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I. MOTIVATION

In this technical note, we give the essentials of the so-called “flexible density” introduced in Ref. 1. The underlying

idea, namely to investigate the effect of the Kato cusp condition [2] first showed up in the DFT literature, so far as

we know, in Levy and Ou-Yang [3]. Extending that to densities without a cusp is, we think, original with Ref. 1.

The elementary point is that densities both from regularized potentials (e.g. pseudo-potentials) and from expansion

in Gaussian basis sets do not obey the Kato condition. Densities expanded in Gaussians also do not have the

proper exponential tail. The flexible density provides a tool to explore the implications of such behavior by the most

rudimentary route possible, namely an exponent tunable from hydrogenic cusp to Gaussian cusplessness. For an s-like

density that is not only easy to do but provides explicit formulae at least for the atomic case.

Remark: SBT remembers that somewhere in J.C. Slater’s books there is an example of using a Gaussian orbital as

a variational wavefunction for the H atom. We have not gone to the effort to find the specific reference.

II. ATOMIC-LIKE CASE

We define a one-center Ne-electron density in the flexible parametrized form

nf (r) := Af exp(−λrγ) , 1 ≤ γ ≤ 2 (1)

Af =
Neγλ

3/γ

4πΓ(3/γ)
, (2)

The norm follows from Ref. [4], with the usual Γ function, namely Γ[N ] = (N − 1)! for N > 0 and integer. Although

there is no strict reason to limit the density to Ne ≤ 2, the fact that it is of s symmetry makes that limitation physical.

For physical realism, we also take

1 ≤ γ ≤ 2

λ > 0 . (3)

With γ = 1, λ = 2Ne, Ne = 1, Eq. (1) is the H atom density in the central field approximation. For γ = 2 it is

pure Gaussian.

In some density functional approximations for exchange and correlation (e.g. Ref. 5) and for the so-called Pauli

kinetic energy [6, 7], it is common to use the reduced (dimensionless) density gradient defined by

s :=
1

2(3π2)1/3
|∇n|
n4/3

≡ κ |∇n|
n4/3

. (4)

For the flexible density, we have

∂nf
∂r

:= −λγrγ−1nf (r) (5)

whence

sf (r) = λκγrγ−1n
−1/3
f (r) (6)

p ≡ s2(r) = κ2λ2γ2r2(γ−1)n
−2/3
f (r) , (7)



Remark: Beware! This definition of p is consistent with the general DFT literature, whereas the definition of p in

Ref. 1 is not. The same is true of q introduced next.

For DFAs containing the density Laplacian (e.g. some KEDFs, de-orbitalized meta-GGA XC DFAs) the reduced

density gradient of interest is

q := κ2
∇2n

n5/3
. (8)

For the flexible density atom, the tedious detail is

∇2nf (r) = r−2 ∂

∂r

[
r2
∂nf
∂r

]
=

2

r

[
−λγrγ−1nf (r)

]
+
∂2nf
∂r2

. (9)

The radial second derivative is

∂2nf
∂r2

=
[
−λγ(γ − 1)rγ−2 + λ2γ2r2(γ−1)

]
nf (r) . (10)

Therefore

∇2nf (r) =
[
(−λγ)(γ + 1)rγ−2 + λ2γ2r2(γ−1)

]
nf (r) (11)

and therefore

qf (r) = κ2
[
−λγ(γ + 1)rγ−2 + λ2γ2r2(γ−1)

]
n
−2/3
f (r)

= κ2λγrγ−2[λγrγ − (γ + 1)]n
−2/3
f (r) . (12)

Another reduced density derivative (again with different notation from that in Ref. 1) is

q̃ := κ4
∇n · (∇∇n) · ∇n

n13/3
. (13)

Evaluated for the atomic flexible density this becomes

q̃f (r) = κ4λ3γ3r3γ−4[λγrγ − (γ − 1)]n
−4/3
f (r) . (14)

As an example of use of these forms, the von Weizsäcker potential is

vW =
δTW
δn

=
λγ

8
rγ−2[2(γ + 1)− λγrγ ] . (15)

III. ARTIFICIAL MOLECULE

For the case Ne = 1 for the atomic-like density, it is straightforward to construct the density for a closed shell

homonuclear diatomic molecule that is the counterpart of H2. Let the bond length be R, then

n2(r|R) := Af [exp(−λ|r−R/2|γ) + exp(−λ|r + R/2|γ)] . (16)

Obviously this density is symmetric with respect to interchange of the two centers. For practicality in doing the

needed spatial derivatives, it is convenient to rewrite in Cartesian coordinates, with the bond along x:

n2(r|Rê1) = Af

{
exp(−λ[

√
(x−R/2)2 + y2 + z2]γ + exp(−λ[

√
(x+R/2)2 + y2 + z2]γ

}
. (17)

≡ Af
{

exp−λ[(x−R/2)2 + y2 + z2]γ/2 + exp−λ[(x+R/2)2 + y2 + z2]γ/2
}
. (18)

The unit vector along x is ê1.
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The gradient and Laplacian of this density are needed for the dimensionless variables s and q introduced above. In

principle, these can be done by hand but doing so is quite tedious.

Here are the Cartesian components of the gradient.

∂n2
∂x

= −Afλγ
{[

(x−R/2)2 + y2 + z2
](γ/2−1)

(x−R/2) exp−λ[(x−R/2)2 + y2 + z2]γ/2

+
[
(x+R/2)2 + y2 + z2

](γ/2−1)
(x+R/2) exp−λ[(x+R/2)2 + y2 + z2]γ/2

}
(19)

∂n2
∂y

= −Afλγ
{[

(x−R/2)2 + y2 + z2
](γ/2−1)

(y) exp−λ[(x−R/2)2 + y2 + z2]γ/2

+
[
(x+R/2)2 + y2 + z2

](γ/2−1)
(y) exp−λ[(x+R/2)2 + y2 + z2]γ/2

}
(20)

For the z component replace the one factor written (y) in Eq. (20) with (z).

Then the reduced density gradient s needs

|∇n| =

√(
∂n2
∂x

)2

+

(
∂n2
∂y

)2

+

(
∂n2
∂z

)2

(21)

with the positive square root taken. Again, calculating that is messy but straightforward.

The same is true of the reduced Laplacian. It simply requires the second partial derivatives, ∂2n/∂x2 etc. i.e. the

corresponding first partial derivatives of the three gradient terms.

The expressions obtained from Mathematica are as follows.

|∇n2| =


−λγe−(

(−R
2 +x)

2
+y2+z2

)γ/2
λ
(
−R

2
+ x

)((
−R

2
+ x

)2

+ y2 + z2

)−1+ γ
2

−e−
(
(R2 +x)

2
+y2+z2

)γ/2
λ
(
R

2
+ x

)((
R

2
+ x

)2

+ y2 + z2

)−1+ γ
2

γλ

2

A2
f

+

−e−(
(−R

2 +x)
2
+y2+z2

)γ/2
λ
y

((
−R

2
+ x

)2

+ y2 + z2

)−1+ γ
2

γλ

−e−
(
(R2 +x)

2
+y2+z2

)γ/2
λ
y

((
R

2
+ x

)2

+ y2 + z2

)−1+ γ
2

γλ

2

A2
f

+

−e−(
(−R

2 +x)
2
+y2+z2

)γ/2
λ
z

((
−R

2
+ x

)2

+ y2 + z2

)−1+ γ
2

γλ

−e−
(
(R2 +x)

2
+y2+z2

)γ/2
λ
z

((
R

2
+ x

)2

+ y2 + z2

)−1+ γ
2

γλ

2

A2
f




1/2

(22)
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∇2nf = Af

− exp
−
(
(−R

2 +x)
2
+y2+z2

)γ/2
λ

((
−R

2
+ x

)2

+ y2 + z2

)−1+ γ
2

γλ

− exp
−
(
(R2 +x)

2
+y2+z2

)γ/2
λ

((
R

2
+ x

)2

+ y2 + z2

)−1+ γ
2

γλ

−2 exp
−
(
(−R

2 +x)
2
+y2+z2

)γ/2
λ
(
−R

2
+ x

)2
((
−R

2
+ x

)2

+ y2 + z2

)−2+ γ
2 (
−1 +

γ

2

)
γλ

−2 exp
−
(
(R2 +x)

2
+y2+z2

)γ/2
λ
(
R

2
+ x

)2
((

R

2
+ x

)2

+ y2 + z2

)−2+ γ
2 (
−1 +

γ

2

)
γλ

+ exp
−
(
(−R

2 +x)
2
+y2+z2

)γ/2
λ
(
−R

2
+ x

)2
((
−R

2
+ x

)2

+ y2 + z2

)−2+γ

γ2λ2

+ exp
−
(
(R2 +x)

2
+y2+z2

)γ/2
λ
(
R

2
+ x

)2
((

R

2
+ x

)2

+ y2 + z2

)−2+γ

γ2λ2


+Af

− exp
−
(
(−R

2 +x)
2
+y2+z2

)γ/2
λ

((
−R

2
+ x

)2

+ y2 + z2

)−1+ γ
2

γλ

− exp
−
(
(R2 +x)

2
+y2+z2

)γ/2
λ

((
R

2
+ x

)2

+ y2 + z2

)−1+ γ
2

γλ

−2 exp
−
(
(−R

2 +x)
2
+y2+z2

)γ/2
λ
y2

((
−R

2
+ x

)2

+ y2 + z2

)−2+ γ
2 (
−1 +

γ

2

)
γλ

−2 exp
−
(
(R2 +x)

2
+y2+z2

)γ/2
λ
y2

((
R

2
+ x

)2

+ y2 + z2

)−2+ γ
2 (
−1 +

γ

2

)
γλ

+ exp
−
(
(−R

2 +x)
2
+y2+z2

)γ/2
λ
y2

((
−R

2
+ x

)2

+ y2 + z2

)−2+γ

γ2λ2

+ exp
−
(
(R2 +x)

2
+y2+z2

)γ/2
λ
y2

((
R

2
+ x

)2

+ y2 + z2

)−2+γ

γ2λ2


+Af

− exp
−
(
(−R

2 +x)
2
+y2+z2

)γ/2
λ

((
−R

2
+ x

)2

+ y2 + z2

)−1+ γ
2

γλ

− exp
−
(
(R2 +x)

2
+y2+z2

)γ/2
λ

((
R

2
+ x

)2

+ y2 + z2

)−1+ γ
2

γλ

−2 exp
−
(
(−R

2 +x)
2
+y2+z2

)γ/2
λ
z2

((
−R

2
+ x

)2

+ y2 + z2

)−2+ γ
2 (
−1 +

γ

2

)
γλ

−2 exp
−
(
(R2 +x)

2
+y2+z2

)γ/2
λ
z2

((
R

2
+ x

)2

+ y2 + z2

)−2+ γ
2 (
−1 +

γ

2

)
γλ

+ exp
−
(
(−R

2 +x)
2
+y2+z2

)γ/2
λ
z2

((
−R

2
+ x

)2

+ y2 + z2

)−2+γ

γ2λ2

+ exp
−
(
(R2 +x)

2
+y2+z2

)γ/2
λ
z2

((
R

2
+ x

)2

+ y2 + z2

)−2+γ

γ2λ2

 . (23)
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Remarks: (i) Obviously we haven’t simplified the Mathematica expressions!

(ii) This little exercise is a reminder of why Slater-type orbitals (essentially γ = 1) never have seen widespread use

as molecular basis functions. It is tedious enough to work with γ = 2 (especially for integrals, which haven’t been

mentioned here) but almost prohibitively difficult for γ = 1.

We give one example of the artificial H2. One flexible density each was placed at −R/2 and at R/2, with R = 1.4036

au, which is the equilibrium H2 molecular bond length. Ne = 1 was used for each atomic flexible density, thus

Ne,total = 2. Fig. 1 shows the molecular density plotted along the bond axis for the cases γ = 1 and γ = 2.

FIG. 1. Density of the artificial H2 molecule for two cases γ = 1 and γ = 2. The dots on the axis indicate the nuclear sites.

This plot is representative of a bond in an artificial molecule.
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[5] Daniel Mej́ıa Rodŕıguez and S.B. Trickey, Phys. Rev. B 102, 121109(R) [4 pp] (2020).

[6] Orbital-Free Density Functional Theory: An attractive electronic structure method for large-scale first-principles simula-

tions” Wenhui Mi, Kai Luo, S.B. Trickey, and Michele Pavanello, Chem. Rev. (resubmitted 16 May 2023)

[7] V.V. Karasiev, D. Chakraborty, and S.B. Trickey, Chapter in Many-electron Approaches in Physics, Chemistry, and Math-

ematics: A Multidisciplinary View, L. Delle Site and V. Bach eds. (Springer, Heidelberg, 2014) 113-134.

5


