Relationships Among Various Forms of Fermi-Dirac Integrals of Low Order

S.B. Trickev^{1,*}

¹Quantum Theory Project, Departments of Physics and of Chemistry, University of Florida, Gainesville, FL 32611 (Dated: 04 Mar. 2013, Version 1; NOT for circulation outside UF)

Different integral forms all are called Fermi-Dirac integrals. The relationship between two such forms is worked out here.

I. DIFFERING DEFNITIONS

Since 1938 at least¹, the basic Fermi-Dirac integral has been given in the form 2,3

$$I_{\alpha}(\eta) := \int_{0}^{\infty} dx \frac{x^{\alpha}}{1 + \exp(x - \eta)}, \quad \alpha > -1 \quad (1)$$

$$I_{\alpha-1}(\eta) = \frac{1}{\alpha} \frac{d}{d\eta} I_{\alpha}(\eta). \tag{2}$$

This is the form which Karasiev, Sjostrom, and I used in our paper on finite-T generalized gradient approximations for the non-interacting free energy⁴.

Blakemore⁵ starts with the same definition but calls it F_i . He attributes the definition (1) to Sommerfeld in 1928. Blakemore then introduces what I call F_{α} , namely

$$F_{\alpha}(\eta) := \frac{1}{\Gamma(\alpha+1)} I_{\alpha}(\eta) . \tag{3}$$

Huang⁶, on the other hand, introduces

$$f_{3/2}(x) = \frac{4}{\sqrt{\pi}} \int_0^\infty dy \frac{y^2}{x^{-1}e^{y^2+1}}$$
 (4)

This is the form that Jim Dufty is accustomed to using. Obviously the two forms (Blakemore, Huang) are related but a little care is needed to make sure that expansions given by Blakemore for F_{α} are written correctly when the variables are changed appropriately to the Huang form.

VARIABLE CHANGES

In (4), let

$$x^{-1} = e^{-w} (5)$$

SO

$$f_{3/2}(e^w) = \frac{4}{\sqrt{\pi}} \int_0^\infty dy \frac{y^2}{e^{y^2 - w} + 1} \ .$$
 (6)

Then let $u = y^2$ so that

$$f_{3/2}(e^w) = \frac{4}{\sqrt{\pi}} \int_0^\infty \frac{du}{2} \frac{u^{1/2}}{e^{u-w} + 1}$$

$$= \frac{2}{\sqrt{\pi}} \int_0^\infty \frac{du \, u^{1/2}}{e^{u-w} + 1}$$

$$= F_{1/2}(w). \tag{7}$$

Or obviously

$$f_{3/2}(w) = F_{1/2}(\ln w)$$
 (8)

EXPANSIONS III.

At Blakemore's Eq. (25), he reports a fit due to Aymerich-Humet et al. 7 . It reads

$$F_{\alpha}(\eta) = \left[e^{-\eta} + \xi_{\alpha}(\eta) \right]^{-1} . \tag{9}$$

For $\alpha = 1/2$, the function ξ is given by

$$\xi_{1/2}(\eta) = 3\sqrt{\frac{\pi}{2}} \left[(\eta + 2.13) + (|\eta - 2.13|^{2.4} + 9.6)^{5/12} \right]^{-3/2} .$$
(10)

For use in terms of $f_{3/2}$, eq. (8) with eq. (9) yields

$$f_{3/2}(\eta) = \left[\eta^{-1} + \xi_{1/2}(\ln \eta)\right]^{-1}$$
 (11)

Acknowledgments

This work was supported by the U.S. Dept. of Energy TMS program, grant DE-SC0002139.

^{*} Electronic address: trickey@qtp.ufl.edu

J. McDougall and E.C. Stoner, Phil. Trans. Roy. Soc. London A, Math. Phys. Sci. **237**, 67-104 (1938).

² Proc. Roy. Soc. (London) A, Math. Phys. Sci. **204**, 396-405

⁽¹⁹⁵⁰⁾

³ J. Bartel, M. Brack, and M. Durand, Nucl. Phys. A445,

⁴ V.V. Karasiev, Travis Sjostrom, and S.B. Trickey, Phys.

 $^7\,$ X. Aymerich-Humet, F. Serra-Mestres, and J. Millan, Sol. State Electr. ${\bf 24},\,981$ (1981).

Rev. B **86**, 115101 (2012)

⁵ J.S. Blakemore, Sol. State Electr. **25**, 1067-1076 (1982).

⁶ K. Huang, *Statistical Mechanics*, (NY, J. Wiley and Sons, 1963), Eq. (11.2) p. 224.