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Clarification and correction are given of Perrot’s 1979 development of the free energy of the
weakly inhomogeneous electron gas. Related corrections in Fromy et al. (1996) are given, along
with connections to Furutani et al. (1986).

PACS numbers:

Perrot’s 1979 paper [1] on the free energy of the weakly
inhomogeneous electron gas has been quoted frequently,
even to this day. At various points in the presentation,
however, there are steps that are not immediately obvi-
ous. In the course of clarifying those for ourselves, several
omissions and errors turned up. This note gives details
of the development (and, hence, corrections).

We also found that Appendix A of Fromy et al. [2] es-
sentially reproduces Perrot’s Appendix A but with many
numerical errors. After we had done this work, we found
that some of the errors in Perrot’s paper had been found
by Furutani et al. [3], though they do not note that fact.

I. EULER EQUATION AND POLARIZABILITY

For the most part we adopt Perrot’s notation. We
indicate one of his equations by prefacing its number with
“P”, e.g., his Eq. (2) becomes (P2).

Perrot begins with the grand-canonical potential (P2)

Ω[n] =

∫

drv(r)n(r) +
1

2

∫

drdr′
n(r)n(r′)

|r′ − r|

+Fe[n] + Fxc[n] − µ

∫

drn(r) (1)

Here v(r) is the external potential, Fe is the non-
interacting electron free energy and Fxc is the exchange-
correlation free energy. (As an aside, note that he uses
“non-interacting” in a different sense than is conventional
in discussion of ground-state Kohn-Sham development.
We adhere to Perrot’s usage here.) In terms of the free
energy densities (P4)

Fi[n] =

∫

drFi[n(r)] (2)

the variational minimum is (P3)

v(r) +

∫

dr′
n(r′)

|r′ − r| +
δFe

δn
+

δFxc

δn
= µ (3)

The Thomas-Fermi contribution to Fe is (P5a,P5b)

FTF =

√
2

π2β5/2
[−2

3
I3/2(η) + ηI1/2(η)]

n =

√
2

π2β3/2
I1/2(η) (4)

Perrot denotes this term as F0. The Ij/2 are the Fermi-
Dirac integrals given by [4]

Iα(η) :=

∫

∞

0

dx
xα

1 + exp(x − η)
, α > −1

Iα−1(η) =
1

α

d

dη
Iα(η) (5)

Extension to non-integer values of α < −1 also is given
in an Appendix to Ref. [4].

Perrot’s ansatz for the functional Fe is TFW plus a
density-dependent and temperature-dependent scaling of
the von Weizsäcker [5] term

Fe[n] := FTF [n] + h(n)
|∇n|2

n
(6)

which is Eq. (P6). The functional derivative of this Fe is

δFe

δn
=

δFTF

δn
+ |∇n|2 δ

δn

(

h

n

)

−∇ ·
(

h

n
2∇n

)

=
δFTF

δn
+ |∇n|2 δ

δn

(

h

n

)

−2

{

∇
(

h

n

)

· ∇n +
h

n
∇2n

}

(7)

At (P7), Perrot implicitly defines the potential

U(r) := v(r) +

∫

dr′
n(r′)

|r′ − r| (8)

Perrot’s Eq. (P7) has the sign of the |∇n|2 term wrong
and omits the ∇(h/n) contribution.

Proceeding, the Euler equation, Eq. (3), becomes

µ = U +
δFTF

δn
+ |∇n|2 δ

δn

(

h

n

)

−2

{

∇
(

h

n

)

· ∇n +
h

n
∇2n

}

+
δFxc

δn
(9)

which is the corrected version of (P7).
As an aside, just after (P7), Perrot remarks that the re-

sult holds “provided that the boundary condition ∇n = 0
on the surface enclosing the system is fulfilled.” But that
condition is used to derive the Gelfand-Fomin expression
for the functional derivative with respect to density of a
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functional which depends on the density and its spatial
gradient [6]. One uses that G-F expression to get (P7);
see the first equality of Eq. (9). Therefore, setting the
surface term to zero has nothing to do with dropping the
gradient term that is missing from (P7).

Perrot then considers the linear response δn of the non-
interacting system subject to a small change δU in the
potential. From Eq. (9) we have

δU +

{

δ2FTF

δ2n
+ |∇n|2 δ2

δn2

(

h

n

)

− 2(∇2n)
δ

δn

(

h

n

)}

δn

+2
δ

δn

(

h

n

)

∇n · ∇δn − 2
h

n
∇2δn − 2∇

(

h

n

)

· ∇δn

+
2

n2
(∇h · ∇n)δn +

2h

n2
(∇n · ∇δn) − 4h

n3
|∇n|2δn

− 2

n

δ∇h

δn
· ∇nδn +

2

n2

δh

δn
|∇n|2δn = 0 (10)

This result is the corrected version of Eq. (P8). However,
since Perrot then specializes to the homogeneous electron
gas, the various gradient terms he omitted are not rele-
vant to the remainder of his analysis. For the HEG with
density n0, ∇n = ∇2n = ∇h = 0 and Eq. (10) becomes
just

δU +
δ2FTF

δ2n

∣

∣

∣

∣

n0

δn − 2
h(n0)

n0

∇2δn = 0 (11)

II. TEMPERATURE-DEPENDENCE OF THE

VON WEIZSÄCKER TERM

To obtain the temperature-dependence of the von
Weizsäcker term, Perrot equates the low-q (long wave-
length) polarizability of this system, given by the free
energy ansatz Eq. (6) and completely described by the
Euler equation Eq. (9), with the RPA polarizability. The
q-dependent polarizability is defined as

Π(q, n) =
δn(q)

δU(q)
(12)

for which we need the corresponding Fourier transforms
from Eq. (11). For the HEG, the functions evaluated
at no in Eq. (11) are constants with respect to the FT.
Therefore the only FT to be evaluated involves ∇2δn.
After two integrals by parts (or a form of Green’s the-
orem) and dropping surface terms, that FT is just −q2

times the FT of δn itself. Therefore, in sloppy notation
for the FTs,

0 = δU(q) +
δ2FTF

δ2n

∣

∣

∣

∣

n0

δn(q) + 2
h(n0)

n0

q2δn(q)

⇒ Π(q, n0) = −
(

δ2FTF

δ2n

∣

∣

∣

∣

n0

+ 2
h(n0)

n0

q2

)

−1

(13)

which is (P10). Interestingly, it is correct despite the
errors in the preceding equations in the paper.

Perrot then turns to the RPA (Lindhard) polarizability

ΠRPA(q, n0) =
2

(2π)3

∫

dk
fk − fk+q

ǫk − ǫk+q
, (14)

with

fk =
1

1 + exp(βǫk − η0)
(15)

ǫk =
k2

2
(16)

and with η0 related to n0 via the second of Eqs. (4).
Perrot states, without detail, that the RPA polariz-

ability, Eq. (P11) for the HEG Eq. (P12) can be treated
by elementary means to obtain the small q expansion
Eq. (P13). The details are somewhat tedious, so we give
them here.

To retain q-dependence of the polarizability through
O(q2) we must expand the Fermi function to third order
in (ǫk+q − ǫk):

fk+q = fk +
∂fk

∂ǫk
(ǫk+q − ǫk)

+
1

2

∂2fk

∂ǫ2k
(ǫk+q − ǫk)

2
+

1

6

∂3fk

∂ǫ3k
(ǫk+q − ǫk)

3
+ . . . (17)

Substitution into Eq. (14) [which is (P11)] gives

ΠRPA(q, n0) = 2(2π)−3

[
∫

∂fk

∂ǫk
dk

+

∫

1

2

∂2fk

∂ǫ2k
(ǫk+q − ǫk) dk

+

∫

1

6

∂3fk

∂ǫ3k
(ǫk+q − ǫk)

2
dk + . . .

]

(18)

As the first term only depends on k2 it can be written as

2(2π2)−1

∫

∞

0

∂fk

∂ǫk
k2dk . (19)

Via the definition of the energy, Eq. (16), (and dropping
the k subscript) we then have

2(2π2)−1

∫

∞

0

∂f

∂ǫ

√
2ǫ dǫ = −

√
2(2π2)−1

∫

∞

0

ǫ−1/2f(ǫ) dǫ

(20)
where the RHS follows from integration by parts. A
change of integration variable to y = βǫ and comparison
with the definition of the Fermi integrals Eq. (5) shows
that the first contribution to Eq. (14) is

−(2π2)−1

(

2

β

)1/2

I−1/2(η) = −
(

δ2FTF

δ2n

)−1

(21)

The equality is demonstrated in Appendix A of this note.
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The second term of (18) has two contributions, to wit

(ǫk+q − ǫk) = k · q +
q2

2
(22)

Expressed in spherical coordinates, the integral of the dot
product term over the angular coordinates yields zero.
We are left with the second term of Eq. (18) as

q2

2
(2π)−3

∫

∂2fk

∂ǫ2k
dk (23)

With the same change of variables as made above, this
expression becomes

q2

2
(2π2)−1

∫

∞

0

√
2ǫ

∂2f

∂ǫ2
dǫ (24)

Next we note that

∂2f

∂ǫ2
= −β

d

dη

∂f

∂ǫ
, (25)

so that we can write Eq. (24) as

−β
q2

2
(2π2)−1 d

dη

∫

∞

0

√
2ǫ

∂f

∂ǫ
dǫ (26)

Finally this becomes

β
q2

4
(2π2)−1

(

2

β

)1/2
d

dη

[

I−1/2(η)
]

(27)

This result is off by a factor of 1/3 from Perrot’s result
Eq. (P13). However, there is an additional q2 contribu-
tion from the third term of Eq. (18) since

(ǫk+q − ǫk)
2

= (kq cos(φ))2 + ... (28)

The O(q2) contribution from this term is then

q2

3
(2π)−3

∫

∂3f

∂ǫ3
k2 cos2(φ) dk (29)

Angular integration and change of integration variables
yields

q2

9
(2π2)−1

∫

∞

0

∂3f

∂ǫ3
k4dk =

q2

9
(2π2)−1

∫

∞

0

∂3f

∂ǫ3
(2ǫ)3/2dǫ

(30)
Integration by parts then gives the same form as for the
previous q2 term,

−q2

9
(2π2)−13

∫

∞

0

√
2ǫ

∂2f

∂ǫ2
dǫ (31)

Thus the q2 contribution to (18) from the third term is

−β
q2

6
(2π2)−1

(

2

β

)1/2
d

dη

[

I−1/2(η)
]

(32)

Combining the results (27) and (32) gives the q2 term in
(P13):

β
q2

12
(2π2)−1

(

2

β

)1/2
d

dη

[

I−1/2(η)
]

(33)

For small q Perrot thus finds

ΠRPA(q, n0) = −
(

δ2FTF

δ2n

)−1

+
1

24π2

(

2

β

)1/2

βq2 d

dη
I−1/2(η) + O(q4) (34)

This is (P13) written slightly more compactly.
Now we are in position to equate the polarizabilities

from RPA and Perrot’s free energy functional to O(q2),
which will give Eq. (P14). First, expand the RHS of Eq.
(13) (equivalent to (P10)) to O(q2). We have

− 1

A + x
≈ − 1

A
+

1

A2
x (35)

with

x = 2
h(n)

n
q2

A =
δ2FTF

δ2n
(36)

By equating the “exact” (Eq. (13) or (P10)) and RPA
low-q (Eq. (34) or (P13)) results, we then have

−
(

δ2FTF

δ2n

)−1

+

(

δ2FTF

δ2n

)−2
2h(n)

n
q2

= −
(

δ2FTF

δ2n

)−1

+
1

24π2

(

2

β

)1/2

βq2 d

dη
I−1/2(η) .

(37)

The q2 terms yield the relationship

2
h(n)

n
q2(2π2)−2

(

2

β

)

I2
−1/2(η) =

1

24π2

(

2

β

)1/2

βq2 d

dη
I−1/2(η) (38)

where once again we have used Eq. (51) from Appendix
A. Simplifying this result gives

h(n)

n
=

√
2

24
π2β3/2 d

dη

[

I−1/2(η)
] 1

I2
−1/2

(η)
(39)

Then the chain rule

− 1

I2
−1/2

(η)

d

dη

[

I−1/2(η)
]

=
d

dη

[

1

I−1/2(η)

]

(40)

allows the final reduction to the form of (P14), namely

h(n)

n
= −

√
2π2

24
β3/2 d

dη

(

1/I−1/2(η)
)

. (41)

Note the correction to the sign of the index of the Fermi
integral, as mentioned in a footnote of Ref. [4].
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III. NUMERICAL FIT TO VON WEIZSÄCKER

TEMPERATURE-DEPENDENCE

Next we consider the numerical fit of h in Perrot’s Ap-
pendix B. He defines

y :=
π2

√
2
β3/2n ≡ I1/2(η) (42)

which is a trivial rearrangement of Eq. (4). His Fig. 1
supposedly plots h(y) but in fact it does not, as we show
below. However, from Eq. (42) one can rewrite h(n) Eq,
(41) as a functional of η, namely,

h(η) = − 1

12
I1/2(η)

d

dη
(1/I−1/2(η))

= − 1

24

I1/2(η)I−3/2(η)

(I−1/2(η))2
≡ 1

2
ζ(η) (43)

The functional ζ(η) is used in Ref. [4]. Note that
I1/2, I−1/2 > 0 and I−3/2 < 0 for all η, hence h(η) is
positive definite.

Clearly one can compute h(η) by direct numerical
quadrature of the required Fermi-Dirac integrals. We
have done so using Maple for 0 ≤ y ≤ 6 and compared
the result to Perrot’s numerical fit (unnumbered equa-
tions in Perrot’s Appendix B). Immediately two prob-
lems become apparent. First, the coefficient of the u−12

term for y ≥ y0 (u := y2/3, y0 := 3π/4
√

2) in Perrot’s fit
is missing a factor of 103. Second, Perrot’s Fig. 1 plot
of h(y) is incorrect. O ur Fig. 1 provides a comparison
of the exact results with Perrot’s fit (with the corrected
exponent in the coefficient). It does not match Perrot’s
Fig. 1. However, it does match the plot of h(y) in Ref.
[3], a fact we discovered after we had found the errors
in Perrot. We suspected that Perrot’s Fig. 1 is perhaps
as a function of η or ln(y), but have not been able to
reproduce it.
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72
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FIG. 1: Perrot’s fit (curve) of h(y) compared with exact re-
sults (crosses).

Perrot’s fit to h(y) has been used in at least two ref-
erences [2, 7], yet neither one notes the aforementioned
coefficient error, even though as printed, Perrot’s h(y)
fit is singular. As a warning, Appendix A to the for-
mer paper has what amounts to an unacknowledged re-
production of Perrot’s Appendices A and B. However,
there are so many sign errors in both the approximation
for the scaled Thomas-Fermi free energy f(y) (see next
paragraph) and the von Weizsäcker coefficient h(y) as to
render the Appendix in Ref. [2] useless.

Perrot also provides a fit (Appendix A) for the function
f defined by

f(y) =
β

n
FTF (44)

where y is again from Eq. (42). We find the fit to be
correct and given without errors by comparison with nu-
merical evaluation of the exact form

f(η) = −2

3

I3/2(η)

I1/2(η)
+ η (45)
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APPENDIX A. FUNCTIONAL DERIVATIVES

OF FTF

It is useful to have the first and second functional
derivatives of the Thomas-Fermi free energy, Eq. (4), also
(P5).

δFTF

δn
=

√
2

π2β5/2

[

−2

3

d

dη
I3/2(η) + I1/2(η)

η
d

dη
I1/2(η)

]

dη

dn

=
(√

2/π2

)

β−5/2 1

2
ηI−1/2(η)

∂η

∂n
(46)

A second differentiation yields

δ2FTF

δn2
=
(√

2/π2

)

β−5/2 1

2

{(

∂η

∂n

)2

I−1/2(η)

+ η

[

−1

2
I−3/2(η)

(

∂η

∂n

)2

+ I−1/2(η)
∂2η

∂n2

]

}

(47)

Next, differentiate Eq. (4b) to find the partial derivatives
of η with respect to n:

∂n

∂n
= 1 =

(√
2/π2

)

β−3/2 1

2
I−1/2(η)

∂η

∂n
(48)

∂2n

∂n2
= 0

=
(√

2/π2

)

β−3/2 1

2

[

−1

2
I−3/2(η)

(

∂η

∂n

)2

+ I−1/2(η)
∂2η

∂n2

]

(49)
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Eliminating the derivative terms from Eqs. (46,47) gives

∂FTF

∂n
=

η

β
(50)

∂2FTF

∂n2
= β−1 ∂η

∂n

= (2π2)

(

β

2

)1/2

I−1

−1/2
(η) (51)
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