methodology

2.1 � Calibration of s6 for lsX DFAs

The s6 scaling factor in Eq. (1) takes a value specific to a par-
ticular DFA. To evaluate it, one needs appropriate reference 
sets consisting of interaction energies for a wide range of 
weakly interacting molecules in a variety of sizes and diverse 
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arrangements. Those reference calculations commonly use 
the CCSD(T) methodology along with extrapolation to the 
complete basis set limit to provide accurate non-covalent 
interaction energy results. Robust calibration is obtained when 
the data sets include the A24 [45], S26 [46], S66 [47, 48], 
and X40 [49] benchmarks. Those sets cover different sizes 
of complexes and encompass hydrogen bonds, electrostatic/
dispersion, dispersion-dominated and electrostatic-dominated 
interactions of aliphatic hydrocarbons, aromatic rings, water, 
alcohols, ammines and halogens, among others.

The necessary s6 values, shown in Table 1, were determined 
by a least squares fit of the interaction energies obtained from 
single-point energy calculations with the software package 
deMon2k [50] using the geometries and basis sets correspond-
ing to each of the above-mentioned databases. For comparison, 
lsX functionals were used in combination with two correlation 
DFAs, namely PBE and PW91, with the set of non-empirical 
values of the gradient expansion coefficient μPBE [42], μsol 
[51], μMGEA [52], and μmol [53], denoted collectively from here 
onward as μx. A complete list gathering the results for all the 
non-covalent interaction energy differences can be found in 
Tables S1 and S2 in the Supplementary Material.

2.2 � Hybrid DFAs

A common approach to improve upon the accuracy of a GGA 
is the addition of an EXX contribution to yield a fourth-rung 
DFA, namely global hybrids. The underpinning of hybrids lies 
in the relationship of the non-interacting KS reference system 
with the fully interacting, and hence, real system. This is done 
via the adiabatic connection formula [54],

with

(3)Exc =

1

∫
0

d�Exc,�,

(4)Exc,� = ⟨�
�
�Vee���

⟩ − 1

2∬ drdr′
n(r)n

�
r
′
�

��r − r
′��

,

where the perturbation parameter starts in the non-interact-
ing reference (λ = 0) and goes through a continuum of partly 
interacting systems, all sharing the same n(r), up to the real 
system (λ = 1). This methodology has led to a family of adi-
abatic connection functionals Ehyb

xc  , wherein the GGAs act 
as adjustable contributions in the form [55]

Following the notation for PBE0 [56], a popular non-
empirical hybrid DFA built upon the PBE GGA in the form 
of Eq. (5), and taking into account the distinct μx values used 
in their correlation counterpart, lsX-based hybrid DFAs are 
designated as lsPBE0, lsPBEsol0, lsPBEMGEA0, and lsPBE-
mol0, and likewise with lsRPBE. To maintain their non-
empirical nature, they all utilize 25% of EXX, i.e., Eq. (5).

2.3 � Computational details

Plane waves are the first and natural choice as basis func-
tions for KS calculations on periodic systems, not only 
because of Bloch’s theorem, but also because the addition 
of functions with shorter wavelengths, up to a cutoff, sys-
tematically improves the basis. However, when compared 
to Gaussian-type basis functions, unless pseudo-potentials 
are introduced, vast numbers of plane waves are needed to 
reach the same level of accuracy in the calculated KS total 
energy. Unhappily, such large basis sets adversely affect 
the computational cost of hybrid DFAs as it is known that 
plane wave calculations with global hybrids are several times 
more expensive than GGAs. Moreover, the standard local-
ized Gaussian-type orbitals (GTO) centered at the nuclei, 
commonly used for molecular calculations, are well suited 
for extended solids since n(r) is approximately a superpo-
sition of atomic densities. However, their diffuse tails can 
be inappropriate because the evaluation of the coulombic 
contributions is affected by their slow decay with distance, 
so they must be truncated or removed and the exponents of 
the remaining valence functions re-optimized.

A balance of pros and cons [57] between plane waves and 
GTOs led the KS calculations to be performed employing 
the ab initio periodic code CRYSTAL14 [58] with Ahlrich’s 
optimized triple-ζ valence basis [59] set including polari-
zation functions (TZVP). In several periodic systems, it 
has been shown [18, 60, 61] to be nearly free of basis set 
superposition error (BSSE). Production of overly short bond 
distances in weakly bound systems has been attributed to 
BSSE, thereby potentially masking any deficiencies in DFAs 
for the description of these interactions [18, 62].

Calculations with dispersive terms were done with the s6 
scaling factors from Table 1 and also with a mean s6 = 0.70 
used for comparison. To achieve high-accuracy results, the 
tolerances for the bielectronic integrals were set to their 

(5)Ehyb
xc

= EGGA
xc

+
1

4

(
EEXX
x

− EGGA
x

)
.

Table 1   Global scaling factor s6, calculated using the A24, S26, S66, 
and X40 databases for lsPBE and lsRPBE exchange families com-
bined with PBE and PW91 correlation DFAs. X stands for exchange 
and C for correlation DFAs

X C μx

sol PBE MGEA mol

lsPBE PBE 0.655 0.683 0.694 0.701
lsRPBE PBE 0.656 0.695 0.721 0.718
lsPBE PW91 0.677 0.685 0.694 0.698
lsRPBE PW91 0.671 0.694 0.721 0.717
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default values with the exception of the overlap threshold 
for Coulomb integrals and the pseudo-overlap, which were 
fixed to 10−8 and 10−25, respectively. Optimizations on both 
atomic positions and cell parameters with analytic gradi-
ent techniques under the corresponding space group sym-
metry constraints through a quasi-Newton algorithm using 
Broyden–Fletcher–Goldfarb–Shanno (BFGS) methodology 
for Hessian updating and the trust radius strategy for step 
length control [58] were employed. The rest of the compu-
tational parameters were left to their default values.

All silica zeolites whose formation enthalpies have been 
reported in Refs. [14–16] were considered, with the excep-
tion of the porous silica denoted as BEA. The experimental 
values concern the enthalpy of transition ΔHx, from α-quartz 
as reference system to a specific zeolite framework. In the 
results presented here, we assume that the PV contribution is 
small compared to the electronic nuclear energy, and hence, 
the total energy can be taken as a good approximation to the 
enthalpy of transition [18].

3 � Results and discussion

Different deviation indicators for the calculated molar vol-
umes, V, and the energy differences relative to α-quartz, ΔEc, 
of the silica zeolites are shown in Fig. 1 and Table S3 in the 
Supplementary Material. The mean absolute deviation was 
calculated as MAD = (1∕�FCode�)

∑
i∈FCode

���xi − x
expt

i

��� , the 

mean  s igned  dev ia t ion  as  MSD = (1∕|FCode|)∑
i∈FCode

�
x
i
− x

expt

i

�
 , the percentage of mean absolute rela-

t i v e  d e v i a t i o n  a s  %MARD = 100(1∕|FCode|)
∑

i∈FCode

���xi − x
expt

i

���∕x
expt

i
 , and the standard deviation as 

SD =
�
(1∕�FCode�)

∑
i∈FCode

�
xi − x

expt

i

�2�1∕2
 , where xi is the 

calculated property, xexpt
i

 the experimental reference, and 
|FCode| is the total number of frameworks considered (see 
Tables S4 and S5 in the Supplementary Material for a com-
plete list of molar volumes and calculated energy differences 
for all DFAs and frameworks).

From the values for the MAD and MSD reported in 
Fig. 1 and Table S3, one can see that all DFAs overestimate 
V within the range 1.81–4.33 cm3/mol, corresponding to a 
relative deviation of 5.25–12.57%, as shown in the %MARD 
column in Table S3. The minimum deviations correspond to 
LDA followed closely by lsPBEsol-D, PBE0-D, lsPBEsol0, 
and lsRPBEsol-D, while the largest deviations are obtained 
with lsRPBEmol using PBE and PW91 correlation. With 
respect to ΔEc, all DFAs lacking dispersion correction per-
form better than B3LYP (except for RPBE and RPBE0), 
while all DFAs with dispersion do better than B3LYP-D 
with the sole exception of lsPBEsol-D. Also from Fig. 1 

and Table S3, one can see that the MAD for the transition 
enthalpies spans the range 1.81–9.40 kJ/mol. In this case, 
LDA has the smallest deviation followed by lsRPBE-D, the 
first GGA with the smallest deviation, while RPBE, RPBE0, 
and B3LYP have the largest deviations. Figure 1 shows that 
PW91 and PBE have very similar trends in energetics and 
structural properties. Interestingly, PW91 and lsRPBE with 
PBE correlation have very similar behaviors, in agreement 
with the conclusions of Pacheco-Kato et al. [44]. On the 
other hand, hybridizing EXX with GGAs improves the struc-
tural description of zeolites, but corresponding improvement 
is not generally observed in the transition enthalpies.

Another interesting feature from the values shown in 
Fig. 1 is concerned with the lsX DFAs. Note that for these 
functionals, the rows in Fig. 1 (and Table S3) are ordered, 
from top to bottom, by increasing values of μx. The devia-
tions in the molar volumes of all lsX DFAs increase with 
increasing μx, independently of correlation, EXX or the 
inclusion of dispersion corrections. Regarding the energet-
ics, we find that for the lsX functionals without dispersion, 
with the exception only of lsRPBE-PW91, the deviations 
increase on going from μsol to μmol. In contrast with the 
previous trends, the deviations for the lsX-D functionals 
decrease, competing and in some cases performing bet-
ter than functionals with EXX including dispersion, thus 
becoming the functionals with the most physically coher-
ent picture of these systems. Finally, it is worth noting that 
the presence of the large exchange dimensionless gradient 
behavior improves the structural as well as the energetic 
description of pure silica zeolites (compare values corre-
sponding to PBE with lsPBE (μx = PBE), and RPBE with 
lsRPBE (μx = PBE), all with PBE correlation).

For further analysis of the energetic trends obtained 
with the DFAs considered in this work, with particular 
emphasis upon the dispersion contribution, in Fig. 2, we 
depict the calculated versus experimental transition enthal-
pies, relative to α-quartz. Figure 2a shows that LDA gives 
good agreement with the experimental values. In contrast, 
the GGAs shown in Fig. 2a–h all give values clustered 
below the dotted line, i.e., those DFAs underestimate the 
transition enthalpies. Figure 2b shows that adding EXX 
has a marginal effect on these energy differences, thus 
making no clear improvement in describing ΔEc. The role 
played by including the satisfaction of the large dimen-
sionless gradient limit in the exchange, namely, the lsX 
DFAs, is shown in Fig. 2c–h. Regarding the lsPBE fam-
ily, it is clear in Fig. 2c–e that independent of the value of 
μx, the energy differences get closer to the experimental 
values, providing better values than the exchange DFAs 
without proper large gradient behavior. The lsRPBE fam-
ily in Fig. 2f–h shows a similar improvement. Another 
noticeable feature observed with the lsX DFAs is that in 
general the spread of values of ΔEc is smaller than those 
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corresponding to exchange functionals that do not have the 
proper large dimensionless gradient behavior. This state-
ment is further supported by the plots in Figs. S1 to S7, 
available in the Supplementary Material. There one can 
see that the statistical correlation coefficients of the lsX 
families are better than those corresponding to exchange 
functionals without the correct large gradient behavior. To 
illustrate this point, the correlation coefficients obtained 
with DFAs without that large gradient behavior (Fig. S1) 

range from 0.37, corresponding to RPBE, to 0.82 for 
PBE0. In contrast, the lsPBE family (Figs. S2 to S4) has 
correlation coefficients ranging from 0.79 (lsPBEmol-
PW91 in Fig. S3) to 0.9 (lsPBEsol0-PBE in Fig. S4). The 
reduction in the spread in values is less pronounced with 
the lsRPBE family. For that, the correlation coefficients go 
from 0.7 (lsRPBE-PBE in Fig. S5) to 0.84 (lsRPBEsol0-
PBE in Fig. S7). Nevertheless, in both cases the reduction 
in spreading with the lsX functionals is evident.

Fig. 1   Mean absolute deviation MAD, mean signed deviation MSD, and standard deviation SD, for the calculated molar volumes V, in cm3/mol, 
and for the calculated energy ΔEc, in kJ/mol, per SiO2 unit considering different DFAs, of silica zeolites relative to α-quartz
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Figure 2i, j clearly shows that the dispersion correction is 
required to obtain an acceptable description of the energet-
ics of pure silica zeolites from a GGA. Along with this last 
statement, from the data reported in Table S3, the MADs 
of the energies for lsPBE-D and lsRPBE-D are 1.24 and 
5.59 kJ/mol below the MADs corresponding to lsPBE and 
lsRPBE, while the MADs for the molar volumes are 0.77 and 
0.7 cm3/mol below. In other terms, this means an improve-
ment of 21.3 and 74.9% for the energetics versus 23.5 and 
17.6% for the structural description, respectively. From these 
last observations, an appeal to the criterion of balance in the 
accuracy of the predicted structural and energetic properties 
of the frameworks leads to the conclusion that lsRPBE-D 
is the best performing DFA among those considered. That 
conclusion is notwithstanding that the lsPBE-D functionals 
are slightly better choices for the structural description than 
the lsRPBE-D family.

The relationship between structural and thermodynamic 
data commonly is correlated experimentally [16, 63] and 
exhibits a linear behavior with good correlation coefficients. 
As is clear in Fig. 3 (note the different scales), the theoreti-
cal approach showing better agreement with the observed 
experimental trend (Fig. 3a) is achieved via the inclusion 
of dispersive terms (Fig. 3c). In Fig. 3b, lsRPBEsol has the 
best correlation within the lsRPBE family, but a slope far 
away from that in Fig. 3a. Instead, the lsRPBE-D family in 
Fig. 3c not only exhibits a competitive correlation, but also 
has more realistic slopes, strengthening emphasis upon the 
role played by dispersion in porous materials. Since ΔHx 
measures the energy involved in the formation of the frame-
work from α-quartz, the linear correlation in Fig. 3 indicates 
that the formation of porous zeolites requires energy to form 
the cavities observed in these materials.

The dispersive corrected calculations, reported in Table 2, 
that use the global scaling factor value s6 = 0.70 (labeled as 
−D*), help to compare the amount of dispersion energy con-
tribution E(dsp), from the total energy E, with respect to 
α - q u a r t z  i n  t h e  f o r m  %Disp = [100][(
E
(dsp)
zeo − E

(dsp)
qua

)
∕
(
Ezeo − Equa

)]
 , enabling one to quantify 

the fraction of relative energy due to dispersion (see 
Table S6 from the Supplementary Material for further error 
analyses). In general, the dispersive contributions in the 
lsRPBE-D* family are greater than those in lsPBE-D*, 

Fig. 2   Comparison between calculated energy ΔEc, and experimen-
tal enthalpy of transition ΔHx, relative to α-quartz of all considered 
frameworks for a LDA and the three GGAs indicated in the legend, 
b the two GGAs indicated in the legend with their corresponding 
non-empirical hybrids, c–e lsPBE family with PBE, PW91 and the 
non-empirical hybrid with PBE correlation, respectively, f–h lsRPBE 
family with PBE, PW91, and the non-empirical hybrid with PBE cor-
relation, respectively, i dispersion-corrected lsPBE-D family, and j 
dispersion-corrected lsRPBE-D family

◂

Fig. 3   Trends for a the experimental transition enthalpies ΔHx, versus 
the experimental molar volume V, b the calculated energy differences 
ΔEc, versus the calculated V for the dispersion-corrected lsRPBE-D 
family, and c ΔEc vs V for lsRPBE family
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implying that lsRPBE-D* DFAs add more dispersion than 
the lsPBE-D* family.

The overall view reveals that all DFAs without correction 
for dispersion, with the exception of LDA, underestimate 
ΔEc, but as dispersion corrections are included these values 
are no longer underestimated. This behavior approximately 
follows the ordering {ls(R)PBE-D, ls(R)PBE0} < ls(R)
PBE < (R)PBE. See Table S5 of Supplementary Material 
for details.

4 � Conclusions and outlook

The roles of the large exchange dimensionless gradient limit 
and the inclusion of damped dispersion in KS calculations 
of geometric and energetic properties of pure silica zeolites 
have been investigated.

Results show that LDA provides a good description for 
the structural and the energetics of these porous materials. 
They also show that all GGAs underestimate the energy dif-
ferences, independently of including large exchange dimen-
sionless gradient-corrected functionals, the type of correla-
tion functional and adding exact exchange. We also show, 
in agreement with previous work, that the most important 
contribution for a better GGA-based description of these 
porous materials is dispersion.

We find that the best descriptions are obtained with lsR-
PBE-D, a combined DFA involving the novel lsRPBE func-
tional along with the additionally calibrated scaling factor 
s6 = 0.695 of Grimme’s empirical dispersion methodology. 
Our investigations using different GGAs clearly indicate 
that when dispersion is considered, the results are in better 

agreement with experiment and, in most cases, outperform-
ing global hybrids. This is relevant if one considers study-
ing these porous materials using plane wave methodology 
wherein exact exchange is several times slower than GGA 
calculations.

Finally, parameter-free additional calculations employing 
non-empirical schemes, such as the one from Tkatchenko 
and Scheffler [37], to account for long-range van der Waals 
interactions are an interesting alternative to consider if one 
wishes to use a non-empirical DFT implementation.

5 � Supplementary Material

The Supplementary Material collects complete lists with 
energy differences for the total 156 dimers included in 
the benchmarks employed for the calibration of Grimme’s 
dispersion coefficient for the lsX families with PBE and 
PW91 correlation. Furthermore, detailed information about 
deviation indicators and the comparison between calculated 
molar volumes and energy differences with their correspond-
ing experimental values for all pure silica zeolites for the 
exchange–correlation DFAs combinations considered in 
this work. Linear fits and correlation coefficients concern-
ing experimental transition enthalpies and calculated energy 
differences are included for comparison.
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