
Local-Scaling Transformation version of Density Functional Theory

V.V. Karasiev1, ∗

1Quantum Theory Project, Departments of Physics and of Chemistry,

P.O. Box 118435, University of Florida, Gainesville FL 32611-8435

(Dated: 16 Dec. 2011, vers. A)

PACS numbers:

I. ZERO-TEMPERATURE

A. Local-scaling transformations

The well-known uniform scaling transformation

r → λr , (1)

where λ is a constant, is frequently used in physics.
The local-scaling transformation1,3 (LST) is a generaliz-
taion of the uniform transformation defined by Eq. (1).
Isotropic LSTs modify the vector r at each point of space
R3 according to

r
f̂
→ f(r) = λ(r)r = (λ(r)x, λ(r)y, λ(r)z) , (2)

where f̂ is an operator associated with this transforma-
tion. Isotropic transformations keep the direction of the
transformed vector f(r) constant.

LST relates two densities, an initial or “generating”
density ρg(r) and a final density ρ(r):

ρ(r) = J
(
f(r); r

)
ρg

(
f(r)

)
(3)

where J
(
f(r); r

)
is the Jacobian.

For isotropic transformations the Jacobian is
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= λ3(r)[1 + r · ∇r lnλ(r)]. (4)

From Eqs. (3) and (4) we obtain the following expression
for λ(r)

λ(r) =

[
ρ(r)

ρg

(
λ(r)r

)(
1 + r · ∇r lnλ(r)

)
]1/3

. (5)

Equation (5) is a first order differential equation for the
transformation function λ(r). Introducing the function
f(r) by means of the following equivalence,

λ(r) =
f(r)

r
, (6)

we can rewrite Eq. (5) as:

ρ(r)

ρg

(
f(r)

) =
1

r3
r · ∇rf

3(r). (7)

B. LST version of DFT

Consider application of the LST operator f̂ Eq. (2) to
each of the coordinates of the N-electron (general anti-
symmetric or just simple Slater determinant) wave func-
tion Φg(r1, ..., rN ). Equivalently, with every coordinate

transformation operator f̂ we can associate N-particle
unitary operator Ûf which acts on the Hilbert space H
of N-particle wave functions. The resulting wave func-
tion Φρ(r1, ..., rN ) (the reason of using subindex ρ will
be clear after next equation) is given by

Φρ(r1, ..., rN ) ≡

N∏

i=1

[J
(
f(ri); ri

)
]1/2 f̂ ...f̂︸︷︷︸

N−times

Φg(r1, ..., rN )

= ÛfΦg(r1, ..., rN )

=
N∏

i=1

[J
(
f(ri); ri

)
]1/2Φg(f(r1), ..., f(rN )) .(8)

The density corresponding to the transformed wave func-
tion Φρ may be evaluated as usual

N

∫
dr2...

∫
drN |Φρ(r1, ..., rN )|2 = J

(
f(r1); r1

)
N

∫
df(r2)...

∫
df(rN )|Φg(f(r1), ..., f(rN ))|2

︸ ︷︷ ︸
ρg(f(r1))

= ρ(r1) , (9)
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where we used Eq. (3). What we have? For given ρ there
are infinite number of Φg (and corresponding ρg) which
may be used in LST defined by Eqs. (3) and (8). As
a result an infinite number of functions Φρ yielding the
same density ρ will be constructed. Function Φρ is an
implicit functional of the density ρ, i.e.

Φρ(r1, ..., rN ) = Φ([ρ]; r1, ..., rN ) . (10)

Function Φρ may be used in Levy-Lieb constrained search

F [ρ] = min
Φρ

< Φρ|T̂ + V̂ee|Φρ > , (11)

where F [ρ] searches all Φρ, which is equivalent to search
all Φg in LST defined by Eqs. (3)-(8). Then the ground
state energy is expressed as

EGS = min
ρ

E[ρ] (12)

= min
ρ

[
min
Φρ

< Φρ|T̂ + V̂ee|Φρ > +

∫
v(r)ρ(r)dr

]
,

which is a search over all N-representable densities.
Noninteracting (in case if Φ is Slater determinant) ki-

netic energy functional is

Ts[ρ] = min
Φρ

< Φρ|T̂ |Φρ > , (13)

C. LST of one-particle orbitals and reduced

density matrices

LSTs can be used to generate from an initial orbital
set {φg,k(r)}N

k=1 a new set of transformed orbitals:

φρ,k(r) = Ûfφg,k(r) =
[
J(f(r); r)

]1/2
φg,k

(
f(r)

)

=

[
ρ(r)

ρg

(
f(r)

)
]1/2

φg,k

(
f(r)

)
,(14)

where new transformed orbitals have following proper-
ties, ortho-normality (if generating set is ortho-normal)

< φρ,i|φρ,j >=< φg,i|φg,j >= δij , (15)

electron density for transformed orbitals by construction
is equal ρ

N∑

k=1

|φρ,k(r)|2 = ρ(r) . (16)

Relation between generating one-particle reduced density
matrix (1-RDM)

D(1)
g (r; r′) =

N∑

k=1

φg,k(r)φg,k(r′) , (17)

and transformed 1-RDM may be found from Eq. (14)

D(1)
ρ (r; r′) =

[
ρ(r)

ρg

(
f(r)

)
]1/2 [

ρ(r′)

ρg

(
f(r′)

)
]1/2

D(1)
g (f(r); f(r′)) .

(18)
Similar relation is hold for two-particle RDM. For sim-
plicity consider only diagonal parts of 2-RDMs

D(2)
ρ (r, r′; r, r′) =

ρ(r)

ρg

(
f(r)

) ρ(r′)

ρg

(
f(r′)

)D(2)
g (f(r), f(r′); f(r), f(r′)) ,

(19)

where D
(2)
g (f(r), f(r′); f(r), f(r′)) is 2-RDM constructed

from generating set of orbitals {φg,i(f(r)}
N
i=1.

D. Approximate kinetic energy functionals

Kinetic energy corresponding to the transformed 1-
RDM Eq. (18) is an inexplicit functional of the density
ρ and has the following structure

Ts[ρ, {φg,i}
N
i=1] =

∫
1

2
∇r∇r′D

(1)
ρ (r; r′)

∣∣∣
r′=r

dr

= TW [ρ] +

∫
ρ5/3(r)

[(
1 + r · ∇ lnλ(r)

)4/3

τN ([{φg,i}]; r)

+
(
1 + r · ∇ lnλ(r)

)
−2/3

κN ([{φg,i}]; r)dr

]
, (20)

where τN and κN are modulating factors which have a
compact expression in the terms of generating orbital set
{φg,i(f(r))}

N
i=1. Dependence on the generating orbitals

φg,i in Eq. (20) may be considered as parametric. Once
the generating set chosen, Eq. (20) is transformed into
an approximate kinetic energy functional of the density
ρ.

Unfortunately the LST differential equation Eq. (7)
for the transformed variable f(r) can be solved in ana-
lytical form only for simplest forms of generating density
ρg. As an example, consider a set of one-dimensional
plane-waves, ψg,k(r) ∼ exp(ikf(r)), as generating or-
bitals. Transformed orbitals in polar coordinates can be
expressed as

ψρ,k(r, θ, φ) =

√
ρ(r, θ, φ)

N
exp

[
i
(
k −

N + 1

2

)
f(r)

]
,

(21)
which are known as “equidensity” orbitals (see4). 1-RDM
corresponding to the transformed set Eq. (21) is1

D(1)
ρ (r; r′) =

1

N

√
ρ(r)ρ(r′)

sin N
2 F (r, r′)

sin 1
2F (r, r′)

, (22)

Kinetic energy evaluated with transformed 1-RDM is an
explicit functional of the density ρ

Ts[ρ] = TW[ρ] +
( 3

4π

)1/3

2π3
(
1 −

1

N2

) ∫
ρ5/3dr . (23)
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II. FINITE-TEMPERATURE

A. Quantum statistical variational principle

Quantum statistical variational principle for an N -
particle system with Hamiltonian Ĥ and number opera-
tor N̂ , chemical potential µ at temperature T states that
the Gibbs free energy

G[ρ̂] = Tr
(
ρ̂[Ĥ − µN̂ + β−1 ln ρ̂]

)
, (24)

is minimized by the grand canonical density matrix op-
erator

ρ̂0 =
exp(−β[Ĥ − µN̂ ])

Tr(exp(−β[Ĥ − µN̂ ]))
, (25)

where β = 1/(kBT).
All variational quantum statistical techniques are ob-

tained by means of different trial density operators
on which the grand canonical potential Eq. (24) is
minimized2. As an example, the temperature-dependent
Hartree-Fock (THF) method uses trial density operator
of the following form

ρ̂ =
exp(−

∑
ij a

+
i γijaj)

Tr(exp(−
∑

ij a
+
i γijaj))

, (26)

where a+
i , ai are particle creation and annihilation op-

erators respectively, and γij is an arbitrary Hermitian
matrix which always can be diagonalized, γij = γiδij .

B. Finite temperature LST

Consider generating (a given) density matrix operator,
ρ̂g. Generating (initial) density operator uniquely defines
the corresponding initial 1- and 2- RDMs

D(1)
g (r; r′) = Tr

(
ρ̂gψ

+
g (r)ψg(r′)

)
=

∑

α

nαφ
∗

g,α(r)φg,α(r′) ,

(27)
and

D(2)
g (r, r′; r, r′) = Tr(ρ̂gψ

+
g (r)ψ+

g (r′)ψg(r)ψg(r′)) (28)

=
∑

αβ

Γαβφ
∗

g,α(r)φ∗g,β(r′)φg,α(r)φg,β(r′) ,

where ψ∗

g(r) =
∑

α φ
∗

g,α(r)a+
α and ψg(r) =

∑
α φg,α(r)aα

are particle field creation and annihilation operators re-
spectively, φg,α(r) is the orthonormal generating (initial)
set of one-electron states. The local density distribution
is

ρg(r) = D(1)
g (r; r) =

∑

α

nα|φg,α(r)|2 . (29)

Let further consider density matrix operator trans-
formed by Ûf [ρ], where f ≡ f [ρ] is defined by Eq. (3)

ρ̂[ρ] = Û+
f [ρ]ρ̂gÛf [ρ] . (30)

It is straightforward to check that the corresponding 1-

and 2-RDMs are related to the generating D
(1)
g and D

(2)
g

by the same Eqs. (17)-(18) as in the zero-temperature
case. The transformed 1-RDM, for example, is

D(1)
ρ (r; r′) = Tr

(
ρ̂[ρ]ψ+

g (r)ψg(r′)
)

(31)

=

[
ρ(r)

ρg

(
f(r)

)
]1/2 [

ρ(r′)

ρg

(
f(r′)

)
]1/2

×
∑

α

nαφ
∗

g,α(f(r))φg,α(f(r′))

=

[
ρ(r)

ρg

(
f(r)

)
]1/2 [

ρ(r′)

ρg

(
f(r′)

)
]1/2

D(1)
g (f(r); f(r′)) .

The local density distribution corresponding to trans-
formed density matrix operator ρ̂[ρ] is

D(1)
ρ (r; r) =

[
ρ(r)

ρg

(
f(r)

)
]1/2 [

ρ(r)

ρg

(
f(r)

)
]1/2

D(1)
g (f(r); f(r))

= ρ(r) . (32)

C. The Gibbs free-energy functional

Let a given generating density matrix operator ρ̂g be
fixed. Consider a “class” of transformed density matrix
operators ρ̂[ρ] = Û+

f [ρ]ρ̂gÛf [ρ] as trial density operators.

The Gibbs free energy Eq. (24) evaluated with trial den-
sity operator ρ̂[ρ] transforms into a functional of the local
density distribution ρ

G[ρ] ≡ G[ρ̂[ρ]] = Tr
(
ρ̂[ρ][Ĥ − µN̂ + β−1 ln ρ̂[ρ]]

)
. (33)

At fixed ρ̂g, minimization w.r.t. trial density operator
ρ̂[ρ] in Eq. (33) is equivalent to minimization w.r.t. lo-
cal desnity distribution ρ. To get a global minima, the
minimization w.r.t. ρ̂g also should be performed

G0 = min
ρ̂g

(
min

ρ̂
G[ρ̂[ρ]]

)

= min
ρ̂g

(
min

ρ
G[ρ]

)
. (34)

The Gibbs free energy in Eq. (33) is a functional of the
local density distribution ρ with following components

G[ρ] = F [ρ] − µN [ρ] = E [ρ] − TS[ρ] − µN [ρ] , (35)

where

S[ρ] = −Tr
(
ρ̂[ρ] ln ρ̂[ρ]]

)
, (36)
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is the entropy density functional and

N [ρ] = −Tr
(
ρ̂[ρ]N̂

)
=

∫
ρ(r)dr , (37)

is the number of electrons. F [ρ] = E [ρ] − TS[ρ] is the
Helmholtz free energy, where

E [ρ] = T [ρ] + U [ρ]

T [ρ] = Tr
(
ρ̂[ρ]T̂

)

U [ρ] = Tr
(
ρ̂[ρ]Û

)
, (38)

are density functionals of the internal energy and its com-
ponents. All these functionals are evaluated using trans-
formed 1- and 2-RDM Eqs. (31)-(32).

Consider again 1-RDM and an example of the kinetic
energy functional. Transformed 1-RDM Eq. (31) may be
presented as

D(1)
ρ (r; r′) = Tr

(
ρ̂[ρ]ψ+

g (r)ψg(r′)
)

(39)

=

[
ρ(r)

ρg

(
f(r)

)
]1/2 [

ρ(r′)

ρg

(
f(r′)

)
]1/2

×
∑

α

nαφ
∗

g,α(f(r))φg,α(f(r′))

≡
∑

α

nαφ
∗

ρ,α(f(r))φρ,α(f(r′)) , (40)

where transformed density-dependent single particle
wave functions were defined as

φρ,α(r) ≡ φα([ρ]; r) =

[
ρ(r)

ρg

(
f(r)

)
]1/2

φg,α(f(r)) , (41)

and the kinetic energy functional Eq. (38) become

T [ρ] = Tr
(
ρ̂[ρ]T̂

)

=

∫
1

2
∇r∇r′D

(1)
ρ (r; r′)

∣∣∣
r′=r

dr

=
∑

α

nα

∫
1

2
|∇φρ,α(r)|2dr

=

∫ (
τW([ρ]; r) + τγ([ρ]; r)

)
dr , (42)

where

τW([ρ]; r) =
1

8

|∇ρ(r)|2

ρ(r)
, (43)

and

τγ([ρ]; r) = ρ(r)
[
∇r∇r′γg(f([ρ]; r); f([ρ]; r′))

]

r′=r

.

(44)
In last equation

γg(r; r
′) =

D
(1)
g (r; r′)√

ρg(r)ρg(r′))
, (45)

is the reduced density matrix introduced by Gazquer and
Ludeña5 which satisfy the condition γg(r; r) = 1 for ar-
bitrary r ∈ R3.

III. CONCLUSIONS

• LST approximate functionals are N-representable by
construction with all good consequences of that fact.

• LST functional of total energy (T=0 case) or free en-
ergy (finite-T case) is in principle orbital-free.

• Evaluation of functional derivative of the LST func-
tional w.r.t. density is not trivial procedure because
the energy components are not explicit functionals of the
density.

• Practical result may be obtained for cases of simple
forms of generating orbitals φg,k when LST Eq. (7) can
be solved analytically.

• LST functionals might be useful for study of formal
properties (constraints) on exact functionals. In particu-
lar, I guess they might be used to study bounds tighten
bounds for KE energy for example.

• LST method was applied for study correlation (when
the generating wave function Ψg was explicitly correlated
N-electron wave function. Extension to finite-T case does
not seems to be trivial.
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