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Consider the decomposition of the Kohn-Sham kinetic energy T, = Ty + Typ. Ty is the
“Pauli term”. Suppose Ty to be of GGA form
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with
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and the Thomas-Fermi constant is ¢y = 1%(37r2)2/ 3. The inhomogeneity function is
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To find the Pauli potential,
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requires working out the details of the Gelfand-Fomin relationship
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Various required pieces are as follows.
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Insert eqgs. 9, 7, and 6 in eq. 5 to get
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Eq. 11 is the same as eq. (38) in draft D of the VVK et al. “signpost” paper and corrects
eq. (34) of Karasiev, Trickey, and Harris, J. Computer-Aided Mat. Des. 13, 111 (2006).
Harris, in notes “Functional derivative formulas”, 16 Nov. 2007, went about the derivation
by using s? (recall eq. 3 above). He then simplified by working out some of the details in

the equation equivalent to my eq. 11. Working out the equivalence of the two expressions

follows.
0s 4 Vn 4s
i 12
on 3T 3n (12)
ds 0 K2Vn - Vn\ /2 _ kVn s (13)
ovVn  0Vn nd/3 - nABIVn|  |Vn|

Note that this last result defines the s vector. (Harris does not use this quantity.) Thus
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Now evaluate
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whence
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With substitution of these results, eq. 11 becomes
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Next, I rewrite in the variables Harris uses by working out his coefficients in terms of s

rather than s?. Harris gets
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where the latter coefficient corrects a sign error in Harris” notes. Here & is inverse of Harris’

k and
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the coefficients in Harris’ expression rearrange to
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Upon substitution
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which is the same coefficient as in Eq. (18)
Again, after substitution
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which also matches with Eq. (18).
Therefore an economical way of writing v§“4 in terms of s and Harris” other variables is
5 55 p q ] OFy 45> q 0*Fy
GGA _ 2/3 °F I L4 70 I 29
v (8) = con {3 o(s) {3+3 53} 83+[3 s?2| 0s? (29)



