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Abstract Finding a proper local measure of chemical

hardness has been a long-standing aim of density func-

tional theory. The traditional approach to defining a local

hardness index, by the derivative of the chemical potential

l with respect to the electron density nðr*Þ subject to the

constraint of a fixed external potential vðr*Þ, has raised

several questions, and its chemical applicability has proved

to be limited. Here, we point out that the only actual pos-

sibility to obtain a local hardness measure in the traditional

approach emerges if the external potential constraint

is dropped; consequently, utilizing the ambiguity of a

restricted chemical potential derivative is not an option to

gain alternative definitions of local hardness. At the same

time, however, the arising local hardness concept turns out

to be fatally undermined by its inherent connection with

the asymptotic value of the second derivative of the uni-

versal density functional. The only other local hardness

concept one may deduce from the traditional approach,

dl½n�=dnðr*Þ
�
�
vð r*Þ, is the one that gives a constant value, the

global hardness itself, throughout an electron system in its

ground state. Consequently, the traditional approach is in

principle incapable of delivering a local hardness indicator.

The parallel case of defining a local version of the chem-

ical potential itself is also outlined, arriving at similar

conclusions.
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1 Introduction

Chemical reactivity indices [1–9], defined within the

framework of density functional theory (DFT) [1], have

found successful application in the study of chemical phe-

nomena. The three most well-known reactivity descriptors,

the electronegativity [10–13], or in the language of DFT,

minus the chemical potential [13], the chemical hardness,

and its inverse, the softness [14–17], are basic constituents

of essential principles governing chemical reactions—the

electronegativity equalization principle [13, 18], the hard/

soft acid/base principle [14–17, 19–24], and the maximum

hardness principle [25–30]. An important aim of chemical

reactivity theory [2–9] is to establish local versions of

the global indices, on the basis of which predictions can

be made regarding the molecular sites a given reaction

happens at.

Defining a local softness can be done in a natural way

[31], by replacing the electron number N with the electron

density nðr*Þ in the definition of softness as the derivative of

N with respect to the chemical potential l. However,

defining a local counterpart [32, 33] of hardness, the

multiplicative inverse of softness, has met essential diffi-

culties [34–40], undermining the applicability of the local

hardness concept. This may not seem to be a substantial

problem, as the concepts of hardness and softness are

simple complementers; however, very recently, even the

definition of local softness sðr*Þ has been found to fail to

properly signify the soft sites in the case of hard systems

[41, 42], and even before, the interpretation of small sðr*Þ
values as indicators of locally hard sites, preferred in hard–

hard interactions [43], had been put into question [44–46].

Therefore, the question of a possible existence of a proper

local hardness indicator has a renewed significance.
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In this study, we will re-examine the idea of defining a

local hardness concept via differentiation of the chemical

potential with respect to the density subject to the con-

straint of a fixed external potential vðr*Þ, in the view of the

questions as to (1) why this traditional way of defining a

local hardness concept could not yield a (generally) correct

local indicator of chemical hardness, and (2) whether there

is any possibility at all to gain such a local index from this

approach. We will find that the only possibility to obtain a

local hardness measure in the traditional approach emerges

if the external potential constraint on the differentiation is

dropped. The arising local hardness concept, however, will

be shown to be fatally undermined by the necessary

involvement of the asymptotic fixation of the external

potential. At the same time, we will show that the constant

local hardness of Ghosh [33] emerges as l’s unique con-

strained derivative with respect to nðr*Þ corresponding to

the fixed-vðr*Þ constraint—but this local hardness concept

cannot be a local reactivity measure because of its con-

stancy. Our conclusion will be that the traditional approach

to defining a local hardness index is, in fact, not capable of

delivering a local hardness measure; therefore, an essen-

tially new approach to this problem needs to be applied (like

that proposed in [40], which originates a local hardness

index via a local chemical potential—a chemical potential

density). We will also consider the analogous case of

defining a local counterpart of the chemical potential itself,

having relevance (1) regarding the definition of a local

electronegativity index and (2) serving as a potential basis

for an alternative local hardness definition. The results will

be similar to the local hardness case—in particular, the idea

of defining a local chemical potential through the derivative

of the ground-state energy with respect to the density sub-

ject to the constraint of a fixed external potential yields the

constant local chemical potential concept of Parr et al. [13]

as the only feasible option.

2 The traditional concept of local hardness

The chemical concept of hardness has been quantified by

Parr and Pearson [15] as

g ¼ ol
oN

� �

vð r*Þ
: ð1Þ

In contrast with its inverse chemical quantity, the softness,

S ¼ oN

ol

� �

vð r*Þ
; ð2Þ

defining a local counterpart for hardness has met essential

difficulties, due to the fact that there is no such obvious

way to do this as in the case of Eq. (2). For Eq. (2), a

corresponding local quantity can be readily introduced

[31]:

sðr*Þ ¼ onðr*Þ
ol

� �

vð r*Þ
; ð3Þ

which has been termed local softness. This has a direct

connection with the Fukui function [47]

f ðr*Þ ¼ onðr*Þ
oN

� �

vð r*Þ
; ð4Þ

a well-established chemical reactivity index: Applying the

chain rule of differentiation, one obtains

sðr*Þ ¼ onðr*Þ
oN

� �

vð r*Þ

oN

ol

� �

vð r*Þ
¼ f ðr*ÞS: ð5Þ

sðr*Þ integrates to S (just as the Fukui function integrates to

1), and it is natural to interpret it as a pointwise, that is,

local, softness [31].

A local hardness concept has been introduced by

Berkowitz et al. [32], who defined the local hardness as

gðr*Þ ¼ dl

dnðr*Þ

 !

vð r*Þ

: ð6Þ

Equation (6) has since been the basis for practically all

investigations concerning the local counterpart of hardness;

therefore, we will term it the traditional concept of, or

(since it actually embraces a class of concrete local

hardness concepts, with different concrete quantitative

formulae) traditional approach to, local hardness. This

local index is not a local quantity in the sense the local

softness is, since it does not integrate to the hardness;

consequently, its integral over a region in the molecule will

not give a regional hardness. In fact, gðr*Þ times the Fukui

function is what gives g by integration over the whole

space,
Z

gðr*Þf ðr*Þdr
* ¼ g; ð7Þ

which emerges via an application of the chain rule, as can

be seen from the definitions (4) and (6).

The biggest difficulty with the local hardness defined by

Eq. (6) has been that it is not clear how to understand the

fixed external potential [vðr*Þ] condition on the differenti-

ation in Eq. (6).

If we consider that the hardness is defined by Eq. (1) as

the partial derivative of the chemical potential l½N; v�
(a function(al) of the electron number and the external

potential) with respect to N, Eq. (6) suggests that vðr*Þ as

one of the variables in l½N; v� should be fixed when dif-

ferentiating with respect to the electron density nðr*Þ.
However, this yields
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gðr*Þ ¼ ol½N; v�
oN

� �

vð r*Þ

dN

dnðr*Þ
¼ g; ð8Þ

that is, the local hardness equals the global hardness at every

point in space. If one utilizes the DFT Euler–Lagrange equation

dF½n�
dnðr*Þ

þ vðr*Þ ¼ l; ð9Þ

emerging from the minimization principle for the ground-

state energy density functional

Ev½n� ¼ F½n� þ
Z

nðr*Þvðr*Þdr
* ð10Þ

for the determination of the ground-state density

corresponding to a given vðr*Þ, l½N; v� ð� oE½N; v�=oNÞ
can be obtained as

l½N; v� ¼ dF

dnðr*Þ
½n½N; v�� þ vðr*Þ: ð11Þ

Differentiating this expression with respect to N yields

g ¼ ol½N; v�
oN

� �

v

¼
Z

d2F

dnðr*Þdnðr*0Þ
onðr*0Þ
oN

� �

v

dr
*0

¼
Z

d2F

dnðr*Þdnðr*0Þ
f ðr*0Þdr

*0
: ð12Þ

On the basis of this, then, it is natural to identify the local

hardness yielding Eq. (8) with

gðr*Þ ¼
Z

d2F

dnðr*Þdnðr*0Þ
f ðr*0Þdr

*0
: ð13Þ

This local hardness definition was proposed by Ghosh [33]

and was discovered to be a constant giving the global

hardness everywhere by Harbola et al. [34]. Equation (13)

thus cannot be a local counterpart of hardness on the basis

of which one could differentiate between molecular sites.

However, it still is a useful conceptual and practical tool

since a hardness equalization principle can be based on it

[48–51], which says that gðr*Þ of Eq. (13) should be con-

stant for the whole system for the ground-state density—

but only for that density. This principle is closely related

with the long-known chemical potential (or electronega-

tivity) equalization principle [13, 52].

To gain other definition for the local hardness than the

one giving the global hardness in every point of space, one

may consider the fixed-vðr*Þ constraint in Eq. (6) as a

constraint on the differentiation with respect to the density,

gðr*Þ ¼ dl½N½n�; v½n��
dnðr*Þ

�
�
�
�
�
vð r*Þ

; ð14Þ

instead of a simple fixation of the variable vðr*Þ of l½N; v�.
That is, the density domain over which the differentiation

is carried out is restricted to the domain of densities that

yield the given vðr*Þ, through the first Hohenberg–Kohn

theorem [1], which constitutes a unique nðr*Þ ! vðr*Þ
mapping, that is, a vðr*Þ½n� functional. The result will be an

ambiguous restricted derivative (see Sec.II of [53]), simi-

larly to the case of derivatives restricted to the domain of

densities of a given normalization N, which derivatives are

determined only up to an arbitrary additive constant [1, 54].

Harbola et al. [34], to characterize the ambiguity of the

local hardness concept of Eq. (6), first pointed out by

Berkowitz and Parr [55], have given the explicit form

gðr*Þ ¼
Z

d2F

dnðr*Þdnðr*0Þ
uðr*0Þdr

*0 ð15Þ

for the possible local hardness candidates, where uðr*Þ is an

arbitrary function that integrates to 1. The second

derivative of F½n�, appearing in Eq. (15), is called the

hardness kernel [55], which also serves as a basis for a

minimization theorem determining the Fukui function [56].

The choice uðr*Þ ¼ f ðr*Þ gives back Eq. (13), while another

natural choice is uðr*Þ ¼ nðr*Þ=N, which yields the original

local hardness formula of Berkowitz et al. [32],

gðr*Þ ¼ 1

N

Z
d2F

dnðr*Þdnðr*0Þ
nðr*0Þdr

*0
; ð16Þ

who deduced it as an alternative form of Eq. (6).

Besides the above two definitions for gðr*Þ, another one,

termed the unconstrained local hardness, has been pro-

posed by Ayers and Parr [28, 38]:

gðr*Þ ¼ dl½N½n�; v½n��
dnðr*Þ

; ð17Þ

where the fixed-vðr*Þ constraint on the differentiation with

respect to nðr*Þ is simply dropped. A substantial difficulty

with this definition as regards practical use [38] is the

explicit appearance of the derivative of vðr*0Þ with respect

to nðr*Þ, as can be seen by

gðr*Þ ¼ ol
oN
þ
Z

dl½N; v�
dvðr*0Þ

dvðr*0Þ
dnðr*Þ

dr
*0

¼ gþ
Z

f ðr*0Þ dvðr*0Þ
dnðr*Þ

dr
*0
; ð18Þ

where the well-known fact

dE½N; v�
dvðr*Þ

¼ nðr*Þ ð19Þ

and Eqs. (1) and (4) have been utilized. Note that Eq. (17),

too, is embraced by Eq. (14), since for a restricted deriv-

ative, a trivial choice is the unrestricted derivative itself
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(if exists), being valid over the whole functional domain,

hence over the restricted domain too. (That gðr*Þ of Eq. (8)

[that is, of Eq. (13)] and of Eq. (16), or generally, of

Eq. (15), are also embraced by Eq. (14) will be shown at

the end of Sect. 3.)

3 Excluding the ambiguity of the local hardness

concept of Eq. (14)

A proper local hardness is expected to yield proper regional

hardness values, on the basis of which one can predict the

molecular region (or site) a reaction with another species

happens at. The only plausible way of obtaining regional

hardnesses from an gðr*Þ defined by Eq. (14) is

gX ¼
Z

X

gðr*Þ onðr*Þ
oN

� �

v

dr
* �

Z

X

gðr*Þf ðr*Þdr
*
; ð20Þ

that is, the integral in Eq. (7) is carried out over a given

region X of space instead of the whole space. Equation (20)

has been applied in practical calculations to characterize

the hardness of atomic regions or functional groups in

molecules (for recent examples, see for instance [57–62]),

and as a special case [in the form of Eq. (7)], to evaluate

the global (that is, total) hardness itself [63–70]. Equation

(20) represents an ‘‘extensive’’ hardness concept: The total

hardness of a molecule can be obtained as a sum of its

regional hardness corresponding to a given (arbitrary)

division of the molecule into regions. That is, roughly

saying, a molecule that contains regions having high values

of hardness in a majority will have a high global hardness,

while a molecule that contains mainly soft regions, with

low gðXÞ, will have a low global hardness. Of course, in a

strict sense, the hardness will not be an extensive property,

since for the determination of the hardness of a given

region on the basis of Eq. (20), the whole of the electronic

system needs to be involved (a change in the electron

number induces a change in the electron density distribu-

tion as a whole)—however, we cannot expect more in

quantum mechanics, since there is no sense in asking how

much a given property of a segment of a system changes

due to the addition of a fraction dN of electrons to, and only

to, that segment.

A problem with this local hardness/regional hardness

scheme is that if g is extensive, with regional hardnesses

given by Eq. (20), the quantity gðr*Þf ðr*Þ should be considered

to be the local hardness instead of gðr*Þ [of Eq. (14)]. A local

quantity qðr*Þ corresponding to a given extensive global

quantity H emerges as qðr*Þ ¼ limDV! r
* DH

DV , implying

HðXÞ ¼
R

X qðr*Þdr
*

. At the same time, however, it seems

plausible to take gðr*Þ of Eq. (14) as the local hardness since it

characterizes the change of the chemical potential induced

by a small (infinitesimal) change of the electron density

nðr*Þ at a given point of space in a given external potential—

this seems to be a proper local counterpart of the hardness,

given by Eq. (1). Although this view is intuitively appeal-

ing, one should be careful with such an approach, because

then we may argue that a change (even if infinitesimal) of

the density at a single r
*

will yield a discontinuous density,

so why should one bother himself with chemical potential

changes corresponding to unphysical density changes?

This point is just to show the dangerous side of intuitive

arguing regarding a functional derivative—but there is a

physical/real argument against the above interpretation of

Eq. (14) as the local counterpart of hardness. If we add a

small fraction dN of number of electrons to a molecule, it

will be distributed over the whole molecule, no matter

‘‘where we added’’ that dN of electrons. Consequently, only

a change of l that is induced by a density change that is

caused by a dN makes sense directly. dl

dnð r*Þ
is only an

intermediate quantity that delivers the infinitesimal change

in l due to an infinitesimal change of N or some other

quantity determining the given electron system and hence

nðr*Þ, through

ol
oN

� �

v

¼
Z

dl

dnðr*Þ

�
�
�
�
�
v

onðr*Þ
oN

� �

v

dr
*
; ð21Þ

or

dl

dvðr*Þ

 !

N

¼
Z

dl

dnðr*0Þ

�
�
�
�
�
N

dnðr*0Þ
dvðr*Þ

 !

N

dr
*0
; ð22Þ

for example. (Provided it exists, an unrestricted derivative

of l with respect to nðr*Þ, dl

dnð r*Þ
, may be used in both of the

above equations in the place of the restricted derivatives).

Thus, instead of dl=dnðr*Þjv, and dl=dnðr*ÞjN , alone, the

whole of the integrands in the above equations should be

considered the local quantities corresponding to the quan-

tities on the left-hand sides. It may then be more appro-

priate to term Eq. (14), for example, as ‘‘local hardness

factor,’’ instead of ‘‘local hardness,’’ which indicates its

role in delivering the actual local hardness gðr*Þf ðr*Þ and

regional hardnesses. Of course, this is just a matter of

terminology (and why should we change a name nearly

30 years old?); however, the relevant point here is that one

should not expect gðr*Þ of Eq. (14) itself to be a measure of

local hardness. The question of considering gðr*Þf ðr*Þ a

local hardness measure instead of gðr*Þ was first raised by

Langenaeker et al. [71] (to get a proper complementer

quantity of local softness sðr*Þ), who called gðr*Þf ðr*Þ
‘‘hardness density.’’ The latter term, of course, is an
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appropriate name for gðr*Þf ðr*Þ as this integrates to the

hardness and even more appropriate if g is indeed exten-

sive. However, if gðr*Þf ðr*Þ proved to be a proper hardness

density distribution indeed (with larger values in harder

regions), it should be termed also ‘‘local hardness,’’ since it

would then be a local measure of hardness. But if (some

choice of) gðr*Þ of Eq. (14) itself turned out to be a proper

local hardness measure, it would be gðr*Þ what should be

termed ‘‘local hardness’’ (but in this case, even terming

gðr*Þf ðr*Þ ‘‘hardness density,’’ just because it integrates to

the hardness, would become strongly questionable). gðr*Þ
and gðr*Þf ðr*Þ simultaneously cannot be a correct measure

of local hardness. We note that a local hardness index does

not have to be a property density [72]—but if Eq. (20) is to

deliver regional hardnesses, then it does have to be, and the

local hardness cannot be gðr*Þ of Eq. (14) itself.

Now, the question is as to which of the choices of Eq.

(14), that is, which way of fixing the external potential

while differentiating with respect to the density, is (are) the

proper one(s) to obtain a local quantity gðr*Þf ðr*Þ that may

correctly deliver regional hardnesses. As we will see, the

only possible concrete choice of Eq. (14) is the uncon-

strained local hardness (factor) of Ayers and Parr. Consider

Eqs. (21) and (22) with the integrals taken only over a

given region of space. We are interested (directly) only in

the case of Eq. (21), but by the example of Eq. (22), some

more insight may be gained; therefore, it is worth consid-

ering it, too, in parallel with Eq. (21). Thus, we have, on

one hand, Eq. (20), and on the other hand,

fXðr*Þ ¼
Z

X

dl

dnðr*0Þ

�
�
�
�
�
N

dnðr*0Þ
dvðr*Þ

 !

N

dr
*0
; ð23Þ

which is a ‘‘regional Fukui function,’’ as the left-hand side

of Eq. (22) is just the Fukui function,

dl

dvðr*Þ

 !

N

¼ f ðr*Þ; ð24Þ

due to Eq. (19). What do these regional integrals tell us?

They can be viewed as entities that give the contributions,

to the infinitesimal change of l, that come from the change

of the density over the given region X due to an increment

of N and vðr*Þ, respectively. To ease understanding, com-

pare this with the finite-dimensional example of a function

gðxðtÞ; yðtÞÞ (with a derivative _g ¼ og
ox

dx
dt þ

og
oy

dy
dt, with respect

to t), for which a ‘‘regional integral,’’ or partial sum, means

_gx ¼ og
ox

dx
dt—that is, the part of _g that is due to the x part of

the full change of gðxðtÞ; yðtÞÞ with respect to t. Thus, an

infinitesimal change of N, or vðr*Þ, induces a density change

dnðr*Þ, and then the regional integral Eq. (20), or Eq. (23),

tells us how much the part of dnðr*Þ that falls on the given

domain X contributes to the whole change ol of l due to

dnðr*Þ, via ðolÞX ¼
R

X
dl

dnð r*Þ
dnðr*Þdr

*
(multiply Eq. (20) and

Eq. (23) by oN and
R

dr
* dvðr*Þ, respectively). This shows

that Eq. (20) is indeed a plausible way to obtain a regional

hardness measure—but only if the unrestricted derivative

of l is applied, as will be pointed out below. Note that Eq.

(23) gives a natural decomposition of the Fukui function

f ðr*Þ,
P

i fXi
ðr*Þ ¼ f ðr*Þ. It gives how much contribution to

f ðr*Þ, at any given r
*

, can be attributed to a given region X

of the molecule (which does not necessarily include r
*

!).

To understand why the unrestricted derivative dl

dnð r*Þ
is the

only possible choice in Eqs. (20) and (23) to obtain proper

regional measures, it is important to see where the ambi-

guity of restricted derivatives emerges from. The derivative

of a functional A½q�, as used in physics, is defined by
Z

dA½q�
dqðx0ÞDqðx0Þdx0 ¼ DðAÞ½q; Dq�; ð25aÞ

which has to hold for any DqðxÞ, and where DðAÞ½q; Dq�
denotes the Fréchet, or Gâteaux, differential of A½q� for

DqðxÞ; see for example [53] for details. Equation (25a) may

be written less rigorously as
Z

dA½q�
dqðx0Þ dqðx0Þdx0 ¼ A½qþ dq� � A½q�; ð25bÞ

where dqðxÞ denotes a first-order, that is, ‘‘infinitesimal,’’

increment of qðxÞ. Now, if we restrict the functional

domain by the requirement that the qðxÞ’s of the domain

have to satisfy some constraint C½q� ¼ C (i.e., we are not

expecting the functional derivative to be valid over the

whole domain of qðxÞ’s), more than one function
dA½q�
dqðxÞ will

be capable of delivering DðAÞ½q; Dq� for any DqðxÞ [that is

in accordance with the constraint, DCqðxÞ]. Namely, if
dA½q�
dqðxÞ

fulfills Eq. (25), any other
dA½q�
dqðxÞ þ k dC½q�

dqðxÞ will fulfill it, too,

over the given restricted domain, since
Z

dC½q�
dqðx0Þ dCqðx0Þdx0 ¼ 0; ð26Þ

emerging from C½qþ dCq� � C½q� ¼ 0. Denoting a restricted

derivative by
dA½q�
dqðxÞ

�
�
�
C

, while reserving the notation
dA½q�
dqðxÞ for the

unrestricted derivative (valid over the unrestricted domain),

this ambiguity can be expressed as

dA½q�
dqðxÞ

�
�
�
�
C

¼ dA½q�
dqðxÞ þ k

dC½q�
dqðxÞ ð27Þ

(with k being an arbitrary constant), provided, of course,

that the unrestricted derivative exists. As has been proved

in the Appendix of [53], in the chain rule of differentiation
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of a composite functional A½q½q��, the full derivative
dA½q�
dqðxÞ

may be replaced by any choice of the restricted derivative
dA½q�
dqðxÞ

�
�
�
C

,

dA½q½q��
dqðxÞ ¼

Z
dA½q�
dqðx0Þ

�
�
�
�
C

dqðx0Þ½q�
dqðxÞ dx0; ð28Þ

in the case qðxÞ½q� is such that it satisfies the given constraint

C½q� ¼ C for all qðxÞ’s—which is the case for Eqs. (21) and

(22). It is crucial for both of the above cancellations of the

ambiguity of restricted derivatives (yielding a unique A½qþ
dCq� � A½q� and a unique

dA½q½q��
dqðxÞ ) that the integrals [in Eqs.

(25a) and (28)] are taken over the whole space. In the case of

applications of a derivative
dA½q�
dqðxÞ where the ambiguity of the

corresponding restricted derivative under a given constraint

does not cancel [like in the case of Eqs. (20) and (23)], the

unrestricted derivative cannot be replaced by another choice
dA½q�
dqðxÞ

�
�
�
C

. We should keep in mind that only the unrestricted

derivative is capable of delivering the correct change of A½q�
due to a change of its variable at a given point x0 induced by a

change of a function qðxÞ that qðx0Þ depends on—either

qðx0Þ½q� obeys some constraint or not. An additional term

þk dC½q�
dqðxÞ just unnecessarily, and incorrectly, modifies the result

given by
dA½q�
dqðxÞ. To gain more insight into this, one may consider

again the example of a composite function gðxðtÞ; yðtÞÞ, with

ðxðtÞ; yðtÞÞ now obeying the constraint x2ðtÞ þ y2ðtÞ ¼ c, for

example. Under this constraint on g’s variables, the ambiguous

restricted derivative
ogðx;yÞ

ox ; ogðx;yÞ
oy

� �

þ k 2x; 2yð Þ; with any

choice ofk, will correctly deliver the full first-order change of g

due to a change in ðx; yÞ that is in accordance with the con-

straint—but not a partial first-order change, such as og
ox

dxðtÞ
dt dt:

We have pointed out above that (1) it is gðr*Þf ðr*Þ what

may deliver a correct local hardness measure instead of

gðr*Þ of Eq. (14) alone, and (2) gðr*Þ should be an unre-

stricted derivative in order to correctly obtain regional

hardnesses by integration of gðr*Þf ðr*Þ over molecular

regions. Thus, we conclude that a correct local hardness

measure may be delivered only by

gðr*Þ ¼ dl½N½n�; v½n��
dnðr*Þ

f ðr*Þ: ð29Þ

However, there is an inherent problem with dl

dnð r*Þ
, as will be

pointed out in the following section. We should add here

that the above local quantity may not quite be a local

counterpart of hardness, since vðr*Þ in l½N; v� is explicitly

fixed when obtaining g½N; v�: However, the unrestricted

derivative of l with respect to nðr*Þ that keeps vðr*Þ
explicitly fixed is the derivative

dl½N½n�;v�
dnð r*Þ

, that is, the

derivative in Eq. (8). Hence, it is not capable of giving a

local measure of hardness. It would only yield a local

quantity that is proportional to the Fukui function itself,

gðr*Þ ¼ gf ðr*Þ, which would therefore measure regional

softnesses by integration over molecular regions for soft

molecules. (We note that this is precisely the reason for the

numerical observations of Torrent-Sucarrat et al. [41, 42],

who found that the regional integrals calculated with

Eq. (8) used in Eq. (20) predict high regional hardness for

actually soft regions—in the case of globally soft systems.

This is then not surprising, since this is just what is

expected from the Fukui function. The interesting fact,

which gives the findings of Torrent-Sucarrat et al. high

significance, is that this ‘‘local hardness’’ expression works

well for hard systems [41, 42], which implies that the Fukui

function actually indicates local hardness instead of soft-

ness in the case of globally hard systems. Therefore, the

interpretation of the Fukui function as a general local

softness measure has to be reconsidered. But it is clear that

gðr*Þ ¼ gf ðr*Þ also cannot be a local hardness measure.)

To close this section, it is worth exhibiting the ambi-

guity of the regional integrals Eqs. (20) and (23) that would

be caused by the ambiguity of dl

dnð r*Þ

�
�
�
�
v

and dl

dnð r*Þ

�
�
�
�
N

, respec-

tively, if the use of those restricted derivatives, instead of

the unrestricted derivative dl

dnð r*Þ
, was actually allowed in the

case of integrals not covering the whole space. In the case

of Eq. (23), the ambiguity of the restricted derivative

appears in the form of a simple additive constant; that is, in

the place of a given dl

dnð r*Þ

�
�
�
�
N

, any other dl

dnð r*Þ

�
�
�
�
N

þk can be

taken as a choice for the chemical potential derivative over

the N-restricted domain of nðr*Þ’s. We may exhibit this

ambiguity as

dl

dnðr*Þ

�
�
�
�
�
N

¼ dl

dnðr*Þ
þ k: ð30Þ

This ambiguity then leads to an ambiguity of þk dNX

dvð r*Þ

� �

N

in fXðr*Þ. The ambiguity Eq. (30) may be expressed with

other particular choices of dl

dnð r*Þ

�
�
�
�
N

replacing dl

dnð r*Þ
in Eq.

(30). Such a choice is

dl½N; v½n��
dnðr*Þ

 !

N

¼
Z

dl½N; v�
dvðr*0Þ

 !

N

dvðr*0Þ
dnðr*Þ

dr
*0

¼
Z

f ðr*0Þ dvðr*0Þ
dnðr*Þ

dr
*0
; ð31Þ

which is the analogue of Eq. (8). With this, then, we may

also write
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dl

dnðr*Þ

�
�
�
�
�
N

¼
Z

f ðr*0Þ dvðr*0Þ
dnðr*Þ

dr
*0 þ k ð32Þ

(emphasizing that k denotes an arbitrary constant

throughout, not to be taken to be identical when

appearing in different equations). By inserting Eq. (32) in

Eq. (23), we obtain

fXðr*Þ ¼
Z

f ðr*00Þ
Z

X

dvðr*00Þ
dnðr*0Þ

dnðr*0Þ
dvðr*Þ

 !

N

dr
*0

dr
*00

þ k
dNX

dvðr*Þ

 !

N

: ð33Þ

(It can be seen that if X is chosen to be the whole space,

Eq. (33) gives back the Fukui function). As regards dl

dnð r*Þ

�
�
�
�
v

,

it is determined only up to a term þ
R

kðr*0Þ dvð r*0Þ
dnð r*Þ

dr
*0

(with

kðr*Þ arbitrary), emerging from the fixed-vðr*Þ constraint,

vðr*0Þ½nðr*Þ� ¼ vðr*0Þ—which can be considered as an infinite

number of constraints (‘‘numbered’’ by r
*0

) on the nðr*Þ-
domain. This ambiguity may be exhibited as

dl

dnðr*Þ

�
�
�
�
�
v

¼ dl

dnðr*Þ
þ
Z

kðr*0Þ dvðr*0Þ
dnðr*Þ

dr
*0
; ð34Þ

or with the particular choice Eq. (8) instead of dl

dnð r*Þ
, as

dl

dnðr*Þ

�
�
�
�
�
v

¼ gþ
Z

kðr*0Þ dvðr*0Þ
dnðr*Þ

dr
*0
: ð35Þ

With Eq. (35), for example, the ambiguity of Eq. (20) may

then be given as

gX ¼ g
Z

X

f ðr*0Þdr
*0 þ

Z

kðr*00Þ
Z

X

dvðr*00Þ
dnðr*0Þ

f ðr*0Þdr
*0

dr
*00
: ð36Þ

Equation (35) gives back Eq. (17) with the choice

kðr*Þ ¼ f ðr*Þ, as can be seen from Eq. (18). From Eq. (34),

one can get back Eq. (15) if �kðr*Þ is chosen to be a

function uðr*Þ that integrates to 1, utilizing dl

dnð r*Þ
¼

R
uðr*0Þ dl

dnð r*Þ
dr
*0

and Eq. (9). This then shows that the pos-

sible choices of Eq. (14) are even more numerous than has

been believed on the basis of Eq. (15).

4 Ill-definedness of the chemical potential’s derivative

with respect to the density

For any possible application of Eq. (29), a proper method

to evaluate the derivative of vðr*Þ with respect to the density

is necessary, as revealed by Eq. (18). vðr*Þ is given as a

functional of nðr*Þ by Eq. (9) itself; namely,

vðr*0Þ½n� ¼ l½n� � dF½n�
dnðr*0Þ

: ð37Þ

That is, in order to obtain the derivative of Eq. (37) with

respect to nðr*Þ to determine dl

dnð r*Þ
through Eq. (18), we

already need to have dl

dnð r*Þ
! We cannot determine dl

dnð r*Þ
without further information on l½n�, since from Eqs. (18)

and (37),

dl½n�
dnðr*Þ

¼ gþ
Z

f ðr*0Þ d

dnðr*Þ
l½n� � dF½n�

dnðr*0Þ

 !

dr
*0

¼ gþ dl½n�
dnðr*Þ

�
Z

f ðr*0Þ d2F½n�
dnðr*Þdnðr*0Þ

dr
*0
; ð38Þ

which is an identity, involving Eq. (12).

l is determined as a functional of the density by a

boundary condition in Eq. (37). In the case of potentials

bounded at infinity, this will be according to the asymptotic

condition vð1Þ ¼ 0 on the external potentials, yielding

l½n� ¼ dF½n�
dnð1Þ : ð39Þ

(Note that nðr*!1Þ is taken along one given direction,

just as vð1Þ needs to be fixed only along one direction—

which then allows the extension to an even wider domain

of external potentials.) We emphasize that there is no other

way to determine l as a functional of nðr*Þ than the above,

since l [either as the chemical potential, that is, the

derivative of E½N; v� with respect to N, or as the Lagrange

multiplier in Eq. (9)] emerges directly as l½N; v�, which

leaves l½N½n�; v½n�� undetermined, as seen above. With Eq.

(39), then, we obtain

dl½n�
dnðr*Þ

¼ d2F½n�
dnðr*Þdnð1Þ

: ð40Þ

It is worth observing that Eq. (40) corresponds to the

choice uðr*0Þ ¼ dðr*0 � 1Þ in Eq. (15).

Equation (40) seems to offer an easy way to evaluate
dl

dnð r*Þ
: Just take the hardness kernel and consider its limit as

(any) one of its variables approaches infinity. However, a

problem immediately arises. With using approximations

for F½n� that construct F½n� simply in a form F½n� ¼
R

gðnðr*Þ;rnðr*Þ;r2nðr*Þ; . . .Þdr
*

(which is common in

practical calculations), delta functions dðr*�1Þ appear as

multipliers of constant components on the right of Eq. (40),

which cannot yield a useful local index. One may argue

that this is only an issue of the quality of approximation for
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F½n�. For example, as has been pointed out by Tozer et al.

[73–75], a proper density functional F½n� (if continuously

differentiable) should yield an exchange–correlation

potential that has a nonvanishing asymptotic value, in

contrast with the commonly used Exc[n]’s, with the above

construction. The problem, however, is more fundamental.

Consider the (exact) one-electron version of the DFT

Euler–Lagrange equation Eq. (9),

dTW ½n�
dnðr*Þ

þ vðr*Þ ¼ �I; ð41Þ

where TW ½n� is the Weizsäcker functional TW ½n� ¼
1
8

R jrnð r*Þj2

nð r*Þ
dr
*

, exactly valid as F[n] for one-particle

densities, while I denotes the ionization potential, which

is just minus the ground-state energy for one-particle

systems. It is important that TW ½n� is not only an exact

functional for one-particle densities, in which case its

derivative would possibly differ from the generally valid
dF½n�
dnð r*Þ

by a (nðr*Þ-dependent) constant, but in the zero-

temperature grand canonical ensemble extension of the

energy for fractional electron numbers [76] (see [77] for

the spin-polarized generalization), it is the exact F

functional for densities with N� 1 [78], implying

dTW ½n1�
dnðr*Þ

¼ dF½n1�
dnðr*Þ

�
�
�
�
�
�

ð42Þ

(with no difference by a constant), and

�IðN ¼ 1Þ ¼ l�ðN ¼ 1Þ; ð43Þ

where the minus sign in the subscripts denotes that a left-

side derivative is taken (in the zero-temperature ensemble

scheme, the two one-sided derivatives are different

in general, implying the existence of derivative

discontinuities [76, 77]). We then have for ground-state-

v-representable n1ðr*Þ’s (and nðr*Þ’s with N � 1)

l�½n� ¼
dTW ½n�
dnð1Þ : ð44Þ

(For one-particle densities that correspond to excited states

of the external potential delivered by Eq. (41), on the left-

hand side of Eq. (44), only -I[n] can be written.) The

derivative of Eq. (44) with respect to nðr*Þ,

d2TW ½n�
dnðr*0Þdnð1Þ

¼ � 1

4

ðrnð1ÞÞ2

ðnð1ÞÞ3
�r

2nð1Þ
ðnð1ÞÞ2

 !

dð1 � r
*0Þ

þ 1

4

rnð1Þ
ðnð1ÞÞ2

rdð1 � r
*0Þ

� 1

4

1

nð1Þr
2dð1 � r

*0Þ ð45Þ

(where the corresponding asymptotic limits are to be

taken), however, is ill-defined for electronic densities. The

exponential asymptotic decay e�2
ffiffiffi
2I
p

r [79, 80] of such

densities leads to infinite values of the factors of the delta

functions above. (Note though that even without this, the

delta functions would not make Eq. (45) a useful local

descriptor.) This is not only a formal problem that can be

avoided by writing Eq. (45) with the arguments 1 and r
*0

interchanged. The derivative of l�½n� does not exist for

electronic densities! This can be seen by considering the

infinitesimal increment dl ¼
R dl½n�

dnð r*Þ
dnðr*Þdr

*
of l in a case

where the ionization potential corresponding to an

electronic density nðr*Þ decreases, that is, the decay of

~nðr*Þ ¼ nðr*Þ þ dnðr*Þ is slower than nðr*Þ’s. In such case, as

can be checked readily, Eq. (45) leads to an infinite dl,

whereas it should be I � ~I, and this outcome remains the

same even if we consider the full Taylor expansion of l,

that is, a full change Dl. (The increasing I case may also be

considered, with all terms containing ~I vanishing in the

Taylor expansion.)

The Weizsäcker-functional derivative is not only a

one-particle example, but
dTW ½n�
dnð r*Þ

, a component of
dF½n�
dnð r*Þ

in the

general case, itself gives �I (which equals l� [76]) in the

case of finite electron systems, which can be seen if one

inserts the density decay e�2
ffiffiffi
2I
p

r [79, 80] in
dTW ½n�
dnð r*Þ

,

dTW ½n�
dnðr*Þ

¼ 1

8

rnðr*Þ
nðr*Þ

 !2

� 1

4

r2nðr*Þ
nðr*Þ

!
r!1
�I: ð46Þ

Equation (45) then implies that the component of l�½n� that

is the most essential for electronic densities yields an ill-

defined contribution to
dl½n

dnð r*Þ

�
�
�
�
�

for such densities.

It is important to point out that the above finding is not

only some peculiar feature of the ensemble extension [76]

of the energy for fractional N’s. In the case of other

(possibly continuously differentiable) extensions, the

derivatives of TW ½n� and F½n� may differ only by a (density-

dependent) constant [53] at a one-particle density n1ðr*Þ
(since the two functionals are equal for any n1ðr*Þ). This

implies that their second derivatives may differ only by

some cðr*Þ þ cðr*0Þ, as can be seen by applying (1) the above

constant-difference rule of derivatives to the derivative of
dF½n1�
dnð r*Þ

¼ dTW ½n1�
dnð r*Þ

þ C½n1� itself and (2) the symmetry property

of second derivatives in r
*

and r
*0

. Then, to obtain
dl½n1�
dnð r*Þ

corresponding to a given fractional N generalization of

F½n�, cðr*0Þ þ cð1Þ needs to be added to Eq. (45), where the
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function c depends on the generalization. Thus, the prob-

lematic Eq. (45) will remain as a component of dl=dnðr*Þ.
A very recent finding by Hellgren and Gross (HG) [81]

gives further support of our conclusion regarding the ill-

definedness of dl=dnðr*Þ. These authors have showed that

the right-side second derivative of the exchange–correla-

tion (xc) component of F½n� of the ensemble generalization

for fractional N’s [76] diverges (exponentially) as r !1,

by which they have also placed earlier findings regarding

the asymptotic divergence of the xc kernel [82] onto sound

theoretical grounds. This divergent behavior has been

pointed out to emerge from the integer discontinuity of the

xc kernel [81]. Since the left- and the right-side derivative

at a given nðr*Þ may differ only by a constant (see Appendix

of [83] for a proof), the difference between the left- and

the right-side second derivative may only be some

cðr*Þ þ cðr*0Þ, on similar grounds as above (note that the

left-side derivative and the right-side derivative of a func-

tional at a given nðr*Þ may be considered as the derivatives

of two different, continuously differentiable functionals

that intersect on a subset of nðr*Þ’s of a given N). HG has

found that gðr*Þ of gðr*Þ þ gðr*0Þ :¼ d2Exc½n�
dnð r*Þdnð r*

0
Þ

�
�
�
�
þ
� d2Exc½n�

dnð r*Þdnð r*
0
Þ

�
�
�
�
�

,

which is the so-called discontinuity of the xc kernel at integer

electron number, diverges exponentially as r !1. F½n� is

decomposed as F½n� ¼ Ts½n� þ ExcH½n�, with Ts½n� being the

noninteracting kinetic-energy density functional and ExcH½n�
the sum of Exc½n� and the classical Coulomb repulsion, or

Hartree, functional. Since the latter is continuously differ-

entiable, ExcH½n�’s discontinuity properties are the same as

Exc½n�’s. The divergent behavior of
d2ExcH½n�

dnð r*Þdnð r*
0
Þ

�
�
�
�
þ

is closely

related with long-range correlation effects [81, 82], therefore

it is unlikely to be canceled by
d2Ts½n�

dnð r*Þdnð r*
0
Þ

�
�
�
�
þ

; consequently,

d2F½n�
dnð r*Þdnð r*

0
Þ

�
�
�
�
þ

diverges asymptotically, too. This then imme-

diately gives that
dl½n�
dnð r*Þ

�
�
�
�
þ
¼ d2F½n�

dnð r*Þdnð1Þ

�
�
�
�
þ

is ill-defined, being

infinite at every r
*

!

Thus, the unrestricted derivative of l with respect to the

density is ill-defined—at least, as long as we insist that the

zero of energy should be fixed according to vð1Þ ¼ 0 for

Coulombic potentials. If we chose some other, even though

nonphysical, fixation such as
R

gðr*Þvðr*Þdr
* ¼ 0, for exam-

ple, (where gðr*Þ is some fixed function that integrates to

one and tends fast to zero with r
*!1), we would obtain

l½n� ¼
R

gðr*Þ dF½n�
dnð r*Þ

dr
*

for any potentials, which, then,

would yield a proper derivative—but not of the real

chemical potential. We refer to [84] for further insight into

this issue and for a discussion of the related issue of the

ground-state energy as a functional solely of the density.

Since the appearance of a preliminary version of the

present work as an arXiv preprint (arXiv:1107.4249v4), a

related study has been published by Cuevas-Saavedra et al.

[85]. These authors deal with the problem of how to cal-

culate the unconstrained local hardness Eq. (17) and con-

clude from similar contradictions as those pointed out in

[84] that this local hardness concept is infinitely ill-con-

ditioned and argue further that it diverges exponentially

fast asymptotically. Our conclusions thus go further; Eq.

(17) is completely ill-defined for electronic systems.

5 Local hardness as a constrained derivative

with respect to the density

It has thus been found that one cannot obtain a local

hardness measure by gðr*Þ ¼ dl½N½n�;v½n��
dnð r*Þ

�
�
�
�
v

f ðr*Þ, since one of

the two mathematically allowed forms, Eq. (29), is ill-

defined, while the other one, gðr*Þ ¼ gf ðr*Þ, is simply a

measure of local softness in the case of soft systems.

However, one may raise the question: Could we consider

Eq. (14) directly as some local hardness measure, irre-

spective of it being able to deliver a proper regional

hardness concept or not? That is, one would not be inter-

ested in getting hardness values corresponding to regions of

molecules, but only in obtaining a pointwise measure,

which, besides, should deliver the global hardness [via Eq.

(7)]—but not regional ones. Although this is a questionable

concept [see the argument above Eq. (21)], it may still

seem to be plausible to consider Eq. (14) some kind of

local counterpart of hardness due to its intuitive interpre-

tation as a measure of how the chemical potential changes

if the number of electrons is increased locally (by an

infinitesimal amount) in a given external potential setting.

Therefore, we will explicitly examine this option, too.

So, we are interested in finding a fixation of the ambi-

guity of Eq. (14) that would properly characterize the

chemical potential change due to a density change at r
*

when the density domain is restricted to densities corre-

sponding to a given vðr*0Þ. This requires a proper modifi-

cation of the unconstrained ‘‘gradient’’ dl

dnð r*Þ
, which leads us

to the concept of constrained derivatives [86–88]. (Note the

difference of the names ‘‘restricted derivative’’ and ‘‘con-

strained derivative’’ [53]. This is not a canonized termi-

nology yet, but the names should be different for these two

conceptually, and also manifestly, different entities.) To

see how this concept works, consider the case of the simple
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N-conservation constraint,
R

nðr*Þdr
* ¼ N; that is, the

domain of nðr*Þ’s is restricted to those integrating to a given

N. The functional derivative
dA½n�
dnð r*Þ

is obtained from the first-

order differential Eq. (25a) by inserting Dnðr*0Þ ¼
dðr*0 � r

*Þ. That is, we obtain the functional derivative (i.e.,

gradient) by weighting all (independent) directions in the

functional domain equally. In a case the functional domain

is restricted by some constraint C½n� ¼ C, the allowed

directions are restricted by Eq. (26); consequently, dðr*0 �
r
*Þ cannot be inserted in Eq. (25a). We need to find a

modification of dðr*0 � r
*Þ, or in general, of Dnðr*0Þ, that is in

accordance with the constraint. For the N-conservation

constraint, this is achieved by DNnðr*0Þ ¼
R

dðr*0 � r
*00Þ�

�

uðr*0ÞÞDnðr*00Þdr
*00

[86–88], where uðr*Þ is a function that

integrates to one. Inserting this DNnðr*0Þ in Eq. (25a) and

taking Dnðr*00Þ ¼ dðr*00 � r
*Þ yields the proper modification

of a derivative
dA½n�
dnð r*Þ

:
dA½n�

dN nð r*Þ
¼ dA½n�

dnð r*Þ
�
R

uðr*0Þ dA½n�
dnð r*

0
Þ
dr
*0

. The

key for obtaining the constrained derivative for a given

constraint C½n� ¼ C, thus, is to find the DCnðr*0Þ’s that obey

the constraint, that is, C½nþ DCn� � C½n� ¼ 0.

Now, consider the domain determined by the fixed-vðr*Þ
constraint. This domain of nðr*Þ’s will be a very thin

domain—literally; it will be a single chain of densities

nðr*Þ½N; v�, with only N changing (nondegeneracy is

assumed, of course, which is a basic requirement when

dealing with nðr*Þ½v�). Consequently, there is not much

choice in writing a proper Dvnðr*0Þ. The only possible form

is

Dvnðr*0Þ ¼ onðr*0Þ½N; v�
oN

DN þ higher-order terms: ð47Þ

Inserting this in Eq. (25a),

DðAÞ½n;Dvn� ¼ oA½n½N; v��
oN

DN þ higher-order terms ð48Þ

arises via an application of the chain rule of differentiation.

By utilizing DN ¼
R

Dnðr*0Þdr
*0

and taking Dnðr*0Þ ¼ dðr*0 �
r
*Þ (while neglecting the terms higher-order in Dnðr*Þ,
which appear due to the nonlinearity of the constraint [88]),

from Eq. (48), we then obtain

dA½n�
dvnðr*Þ

¼ oA½n½N; v��
oN

ð49Þ

as the constrained derivative corresponding to the vðr*Þ-
conservation constraint. Interestingly, though not surpris-

ingly (considering the very restrictive nature of the

fixed-vðr*Þ constraint), there is no ambiguity at all in this

expression—contrary to the N-conserving derivative, for

example, where uðr*Þ represents an ambiguity.

Thus, we obtain that the only mathematically allowed

derivative of l with respect to the density under the fixed-

vðr*Þ constraint (that may bear relevance in itself) is

dl

dvnðr*Þ
¼ ol½N; v�

oN
ð50Þ

(that is, the vðr*Þ-constrained, or ‘‘vðr*Þ-conserving,’’

derivative of the chemical potential with respect to the

density is simply its partial derivative with respect to N).

Note that l½N½n½N; v��; v½n½N; v��� ¼ l½N; v�. It turns out,

thus, that the severe ambiguity of Eq. (14), embodied in Eq.

(35), can be narrowed down to the single choice of

kðr*Þ ¼ 0—which is the constant local hardness of Eq. (8).

That is, while the definition of a functional derivative leads

to an ambiguity, Eq. (35), under a fixed-vðr*Þ constraint,

this ambiguity disappears if one wishes to use this deriv-

ative in itself as a physical quantity. However, the constant

local hardness will not give a local counterpart of

hardness.

We can sum up our findings so far as: Here, we have

shown that Eq. (8) is the only mathematically allowed

choice if one wishes to obtain a local hardness measure

directly by Eq. (14), while previously we have shown that

if we want to have a local hardness measure by dl

dnð r*Þ

�
�
�
�
v

f ðr*Þ,

in order to have regional hardnesses as well, then the only

allowed choices are g f ðr*Þ and Eq. (29)—but the former

cannot be a (general) local hardness measure because of its

proportionality to the Fukui function.

6 The parallel problem of defining a local chemical

potential

Defining a local hardness via Eq. (14) naturally raises the

idea of defining a local counterpart of the chemical

potential l ¼ oE½N;v�
oN

� �

vð r*Þ
itself in a similar fashion. By a

local counterpart of l, we mean a local index that indicates

the local distribution of l within a given ground-state

system, that is, not some r
*

-dependent chemical potential

concept, like that of [13], that yields l as its special,

ground-state, case. We may introduce the following local

quantity:

~lðr*Þ ¼ dE½N½n�; v½n��
dnðr*Þ

�
�
�
�
�
vð r*Þ

; ð51Þ

which parallels Eq. (14). Of course, we then have the same

kind of ambiguity problem as in the case of Eq. (14).
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Fixing vðr*Þ as one of the variables of E½N; v� will not

yield a ~lðr*Þ that is a local measure of the chemical

potential, similarly to Eq. (8), since this ~lðr*Þ will be

constant in space—the chemical potential itself:

~lðr*Þ ¼ oE½N; v�
oN

� �

vð r*Þ

dN

dnðr*Þ
¼ l: ð52Þ

Equation (52) may be obtained in another way as well,

since the ground-state energy as a functional of the ground-

state density can be obtained via two routes:

E½n� � E½N½n�; v½n�� � Ev½n�½n�: ð53Þ

The first route is through E½N; v�, while the second is

through the energy density functional Eq. (10) of DFT—in

both cases, the functional dependence of vðr*Þ on nðr*Þ is

inserted into the corresponding places. Then, specifically,

dE½n�
dnð r*Þ

�
�
�
�
v

may be
dEv½n�
dnð r*Þ

� �

v

, which equals l on the basis of

Eq. (9), giving the ~lðr*Þ of Eq. (52). We note here that the

idea of a local chemical potential concept has been raised

previously by Chan and Handy [89], as a limiting case of

their more general concept of shape chemical potentials;

however, they automatically took the energy derivative

with respect to the density as the constant
dEv½n�
dnð r*Þ

� �

v

,

ignoring other possibilities. The constant local chemical

potential concept of Eq. (52) is of course not without use; it

may be considered as an equalized r
*

-dependent chemical

potential, defined by lðr*Þ _¼ dF½n�
dnð r*Þ
þ vðr*Þ [13], which gives a

formal background for the electronegativity equalization

principle [13]. The latter lðr*Þ, however, is not a local

chemical potential in the sense that it would be the local

counterpart of a global property (l), but it is rather a kind

of intensive quantity, which becomes constant when

reaching equilibrium (here, ground state). Similar can be

said of the r
*

-dependent, generalized hardness concept

defined by Eq. (13) for general densities.

A general property of a ~lðr*Þ defined through Eq. (51) is

Z

~lðr*Þf ðr*Þdr
* �

Z
dE½n�
dnðr*Þ

�
�
�
�
�
v

onðr*Þ½N; v�
oN

� �

v

dr
* ¼ l; ð54Þ

that is, it gives the chemical potential after integration

when multiplied by the Fukui function—analogously to Eq.

(7). We emphasize again that in spite of the great extent of

ambiguity in Eq. (51), all choices will indeed give l in Eq.

(54), due to the fact that the density in
onð r*Þ
oN

� �

v
is varied

with the external potential fixed, and in cases like this, the

ambiguity of the inner derivative of the composite func-

tional cancels out [53].

An appealing choice of the restricted derivative in Eq.

(51) may be the unrestricted derivative,

~lðr*Þ ¼ dE½N½n�; v½n��
dnðr*Þ

: ð55Þ

This quantity gives to what extent the ground-state energy

changes when the density is changed by an infinitesimal

amount at a given point in space. There will be places r
*

in

a given molecule where an infinitesimal change of nðr*Þ (at

the given r
*

) would imply a greater change of the energy,

while at other places, it would imply a smaller change in E,

going together with a higher and a lower local value of

j~lðr*Þj, respectively. The most sensitive site of a molecule

toward receiving an additional amount of electron (density)

will be the site with the lowest value of ~lðr*Þ, implying the

biggest decrease in the energy due to an increase in the

density at r
*

by an infinitesimal amount—but only if

the external potential changes accordingly. [Note that since

the fixed external potential setting is an inherent part of the

concept of the chemical potential, Eq. (55) cannot be a

local counterpart of the chemical potential, but when

multiplied by the Fukui function, below, a fixation of vðr*Þ
appears in the emerging lðr*Þ.] Equation (55) can be

evaluated as

~lðr*Þ ¼ oE½N; v�
oN

þ
Z

dE½N; v�
dvðr*0Þ

dvðr*0Þ
dnðr*Þ

dr
*0

¼ lþ
Z

nðr*0Þ dvðr*0Þ
dnðr*Þ

dr
*0
; ð56aÞ

or alternatively,

~lðr*Þ ¼ dEv½n�
dnðr*Þ

þ
Z

dEv½n�
dvðr*0Þ

dvðr*0Þ
dnðr*Þ

dr
*0

¼ lþ
Z

nðr*0Þ dvðr*0Þ
dnðr*Þ

dr
*0
; ð56bÞ

where Eqs. (9) and (10) have been utilized. Note that the

second term of Eqs. (56a, 56b) integrates to zero when

multiplied by f ðr*Þ, as vðr*Þ is independent of N.

Equation (55) is not only an appealing choice in Eq.

(51), but also, on the basis of the argument given in the

case of the local hardness in Sect. 3, it is one of the two

mathematically allowed choices to obtain a local chemical

potential concept. The emerging local chemical potential is

lðr*Þ ¼ dE

dnðr*Þ
f ðr*Þ; ð57Þ

which gives regional chemical potentials via

lX ¼
Z

X

lðr*Þdr
*
: ð58Þ
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(Just as in the case of Eq. (29), applying other choices of

~lðr*Þ of Eq. (51) in Eq. (57) would lead to an improper

modification of the regional chemical potential values.)

Unfortunately, however, the evaluation of dE

dnð r*Þ
meets the

same principal problem as the evaluation of dl

dnð r*Þ
. Inserting

Eq. (37) in Eq. (56) gives

dE½n�
dnðr*Þ

¼ lþ N
dl½n�
dnðr*Þ

�
Z

nðr*0Þ d2F½n�
dnðr*Þdnðr*0Þ

dr
*0
; ð59Þ

which shows that l½n�’s derivative appears as a component

in E½n�’s derivative.

It is interesting to observe that the last term of Eq. (59)

is just the original local hardness expression of Berkowitz

et al. [32], Eq. (16), times N. Equation (59) indicates that

large (positive) values of Eq. (16) imply that the global

value l is more decreased by them at the given points in

space. This throws more light upon the recent finding [90]

that Eq. (16) is a local indicator of sensitivity toward per-

turbations, which goes against the essence of the concept of

local hardness. (The latter is not surprising in the view of

Sects. 3 and 5—actually nothing supports Eq. (16) as a

formula for local hardness.)

The other possible way to obtain a local chemical

potential measure is

lðr*Þ ¼ dE½N; v�
dnðr*Þ

 !

v

f ðr*Þ ¼ lf ðr*Þ; ð60Þ

similar to the case of local hardness. In that case, gðr*Þ ¼
gf ðr*Þ could not give a correct local hardness measure since

the Fukui function f ðr*Þ is actually not an indicator of hard

sites, while here the question is as to whether f ðr*Þ can be

considered an indicator of local electronegativity, �lðr*Þ;
or not (note that l is negative, and minus the chemical

potential is the electronegativity). A positive answer would

imply, for example, that two soft systems interact through

their highest-local-electronegativity sites. However, to

judge the appropriateness of such a possible role of f ðr*Þ, it

should first be clarified what to expect from a local elec-

tronegativity concept—a matter well-worth of future

studies. We note that Eq. (60) gives a possible local

hardness index via gðr*Þ ¼ olð r*Þ
oN

� �

v
:

Also just as in the case of the local hardness, one may

examine the question as to what choices of Eq. (51) are

allowed if one wishes to use Eq. (51) itself as a local

chemical potential measure, without obtaining regional

chemical potentials via lX ¼
R

X ~lðr*Þf ðr*Þdr
*

. Similarly, as

in Sect. 5, it can be shown that actually the only possible

choice to fix Eq. (51)’s ambiguity is given by the unique

constrained derivative of the energy (with respect to the

density) corresponding to the fixed-vðr*Þ constraint, which

turns out to be

dE

dvnðr*Þ
¼ oE½N; v�

oN
; ð61Þ

that is, the constant ~lðr*Þ of Eq. (52). That is, Eq. (51)

cannot be taken as the direct definition of a local chemical

potential, as it will only give back the chemical potential

itself. Of course, as noted earlier, a constant local chemical

potential can still be a special, equalized, case of a gen-

eralized, r
*

-dependent, chemical potential concept [13]—

but it will not give a local reactivity index, characterizing

molecular sites within individual species. We emphasize

that Eq. (61) is not a trivial result obtained by the explicit

fixation of vðr*Þ of E½N½n�; v�, that is, by
dE½N½n�;v�

dnð r*Þ

� �

v

, but it

is the derivative of E½N½n�; v½n�� with respect to nðr*Þ under

the constraint of fixed vðr*Þ.
Finally, in parallel with Sect. 3, we may consider the

external potential derivative of the energy,

dE

dvðr*Þ

 !

N

¼
Z

dE½N; v½n��
dnðr*0Þ

 !

N

dnðr*0Þ
dvðr*Þ

 !

N

dr
*0
; ð62Þ

which gives the density, Eq. (19). External potential-based

reactivity indices have proved to be useful and have been

much investigated [91–101]. The regional contributions to

Eq. (62) are

nXðr*Þ ¼
Z

X

dE½N; v½n��
dnðr*0Þ

 !

N

dnðr*0Þ
dvðr*Þ

 !

N

dr
*0
: ð63Þ

Equation (63) gives a density component that can be

viewed as the contribution of the given region X to nðr*Þ.
Here, an interesting application of Eq. (63) may be worth

mentioning (disregarding the fact that ðdE=dnðr*ÞÞN is ill-

defined). A natural decomposition of the density is the one

in terms of the occupied Kohn–Sham orbitals,

nðr*Þ ¼
XN

i¼1

juiðr
*Þj2: ð64Þ

One may then look for regions Xi (i = 1,…,N) of the given

molecule that contribute nXi
ðr*Þ ¼ juiðr

*Þj2 to nðr*Þ on the

basis of Eq. (63). Of course, this may imply a highly

ambiguous result; however, the number of possible divi-

sions of the molecule into Xi’s can be significantly reduced

by searching for Xi’s around the intuitively expectable

regions where the single niðr*Þ’s are dominant. In this way,

one would find a spatial division of a molecule into sub-

shells. To go even further, one might assume that by

applying the regions Xi found in this way in Eq. (23), the
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corresponding fXi
ðr*Þ’s would emerge to be fXi

ðr*Þ ¼
oniðr*Þ=oN.

7 Conclusions

The traditional approach to defining a local measure of

chemical hardness, by the derivative of the chemical

potential with respect to the density subject to the con-

straint of a fixed external potential, has been re-examined.

Although several problematic aspects of this approach,

most importantly its ambiguity, had been pointed out

before, it had still been widely taken as a necessary

framework to define a local hardness index. The ambi-

guity aspect is a negative feature since one then needs to

find the proper choice among the many possibilities, but

at the same time, it gives hope that other concrete

choice(s) to fix the ambiguity than those having proved to

have various deficiencies may be found to serve better as

a local hardness measure. However, we have shown in

this study that the traditional approach is actually not

ambiguous. The only mathematically allowed local

hardness definitions emerging via that approach are (1)

the one that gives the hardness itself in every point of

space and (2) the one where the external potential con-

straint is actually dropped. In the latter case, however, the

emerging local quantity is not yet to be considered a local

hardness, but it should be multiplied by the Fukui function

to get that. The first option arises as the unique con-

strained derivative corresponding to the fixed external

potential constraint. The constancy of this quantity,

however, makes it a useless concept as a local reactivity

indicator. Although the local hardness concept emerging

from the unrestricted chemical potential derivative

[option (2)] may be intuitively appealing, unfortunately it

has been found that this concept is ill-defined, due to the

fact that the chemical potential as a functional solely of

the density is given by the asymptotic value of the

derivative of the electronic internal energy density func-

tional. Similar problems have been pointed out in defining

a local chemical potential, as a local reactivity indicator,

by the derivative of the ground-state energy with respect

to the electron density. Our conclusion is that making the

electron number local in the definitions of hardness and

chemical potential, by substituting it with the electron

density, is not a feasible approach to obtain local coun-

terparts of these global reactivity descriptors; therefore,

an essentially new way of defining corresponding local

descriptors is necessary to be found.

Acknowledgments The author acknowledges grants from the

Netherlands Fund for Scientific Research (NWO) and the U.S.

Department of Energy TMS Program (Grant No. DE-SC0002139). A

preliminary version of this paper was published as an arXiv preprint

(arXiv:1107.4249v4) on 30 August 2011.

References

1. Parr RG, Yang W (1989) Density functional theory of atoms and

molecules. Oxford University Press, New York

2. Chermette H (1999) J Comput Chem 20:129

3. Geerlings P, De Proft F, Langenaeker W (2003) Chem Rev

103:1793

4. Ayers PW, Anderson JSM, Bartolotti LJ (2005) Int J Quantum

Chem 101:520

5. Cohen MH, Wasserman A (2007) J Phys Chem A 111:2229

6. Gázquez JL (2008) J Mex Chem Soc 52:3

7. Geerlings P, De Proft F (2008) Phys Chem Chem Phys 10:3028

8. Liu SB (2009) Acta Phys Chim Sin 25:590

9. Roy RK, Saha S (2010) Annu Rep Prog Chem Sect C Phys

Chem 106:118

10. Pauling L (1932) J Am Chem Soc 54:3570

11. Mulliken RS (1934) J Chem Phys 2:782

12. Iczkowski RP, Margrave JL (1961) J Am Chem Soc 83:3547

13. Parr RG, Donnelly RA, Levy M, Palke WE (1978) J Chem Phys

68:3801

14. Pearson RG (1963) J Am Chem Soc 85:3533

15. Parr RG, Pearson RG (1983) J Am Chem Soc 105:7512

16. Sen KD (ed) (1993) Chemical hardness, Structure and bonding,

vol 80. Springer, Heidelberg

17. Pearson RG (1997) Chemical hardness: applications from mol-

ecules to solids. Wiley-VCH, Oxford

18. Sanderson RT (1951) Science 114:670

19. Chattaraj PK, Lee H, Parr RG (1991) J Am Chem Soc 113:1855

20. Gázquez JL (1997) J Phys Chem A 101:4657

21. Gázquez JL (1997) J Phys Chem A 101:9464

22. Ayers PW (2005) J Chem Phys 122:141102

23. Ayers PW, Parr RG, Pearson RG (2006) J Chem Phys

124:194107

24. Ayers PW (2007) Faraday Discuss 135:161

25. Pearson RG (1987) J Chem Educ 64:561

26. Parr RG, Chattaraj PK (1991) J Am Chem Soc 113:1854

27. Pearson RG (1999) J Chem Educ 76:267

28. Ayers PW, Parr RG (2000) J Am Chem Soc 122:2010

29. Torrent-Sucarrat M, Luis JM, Duran M, Solà M (2001) J Am
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