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The Su-Goddard [1] effective electon-electron and electron-nucleus potential methodology is recast
in the context of approximations to Car-Parrinello dynamics.

PACS numbers:

For molecular dynamics simulation of the thermody-
namics of systems of electrons and nuclei, Su and God-
dard [1, 2] have introduced what they call an electron
force field (“eFF”) scheme. The “force field” vocabulary
comes most often from bio-molecular simulations with
ordinary MD for nuclear motions. Analogous with that
work, Su and Goddard introduce an effective potential for
both electron-electron interactions and electron-nuclear
interactions. The electron-electron part arises from mod-
elling each one-electron state as a single so-called floating
spherical gaussian [3]. The gaussian exponent and loca-
tion then become dynamical variables. In the dynamics,
the nuclear coordinates are treated conventionally, while
the electron dynamics are handled via gaussian wave-
packet dynamics [4].

The Su-Goddard scheme, despite its simplicity, gen-
erates a surprisingly good liquid deuterium equation of
state, P as a function of 7 up to 30,000 K. This out-
come makes the approach interesting. But I found the
presentation somewhat disjoint. After putting it to-
gether, it seemed more helpful to formulate the approach
as a set of physically motivated approximations to Car-
Parrinello dynamics with Kohn-Sham density functional
theory [5, 6].

To set notation, for NN, nuclei and N, electrons, the
total system Hamiltonian is

H:Hn(R,P)+HEN(P1,...rNC;R) (1)
The subscript “eN” indicates electrons in the field of the
classical nuclei with coordinates R. The B-O electronic
structure problem is

Hen(ri...rn s R)y(ro .. ey s R)
=& R)Yj(r1,...,ry;R) (2)

In the electronic ground state, the potential on which the
classical nuclei move is (Hartree au)

V(R) = E n(R) + &(R)
_ _ZaZs
Enn = Z o (3)

The classical dynamics of the nuclei

MaRa = —VQV(R) (4)

comes from the Lagrangian

L(R,R) = T(R) - V(R)
doL oL

dtoR  OR 0 (5)

We suppose the £(R) to be from a ground-state DFT
calculation:

&(R) = Euksn|(R)
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Proceed as usual by introducing a basis G¢(r;R) for ex-
pansion of the Kohn-Sham orbitals For convenience, as-
sume an orthonormal basis, whence

R) = ai (R)Gy(r; R) (7)
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The notation in eq. (7) is a bit overloaded. On the RHS
the sum over nuclear positions is to indicate use of a basis
set which has subsets centered on each nuclear site. The
nuclear positions on the LHS are an explicit display of
the fact that the K-S orbitals depend upon the nuclear
configuration. Orthonormality then gives
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In the basis, the variational minimization is equivalent to
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det[h—el] =0
hem(R) = (Ge(R)|hks(R)|Gm(R))  (9)

The usual solution is by iteration at a given set of nuclear
coordinates R:

Ninitial — }ALKS - det[h - 51] — Qi ¢ — Nnpext (10)

cycled until nipitial = Nnest- As is well-known, this ap-
proach is too slow for routine on-the-fly MD.



Instead, Car and Parrinello conceived the problem dif-
ferently. For the stipulated basis, the coefficients a; ¢
represent values of a set of quasi-coordinates and each
iteration of the cycle in eq. (10) is akin to a time step.
The variational condition in the first line of eq. (9) is an
energy gradient in the quasi-coordinates a; ¢, and there
is a normalization condition on them as well, eq. (8).
Thus, if we can assign some kind of “inertia” or resis-
tance to iterative correction to each a;¢ in terms of fic-
titious masses, then the iterative cycle can be replaced
with a Newtonian pseudo-dynamics to optimise the co-
efficients. Car-Parrinello MD implements this idea via a
new total Lagrangian
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Application of Lagrange’s equations in generalized co-
ordinates to the C-P Lagrangian gives

doc oL _
dt R~ OR
doL oL
pri- e e 0 (12)
which leads to coupled equations
M,R, = —V,Vso(R)

Vo = Euksla,R]+ Ep,(R)
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(Some of the R dependence is suppressed for clarity of
notation.)

To reach the Su-Goddard eFF from the C-P framework
requires several distinct steps. First, replace the K-S
density by a model density in which each electron has
only one basis function, a gaussian normalized to unity,
with location R; and size (inverse orbital exponent) s;,
so that eq. (7) is replaced by

0i(r;R) = G(r;Ri;si)

G(r;Ri;si) o exp { <1 - 2psz‘> (r Ri)z]

52 s

X explip - r] (14)

Here p = mejee 1, with mee. an effective electronic mass
for the dynamics (not the physical electronic mass). Eq.

(14) is equivalent to Eq. (1.6) in Ref. [2] and the corre-
sponding un-numbered equation on the second page of
Ref. [1].

With this expression, one could represent the density
and the K-S matrix elements, but the formulation would
not meet the orthogonality constraint, Eq. (8). Treat-
ing that issue a bit cavalierly for the moment, the corre-
sponding C-P dynamics would look like

MaRa = _vavappTO:EBO(R)
s,
Miajep st = _ VapprorBo
dt? 0s;
d’R; aV,
Mele i approxBO
dt? OR;

Vapproa:BO = EHKS[S7R5R] +Enn(R)

-\ ( / drn(r) — Ne> (15)

To connect more clearly with Su and Goddard, we can
rewrite these in Hamilton form as

P = —VRVapprozBo
Pi = —VR,VapprozBo
) OVapprozBO

Ps; = _T

P, = M.R,

pP: = melecRi

DPs; = MelecSi

VapprozBo = Enksls,R,R] + E,,(R)

.Y ( / drn(r) — Ne> (16)

Apparently the pseudo-dynamics in s; is problematical
[7], though it is a little puzzling as to why in the specific
context of Su and Goddard eFF, since it has a Hartree
product wave function and then an exchange-energy cor-
rection in the force field. In any event, what Su and God-
dard do is to follow the Heller-type development, namely
to assume that the potential is harmonic, so that the
floating gaussians remain gaussian. This leads to the re-
placement of Eqgs. (16) with

P = —VRVapprozBo
Pi = —VRr,VapprozBO
. OVapprozBO
Ds; = —7&%
P, = M,R,
bPi = melecki

_ BMetec
Ps;, = 1 Si

Vapp'roxBO = EHKS[57R5R] +E7m(R)

.Y (/ drn(r) — Ne> (17)

which is equivalent to Eqs. (1.7) in Ref. [2] (after correc-
tion of an obvious missing over-dot on the RHS of each



of the first two equations of the second line) and the cor-
responding un-numbered equations on the second page
of Ref. [1].

The remaining problem is to construct the approxi-
mate BO potential. Su and Goddard do this by consid-
ering the various energy contributions that arise from the
FSGO electron distribution. In my notation (but chang-
ing subscripts to “eFF” from “approxBO”), they write

‘/eFF = Eke + Enn + Ene + Eee + EPauli (18)

with
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0i=0; 0iF0;

EPauli =

(Obviously this “Fpgy;” is not the same as the Pauli
potential used in the Weizsacker plus positive correction
decomposition of the KS KE [8].) Notice that, rather

than anti-symmetrize, they estimate the exchange con-
tribution separately from overlaps of the fsgos, to wit:

92, 92,
B = U4 (1- pse)—H | AT,
ij 1— S’LQJ + ( pSG) 1+ 512] J

psaSy
B = J ATy (20)
i 2 ij
J 1+S7
The parameter psg = —0.2, while the overlap and

anti-symmetrization KE parameters are given by expres-
sions which depend on two scaling numerical parameters,
namely

2 3/2

- —R2 /(5% + 52
Sz] <3i/3j + Sj/5i> exp[ le/(81 + Sj )]
Rij = 1.125R;;

and

3(1 1 2[3(57 + 57) — 2R3}
2\ " 8) Gy
(Some anomalies in Su and Goddard’s notation, namely
ij on the LHS and 1 and 2 on the RHS, have been cured
here.)

With this force field and Egs. (17), one has the full
Su-Goddard scheme.

ATy =

(22)
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