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The Su-Goddard [1] effective electon-electron and electron-nucleus potential methodology is recast
in the context of approximations to Car-Parrinello dynamics.

PACS numbers:

For molecular dynamics simulation of the thermody-
namics of systems of electrons and nuclei, Su and God-
dard [1, 2] have introduced what they call an electron
force field (“eFF”) scheme. The “force field” vocabulary
comes most often from bio-molecular simulations with
ordinary MD for nuclear motions. Analogous with that
work, Su and Goddard introduce an effective potential for
both electron-electron interactions and electron-nuclear
interactions. The electron-electron part arises from mod-
elling each one-electron state as a single so-called floating
spherical gaussian [3]. The gaussian exponent and loca-
tion then become dynamical variables. In the dynamics,
the nuclear coordinates are treated conventionally, while
the electron dynamics are handled via gaussian wave-
packet dynamics [4].

The Su-Goddard scheme, despite its simplicity, gen-
erates a surprisingly good liquid deuterium equation of
state, P as a function of T up to 30,000 K. This out-
come makes the approach interesting. But I found the
presentation somewhat disjoint. After putting it to-
gether, it seemed more helpful to formulate the approach
as a set of physically motivated approximations to Car-
Parrinello dynamics with Kohn-Sham density functional
theory [5, 6].

To set notation, for Nn nuclei and Ne electrons, the
total system Hamiltonian is

Ĥ = Hn(R,P) + ĤeN (r1, . . . rNe
; R) (1)

The subscript “eN” indicates electrons in the field of the
classical nuclei with coordinates R. The B-O electronic
structure problem is

ĤeN (r1 . . . rNe
; R)ψj(r1 . . . rNe

; R)
= Ej(R)ψj(r1, . . . , rNe ; R) (2)

In the electronic ground state, the potential on which the
classical nuclei move is (Hartree au)

V (R) = Enn(R) + E0(R)

Enn =
1
2

∑
α6=β

Zα Zβ
|Rα −Rβ |

(3)

The classical dynamics of the nuclei

MαR̈α = −∇αV (R) (4)

comes from the Lagrangian

L(R, Ṙ) = T (Ṙ)− V (R)
d

dt

∂L
∂Ṙ
− ∂L
∂R

= 0 (5)

We suppose the E0(R) to be from a ground-state DFT
calculation:

E0(R) = EHKS [n](R)
δEHKS
δn

= 0

⇒ ĥKSϕi = εiϕi →
∑
i

ni|ϕi(r; R)|2 = n(r; R) (6)

Proceed as usual by introducing a basis G`(r; R) for ex-
pansion of the Kohn-Sham orbitals For convenience, as-
sume an orthonormal basis, whence

ϕi(r; R) =
∑
`,R

ai,`(R)G`(r; R) (7)

The notation in eq. (7) is a bit overloaded. On the RHS
the sum over nuclear positions is to indicate use of a basis
set which has subsets centered on each nuclear site. The
nuclear positions on the LHS are an explicit display of
the fact that the K-S orbitals depend upon the nuclear
configuration. Orthonormality then gives∫

drϕ∗i (r; R)ϕj(r; R) = δij ⇒∑
`

a∗i,`(R)aj,`(R) = δij (8)

In the basis, the variational minimization is equivalent to

∂EHKS
∂a∗j,m

= 0 ⇒

det[h− ε1] = 0

h`,m(R) := 〈G`(R)|ĥKS(R)|Gm(R)〉 (9)

The usual solution is by iteration at a given set of nuclear
coordinates R:

ninitial → ĥKS → det[h− ε1] → ai,` → nnext (10)

cycled until ninitial = nnext. As is well-known, this ap-
proach is too slow for routine on-the-fly MD.
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Instead, Car and Parrinello conceived the problem dif-
ferently. For the stipulated basis, the coefficients ai,`
represent values of a set of quasi-coordinates and each
iteration of the cycle in eq. (10) is akin to a time step.
The variational condition in the first line of eq. (9) is an
energy gradient in the quasi-coordinates ai,`, and there
is a normalization condition on them as well, eq. (8).
Thus, if we can assign some kind of “inertia” or resis-
tance to iterative correction to each ai` in terms of fic-
titious masses, then the iterative cycle can be replaced
with a Newtonian pseudo-dynamics to optimise the co-
efficients. Car-Parrinello MD implements this idea via a
new total Lagrangian

L(R, Ṙ, a) =
1
2

∑
α

MαṘ
2
α +

1
2

∑
i,`

M`

∣∣∣∣dai,`dt

∣∣∣∣2
−EHKS [a,R]− Enn(R)

+
∑
ij

λij

∑
`,m

a∗i,`aj,m − δij

(11)

Application of Lagrange’s equations in generalized co-
ordinates to the C-P Lagrangian gives

d

dt

∂L
∂Ṙ
− ∂L
∂R

= 0

d

dt

∂L
∂ȧ
− ∂L
∂a

= 0 (12)

which leads to coupled equations

MαR̈α = −∇αVBO(R)
VBO = EHKS [a,R] + Enn(R)

−
∑
ij

λij

∑
`,m

a∗i,`aj,m − δij


M`

d2ai,`
dt2

= −∂EHKS
∂a∗i,`

−
∑

λijaj,`

∂EHKS
∂a∗i,`

=
∑
m

niai,mh`,m (13)

(Some of the R dependence is suppressed for clarity of
notation.)

To reach the Su-Goddard eFF from the C-P framework
requires several distinct steps. First, replace the K-S
density by a model density in which each electron has
only one basis function, a gaussian normalized to unity,
with location Ri and size (inverse orbital exponent) si,
so that eq. (7) is replaced by

ϕi(r; R) = G(r;Ri; si)

G(r;Ri; si) ∝ exp
[
−
(

1
s2
− 2ps

s
i

)
(r−Ri)2

]
× exp[ip · r] (14)

Here p = melec ṙ, with melec an effective electronic mass
for the dynamics (not the physical electronic mass). Eq.

(14) is equivalent to Eq. (1.6) in Ref. [2] and the corre-
sponding un-numbered equation on the second page of
Ref. [1].

With this expression, one could represent the density
and the K-S matrix elements, but the formulation would
not meet the orthogonality constraint, Eq. (8). Treat-
ing that issue a bit cavalierly for the moment, the corre-
sponding C-P dynamics would look like

MαR̈α = −∇αVapproxBO(R)

melec
d2si
dt2

= −∂VapproxBO
∂si

melec
d2Ri
dt2

= −∂VapproxBO
∂Ri

VapproxBO = EHKS [s,R,R] + Enn(R)

−λ
(∫

drn(r)−Ne
)

(15)

To connect more clearly with Su and Goddard, we can
rewrite these in Hamilton form as

Ṗ = −∇RVapproxBO

ṗi = −∇Ri
VapproxBO

ṗsi = −∂VapproxBO
∂si

Pα = MαṘα

pi = melecṘi
psi = melecṡi

VapproxBO = EHKS [s,R,R] + Enn(R)

−λ
(∫

drn(r)−Ne
)

(16)

Apparently the pseudo-dynamics in si is problematical
[7], though it is a little puzzling as to why in the specific
context of Su and Goddard eFF, since it has a Hartree
product wave function and then an exchange-energy cor-
rection in the force field. In any event, what Su and God-
dard do is to follow the Heller-type development, namely
to assume that the potential is harmonic, so that the
floating gaussians remain gaussian. This leads to the re-
placement of Eqs. (16) with

Ṗ = −∇RVapproxBO

ṗi = −∇Ri
VapproxBO

ṗsi
= −∂VapproxBO

∂si

Pα = MαṘα

pi = melecṘi

psi
=

3melec

4
si

VapproxBO = EHKS [s,R,R] + Enn(R)

−λ
(∫

drn(r)−Ne
)

(17)

which is equivalent to Eqs. (1.7) in Ref. [2] (after correc-
tion of an obvious missing over-dot on the RHS of each
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of the first two equations of the second line) and the cor-
responding un-numbered equations on the second page
of Ref. [1].

The remaining problem is to construct the approxi-
mate BO potential. Su and Goddard do this by consid-
ering the various energy contributions that arise from the
FSGO electron distribution. In my notation (but chang-
ing subscripts to “eFF” from “approxBO”), they write

VeFF = Eke + Enn + Ene + Eee + EPauli (18)

with

Eke =
1
2

∑
i

∫
dr|∇G(r;Ri; si)|2 =

3
2

∑
i

s−2
i

Enn =
∑
α<β

ZαZβ
Rαβ

Ene = −
∑
i,α

Zα

∫
dr
|G(r;Ri; si)|2

|Rα −Ri|

= −
∑
i,α

Zα
|Rα −Ri|

erf

(√
2|Rα −Ri|

si

)

Eee =
∑
i<j

∫
dr
|G(r;Ri; si)|2|G(r;Rj ; sj)|2

|Ri −Rj |

=
∑
i<j

1
|Ri −Rj |

erf

√2|Ri −Rj |√
s2i + s1j


EPauli =

∑
σi=σj

Euuij +
∑
σi 6=σj

Eudij (19)

(Obviously this “EPauli” is not the same as the Pauli
potential used in the Weizsäcker plus positive correction
decomposition of the KS KE [8].) Notice that, rather

than anti-symmetrize, they estimate the exchange con-
tribution separately from overlaps of the fsgos, to wit:

Euuij =

(
S2
ij

1− S2
ij

+ (1− ρSG)
S2
ij

1 + S2
ij

)
∆Tij

Eudij =
ρSGS

2
ij

1 + S2
ij

∆Tij (20)

The parameter ρSG = −0.2, while the overlap and
anti-symmetrization KE parameters are given by expres-
sions which depend on two scaling numerical parameters,
namely

Sij =
(

2
s̄i/s̄j + s̄j/s̄i

)3/2

exp[−R̄2
ij/(s̄

2
i + s̄2j )]

R̄ij = 1.125Rij
s̄i = 0.9si (21)

and

∆Tij =
3
2

(
1
s̄2i

+
1
s̄2j

)
−

2[3(s̄2i + s̄2j )− 2R̄2
ij ]

(s̄2i + s̄2j )2y
(22)

(Some anomalies in Su and Goddard’s notation, namely
ij on the LHS and 1 and 2 on the RHS, have been cured
here.)

With this force field and Eqs. (17), one has the full
Su-Goddard scheme.
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