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with CAM-PBE0 and, except for heats of formation, with 
CAM-B3LYP as well. Advantageously, the Rydberg exci-
tation energies from CAP0 are superior to those of other 
global hybrids and of the long-range-corrected hybrids. 
They are similar to those from CAM-B3LYP and modestly 
inferior to the CAM-PBE0 errors. For the valence excita-
tions, we did not find substantial differences for all the 
hybrid functionals considered, while the oscillator strengths 
from CAP0 are better to those of other global hybrids and 
comparable to those obtained with long-range-corrected and 
Coulomb-attenuated hybrids.

Keywords  Density functional theory · Kohn–Sham 
method · Hybrid exchange–correlation energy functional · 
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1  Introduction

The conceptual and practical advantages of density functional 
theory (DFT) [1], especially in its Kohn–Sham (KS) [2, 3] 
form, are so well known that rehearsal of those merits is un-
needed. The result is wide-spread use to investigate diverse 
systems [3–13]. Within KS, the primary ingredient which the-
ory must supply is an approximation to the exchange–correla-
tion (XC) energy functional, EXC[ρ] of useful accuracy and 
generality, where ρ(r) is the electron density. The distinguish-
ing feature of the KS equations is the XC potential,

which is a consequence of the variational property of the 
Hohenberg–Kohn–Levy–Lieb functional. Immediately, 
it is evident that the accuracy of KS calculations depends 

(1)vXC[ρ](r) =
δEXC[ρ]

δρ(r)
,
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both upon the quality of the XC energy functional and upon 
the quality of its functional derivative. This is particularly 
the case for expressions in which the KS eigenvalues and 
orbitals are used explicitly, as for example, in computing a 
response property.

Time-dependent density functional theory (TDDFT) 
within the KS formulation [1, 2, 14–24] also has been 
extensively applied to the study of dynamical phenomena. 
At least formally, one defines an action XC functional, 
AXC[ρ], that plays a role similar to that of the XC energy 
functional in the time-independent case. Most commonly 
the adiabatic approximation is made. In it, the explicitly 
time-dependent XC potential is approximated by the time-
independent XC potential evaluated with the time-depend-
ent density. Introducing the notation ρt to denote ρ evalu-
ated at the time t [24],

For the calculation of excitation energies, it is common 
to use linear response theory [24–27] with TDDFT (though 
there are exceptions [28–33]). The outcome is an eigen-
value equation for which the eigenvalues are the square of 
the excitation energies and the eigenvectors contain infor-
mation about the molecular orbitals involved in each exci-
tation and hence can be used to determine the oscillator 
strengths. Within this approach the so-called XC kernel is 
determined from the adiabatic XC potential [24],

From Eqs.  (2) and (3), one can see that the accuracy 
of excitation energies in adiabatic TDKS calculations is 
determined by the quality of the first and second functional 
derivatives of the XC energy functional.

Thus, to build an approximate XC energy functional 
that could give a satisfactory description of total energies, 
energy differences (e.g., atomization energies or activation 
barriers), and response properties (e.g., static and dynamic 
polarizabilities and hyperpolarizabilities) or excitation 
energies, one needs to consider both the exact properties 
of EXC[ρ], and the exact properties of its first and second 
functional derivatives. The first functional derivative, which 
is the XC potential, has a direct effect upon the occupied 
and unoccupied KS orbitals and eigenvalues. For the total 
energies and energy differences, the correct description of 
the orbitals in the physically important regions is crucial, 

(2)vXC[ρ](r, t) =
δAXC[ρ]

δρ(r, t)
∼=

δEXC[ρt]

δρt(r)
= vXC[ρt](r).

(3)

fXC[ρ](r, t, r
′
, t′) =

δvXC[ρ](r, t)

δρ(r′, t′)

∼= δ(t − t′)
δvXC[ρt](r)

δρt(r′)

= δ(t − t′)
δ2EXC[ρt]

δρt(r′)δρt(r)
.

while the asymptotic behavior (far from the nuclei) is of 
little consequence. However, for response properties and 
excitation energies the asymptotic behavior of the orbit-
als becomes crucial. This situation implies that the XC 
potential needs to be correctly described in both the region 
important for binding and in the asymptotic region [34–36]. 
In the latter, for a neutral system, the exact exchange (X) 
potential adopts the form

This behavior has important consequences in the occu-
pied and unoccupied KS orbitals and eigenvalues, particu-
larly the highest occupied and lowest unoccupied molecular 
orbital (HOMO, LUMO, respectively). This is relevant in 
time-dependent systems because the electrons can explore 
regions far from the nuclei. Another significant feature that 
is closely related with the behavior of the KS orbitals and 
eigenvalues is the discontinuity of the XC potential with 
respect to electron number N [37–41]. Incorporation of this 
behavior in approximate XC functional is a difficult task 
that we do not undertake here.

Current expressions for the XC functional, like the local 
density approximations (LDA) [42, 43] or generalized gra-
dient approximations (GGA) such as PBE [44] with its dif-
ferent parameterizations [45–48], RPBE [49], BLYP [50, 
51], OLYP [51, 52], VMT [53], VT{8,4} [54], PBE-LS 
[55], SOGGA11 [56], lsRPBE [57], and others, all yield an 
X potential that decays exponentially with distance from 
the nuclei. This asymptotic behavior limits the applicabil-
ity of these functionals for the calculation of excited states. 
In particular, Casida [58] has shown that the LDA does 
not give a good description of excitation energies for high-
lying excited states. Those excitation energies tend to be 
severely underestimated with respect to experimental val-
ues, a failure traceable to the incorrect asymptotic behavior 
of the LDA X potential. The GGA results are similar for 
the same reason. The underestimation can be alleviated by 
introducing corrections directly to the X potential. Exam-
ples include GGA-type potentials asymptotically corrected 
[59], model potentials with both correct asymptotic behav-
ior and derivative discontinuity [37–39, 60], exact local 
potentials [61, 62], and non-local potentials with the cor-
rect asymptotic behavior [63–70]. But because these all are 
direct modifications of the X potential, the corresponding X 
functional EX[ρ] in general is unknown. Though there have 
been efforts [71–75] to establish a procedure to obtain the 
X functional (or correlation functional, C) that corresponds 
to a model potential, the resulting total energies must be 
interpreted with caution, because the reconstructed density 
functional is unique only if its KS potential is a functional 
derivative. Conversely, it has been shown [76] that the 

(4)vXC[ρ](r) =
δEXC[ρ]

δρ(r)
−→[r → ∞] −

1

r
.
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quality of calculated excitation energies is severely limited 
in the case that vXC[ρ](r) is not the functional derivative of 
EXC[ρ].

There have been efforts, beyond the level of the GGA, 
to construct an X functional with a functional derivative 
that describes the binding region well and that has correct 
asymptotic behavior. Some incorporate the Laplacian of 
the density [77–79], others the Fermi-Amaldi term [80]. In 
contrast, we recently proposed [81] a non-empirical GGA 
X functional, CAP, whose functional derivative leads to 
the correct asymptotic potential. In combination with the 
PBE correlation energy, CAP leads to a good description of 
energy differences, when compared to other GGA function-
als and gives improved description of response properties 
like static and dynamic polarizabilities and hyperpolariza-
bilities through the use of time-dependent auxiliary density 
perturbation theory (TDADPT) [82–86].

However, it is known that global, long-range-corrected 
and Coulomb-attenuated hybrid exchange energy function-
als, which combine exact X with a GGA X, provide, in 
general, better descriptions of energy differences and exci-
tation energies than GGA X functionals alone, although the 
computational effort is increased. Thus, the object of the 
present work is to study the non-empirical global hybrid 
built from CAP for the GGA component, combined with 
one-fourth of exact exchange [87], to assess the capability 
to predict the properties just mentioned.

2 � Global hybrid exchange energy functional 
with correct asymptotic potential

Global hybrid functionals arose via analysis of the adia-
batic connection between the non-interacting system and 
the fully interacting real system [88–92]. The basic con-
cept is that XC energy functionals could be composed 
of a fraction of exact X, Eexact

X [ρ], combined with GGA 
XC. Originally, Becke [93] suggested a three-parameter 
formula involving the B88 X functional and the Per-
dew–Wang C functional [94, 95] correlation. That pro-
posal gave rise to the well-known empirical XC energy 
functional B3LYP [96, 97], in which the PW91 C energy 
functional was replaced by the LYP C energy functional. 
Later, Becke [98] produced a simplified one-parameter 
expression

Subsequently, Perdew et  al. [87] used DF perturbation 
theory [99, 100] to rationalize a non-empirical value of 
a0 ≈ 1/4. When the GGA used in Eq.  (5) is the PBE XC 
functional one is led to the also well-known, non-empirical, 

(5)E
hyb
XC [ρ] = EGGA

XC [ρ] + a0(E
exact
X [ρ] − EGGA

X [ρ])

hybrid functional PBE0 [101–103], where the zero indi-
cates that there are no adjustable parameters.

Both hybrids, B3LYP (empirical) and PBE0 (non-
empirical), lead to a rather reasonable description of 
energy differences and excitation energies [104–107], 
among other properties. In general, it is found that global 
hybrids perform better, over a wide range of properties, 
than their GGA counterparts, indicating that the fraction of 
exact exchange included plays an important role. However, 
in both cases, the X potential determined from the func-
tional derivative of the GGA X energy functional com-
ponent of the hybrid does not lead to correct asymptotic 
behavior of the X potential. Moreover, the fraction of exact 
exchange, according to Eq.  (5), leads asymptotically to 
−a0/r, which underestimates the −1/r behavior, because 
a0 < 1. Thus one is motivated to construct a global hybrid 
with the correct asymptotic potential, i.e., one in which the 
GGA contribution yields an asymptotically correct poten-
tial. The CAP X functional fits that specification. Observe 
that, unless the optimized effective potential procedure is 
used [108], hybrid functionals do not give simple multipli-
cative potentials, and hence, it is customary to implement 
hybrids via the generalized Kohn–Sham procedure. We do 
so here.

Conventionally, a GGA X energy functional is written 
in terms of an enhancement factor with respect to local X, 
FX(s), as

where eLDAX [ρ](r) = AXρ(r)
1/3, with AX = −3(3π2)1/3/4π,  

and s(r) = |∇ρ(r)|/2kF(r)ρ(r), is the reduced density gra-
dient, with kF(r) = (3π2ρ(r))1/3.

The CAP X energy enhancement factor is [81]

where α and c are determined from constraint satisfaction. 
That is, by requiring that

one finds that the functional derivative of ECAP
X [ρ] gives 

an asymptotically correct X potential. This implies that 
c = α/(3π2)1/3. On the other hand, since for small values 
of s one has that,

where the constant µ may be fixed through several non-
empirical procedures, one finds that α = −Ax µ. Thus, 
a given value of µ fixes α, which in turn fixes c. We have 
found that by using the value µ = 0.2195 (as in the PBE 

(6)EGGA
X [ρ] =

∫

ρ(r)

(

eLDAX [ρ](r)

)

FX(s)dr =

∫

eX[ρ](r)dr,

(7)FCAP
X (s) = 1−

α

AX

s ln(1+ s)

1+ c ln(1+ s)
,

(8)FX(s)−→[s → ∞] −
(3π2)1/3

AX
s,

(9)FX(s)−→[s → 0]1+ µs2 + · · · ,
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X functional [44]), CAP X combined with PBE C gives a 
rather good description of the heats of formation of the G3 
test set [109]. We note that in PBE the value of µ, which 
is associated with the second-order term of the X gradient 
expansion [Eq.  (9)], was fixed to cancel the second-order 
term of the C gradient expansion so as to recover the ben-
efits of LSDA linear response. The C gradient is dependent 
on a parameter β. The cancelation implies that

The value of µ = 0.2195 was obtained by using the 
value [110] βPBE = 0.066725. However, it has become 
common practice to use Eq.  (10) instead to fix β from 
a given µ. Here we propose a new global hybrid XC 
energy functional based in Eq.  (5), with a0 = 1/4 , 
where the GGA X functional is CAP [Eqs.  (6), (7)], 
and the C functional is PBE C with β = (3/4)βPBE, in 
order to achieve second-order gradient cancelation. This 
new hybrid is named CAP0, because as in the case of 
PBE0 it has no adjustable parameters. We note that the 
CAP potential has somewhat unusual properties, includ-
ing a pragmatically valuable but anomalous localiza-
tion of the LUMO. Details are in Ref. [80]. The focus 
here is not on those properties but upon the extent to 
which CAP X yields a broadly accurate global hybrid 
functional.

A relevant aspect of the assessment of CAP0 is its per-
formance compared with long-range-corrected or Cou-
lomb-attenuated hybrid XC functionals [111–116]. In 
those, the two-electron operator 1/r12 is separated into 
short-range and long-range parts via the standard error 
function,

where a, b and η are parameters, that must satisfy the rela-
tions 0 ≤ a+ b ≤ 1, 0 ≤ a ≤ 1 and 0 ≤ b ≤ 1. To obtain 
a functional with the correct asymptotic potential, the 
long-range part (the second term in the right hand side of 
Eq.  (11) is associated with exact exchange, whereas the 
short-range effects are obtained with conventional-type XC 
functionals adapted to the range-separated interaction. For 
a = 0 and b = 1 this kind of functional is commonly called 
long-range-corrected (LC), while other combinations lead 
to the so-called Coulomb attenuating method (CAM) [117, 
118].

3 � Results and discussion

The performance of CAP0 is assessed on the basis of 
results for energy differences, bond distances, and excita-
tion energies for molecules in standard data sets designed 

(10)µ = π2β/3.

(11)
1

r12
=

1− (a+ b erf(ηr12))

r12
+

a+ b erf(ηr12)

r12
,

for each property. All calculations were done with a devel-
opmental version of the program NWChem-6.0 [119].

For various energy differences the properties studied for 
the dataset indicated in parenthesis were heats of formation 
(G3/99) [109, 120], ionization potentials (IP13/3) [121], 
electron affinities (EA13/3) [122], proton affinities (PA8) 
[120, 123–126], binding energies of weakly interacting sys-
tems (HB6/04 [127], CT7/04 [127], D16/04 [127], W17/05 
[128], and PPS5/05 [128]), and barrier heights for forward 
and backward transition states of hydrogen and non-hydro-
gen transfer reactions (HTBH38/04 and NHTBH38/04 
[128–131]). In the case of geometries, the properties were 
bond distances (T-96R [132, 133]) and harmonic frequen-
cies (T-82F [132–135]). The detailed protocols used in all 
these cases can be found in Ref. [48].

We treated the new hybrid functional CAP0, the global 
hybrids PBE0, B3LYP, and M06-2X [136], the long-range-
corrected hybrids LC-BLYP, LC-PBE, and the Coulomb-
attenuated CAM-B3LYP and CAM-PBE0. All but PBE0 
and CAP0 rely upon empirically adjusted parameters. The 
functional M06-2X provides a reference to the improve-
ment achieved by the other functionals, since the 32 adjust-
able parameters in M06-2X were determined to minimize 
the deviations for several of the test sets considered here. 
The parameters of Eq. (11) are for LC-BLYP [137] a = 0 , 
b = 1.0 and η = 0.33, for LC-PBE [118] a = 0, b = 1.0 
and η = 0.30, for CAM-B3LYP [117] a = 0.19, b = 0.46 
and η = 0.33, and finally, for CAM-PBE0 [118] a = 0.25, 
b = 0.75 and η = 0.30.

Table  1 displays the mean absolute deviation (MAD) 
for all these properties, for the specific datasets men-
tioned. One sees that for heats of formation PBE0 and 
B3LYP perform slightly better than CAP0, whereas 
CAM-B3LYP improves upon them, but LC-BLYP, LC-
PBE, and CAM-PBE0 show very large errors. For ioniza-
tion potentials, CAP0 has the lowest MAD. In the case 
of electron affinities all functionals give similar errors. 
For the proton affinities, the global hybrid function-
als show similar results, while long-range-corrected and 
Coulomb-attenuated hybrid functionals lead to slightly 
worst results. For binding energies of weakly interacting 
systems CAP0 shows a relatively larger deviation from 
experiment than the other functionals. In the case of the 
barrier heights for forward and backward transition states 
of hydrogen transfer reactions, CAP0 improves upon 
all the other functionals. For the non-hydrogen transfer 
reaction barrier heights, CAM-B3LYP and CAM-PBE0 
provide improvements over the other functionals. How-
ever, both CAP0 and the LC functionals provide a better 
description than B3LYP and PBE0. For bond distances 
CAP0, PBE0, and B3LYP lead to similar results, whereas 
the LC and CAM approximations tend to give larger 
deviations from the experimental values. In frequencies 
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B3LYP is better than PBE0 and CAP0. Nonetheless, the 
LC and CAM approximations give larger deviations than 
B3LYP, PBE0 and CAP0. One also can see in Table 1 that 
the functional M06-2X provides the best description for 
all the properties considered, except for bond distances 
and frequencies. However, as already mentioned, M06-2X 
is heavily parametrized to minimize the deviations for 
several of the test sets utilized here. Hence M06-2X 
serves here simply as a reference to attainable accuracy. 
In the Supplementary Material, we present the individual 
deviations of the properties reported in Table 1.

To analyze the performance of CAP0 in the calculation 
of the X energy, Table 2 shows results for X-only calcula-
tions on the noble gas atoms. One can see that the MAD 
for CAP0 is slightly larger than for all the other function-
als. This situation is similar to the one for CAP itself in 
comparison with other GGA functionals. It seems that the 

constraint given by Eq.  (8) induces small changes in the 
binding region that lead to an underestimation of the X 
energy. That underestimation is partially canceled when 
calculating energy differences, as shown by properties 
reported in Table 1.

To test the reliability of the new X functional in the cal-
culation of excited states, we employed TDDFT within the 
adiabatic approximation for calculating oscillator strengths 
and excitation energies. In particular we used the TDDFT 
module of NWChem-6.0, which calculates single vertical 
excitations through the linear response of TDDFT. Valence 
and Rydberg excited states were determined for a set of 
four molecules [58], N2, CO, CH2O, and C2H4 at experi-
mental geometries [134, 138]. These excited states were 
calculated with the aug-cc-pVDZ+ basis set [60], which 
has an additional set of diffuse functions with exponents set 
at 1/3 of the most diffuse function exponents of the original 

Table 1   Mean absolute deviation (MAD) for several global, long-range-corrected (LC), and Coulomb-attenuated (CAM) hybrid functionals, for 
several properties

Energies in kcal/mol, bond distances in Å, and frequencies in cm−1 

Global Long-range-corrected and Coulomb-attenuated

PBE0 B3LYP M06-2X CAP0 LC-BLYP LC-PBE CAM-B3LYP CAM-PBE0

Heats of formation 5.72 5.69 2.52 7.90 31.78 47.89 3.16 25.18

Ionization potentials 3.44 4.76 3.01 3.10 4.98 6.14 5.04 5.82

Electron affinities 2.91 3.26 2.84 3.48 3.39 3.44 2.86 2.84

Proton affinities 1.16 1.31 2.05 1.56 5.57 4.06 2.47 3.00

Binding energies of weakly interacting systems 1.05 1.17 0.62 1.90 1.67 1.61 0.96 1.21

Reaction barrier heights

Hydrogen transfer forward 4.05 4.29 1.04 2.58 6.73 8.00 3.36 3.50

Hydrogen transfer backward 4.90 4.65 1.38 3.11 6.31 7.82 3.48 4.00

Non-hydrogen transfer forward 6.68 7.81 1.76 5.51 5.39 4.96 4.17 2.51

Non-hydrogen transfer backward 6.22 6.67 1.92 5.42 5.89 6.69 3.57 4.06

Bond distances 0.0103 0.0108 0.0155 0.0126 0.0199 0.0186 0.0136 0.0232

Frequencies 45.26 35.20 70.17 45.39 64.75 67.31 52.58 91.23

Table 2   Exchange energies (in hartrees) of noble gas atoms, and MAEs with respect to Hartree–Fock values, for several global, long-range-
corrected (LC) and Coulomb-attenuated (CAM) hybrid functionals

Exchange-only calculations with a universal Gaussian basis [150]

Atom Global Long-range-corrected and Coulomb-attenuated HF

PBE0 B3LYP M06-2X CAP0 LC-BLYP LC-PBE CAM-B3LYP CAM-PBE0

He −1.00688 −1.00415 −1.02110 −1.00390 −0.96617 −0.96112 −0.99419 −0.97629 −1.02577

Ne −12.02891 −11.99477 −12.03450 −11.92814 −11.91472 −11.86400 −12.00771 −11.92017 −12.10835

Ar −30.00862 −29.94231 −29.98939 −29.77546 −29.87605 −29.74905 −30.01651 −29.85266 −30.18499

Kr −93.45709 −93.37439 −93.39108 −92.91900 −93.42121 −93.02668 −93.62642 −93.22290 −93.85605

Xe −178.40557 −178.32743 −178.48413 −177.55500 −178.53529 −177.80974 −178.79616 −178.11956 −179.09757

Rn −386.23252 −386.23713 −387.08154 −384.85364 −386.80444 −385.35630 −387.13068 −385.87459 −387.50381

MAD 0.439 0.483 0.296 0.957 0.376 0.835 0.201 0.635
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aug-cc-pVDZ basis sets [139, 140]. Such diffuse functions 
are mandatory for treating Rydberg excited states. Note 
that this combination of basis sets has already proven to be 
reliable [60]. In addition, we calculated some of the lowest-
energy valence excitations that dominate the UV/visible 
absorption spectra of several aromatic molecules. For this 
purpose, we selected molecules for which accurate experi-
mental excitation energies as well as gas phase oscillator 
strengths have been published. The structures of benzene, 
naphthalene, anthracene, phenol, aniline, and fluoroben-
zene were optimized at the LDA level of approximation, 
with the DZVP basis sets [141] and frequency analysis 
was performed. TDDFT calculations were done with the 
6-311++G** basis sets [142], that has proven, in a recent 
work [143], to be a good choice.

In Table 3 we show the MAD with respect to the experi-
mental values [134, 144–147] for the valence and Rydberg 
excitations, from TDDFT calculations on the N2, CO, 
CH2O and C2H4 for the LDA and several GGA function-
als. Although the results are rather similar for the four func-
tionals considered, CAP and LDA lead to somewhat better 

results than PBE and BLYP. It may also be noted that the 
description of valence excitations is better than the descrip-
tion of Rydberg excitations. In Table  4 we present the 
same information for the global, long-range-corrected and 
Coulomb-attenuated hybrid functionals. One can see from 
the analysis of the MAD that, in comparison with the other 
global hybrids, CAP0 gives a substantial improvement over 
PBE0 and B3LYP in the case of the Rydberg excitations, 
and gives a slightly better description in this case than the 
highly parameterized M06-2X functional. Note also that for 
the Rydberg excitations CAP0 provides a better description 
than the LC functionals, and it delivers also slightly bet-
ter results than CAM-B3LYP, but is modestly inferior to 
CAM-PBE0 performance. The description of the valence 
excitations by CAP0 is similar to what is obtained with the 
long-range-corrected and Coulomb-attenuated functionals, 
is slightly better than PBE0 and B3LYP, but is worse than 
M06-2X. The Supplementary Material contains the exci-
tation energies that lead to the values reported in Tables 3  
and 4.

In Table  5 we present excitation energies and corre-
sponding oscillator strengths for some low-energy valence 
excitations of benzene, naphthalene, anthracene, phenol, 
aniline, and fluorobenzene, calculated with LDA and GGA 
functionals, and compare them with experimental values. 
With respect to the excitation energies, one can see that in 
general these are underestimated by all the functionals, but 
CAP leads systematically to larger values that lie closer to 
the experimental ones. Notice that in the case of aniline, the 
functionals LDA, PBE, and BLYP show a splitting which 
is not present in the experimental results. However, for the 
oscillator strengths, they all lead to rather similar results (in 
the case of the split excitations, one needs to add all the 
oscillator strengths).

In Table 6 we present global, long-range-corrected and 
Coulomb-attenuated hybrid results for the same excitations 
as in Table 5 and compare them with both coupled-cluster 
singles and doubles (CCSD) results and with experimental 

Table 3   Mean absolute deviation (MAD) with respect to experimen-
tal values, in eV, for the valence and Rydberg (in parenthesis) excita-
tions of small molecules calculated with LDA and GGA functionals 
in TDDFT

The number of valence and Rydberg excitations considered is given 
below each molecule

Molecule LDA PBE BLYP CAP

N2 0.24 0.34 0.41 0.32

8 Val, 2 Ryd (1.59) (1.83) (1.91) (1.62)

CO 0.29 0.46 0.46 0.44

4 Val, 6 Ryd (1.72) (1.88) (1.88) (1.71)

CH2O 0.47 0.29 0.26 0.25

3 Val, 7 Ryd (1.40) (1.53) (1.64) (1.36)

C2H4 0.29 0.28 0.34 0.24

2 Val, 8 Ryd (0.80) 1.02 (1.23) (0.73)

Table 4   Mean absolute 
deviation (MAD) with respect 
to experimental values, in eV, 
for the valence and Rydberg 
(in parenthesis) excitations of 
small molecules calculated with 
global, long-range-corrected 
(LC) and Coulomb-attenuated 
(CAM) hybrid functionals in 
TDDFT

The number of valence and Rydberg excitations considered is given below each molecule

Molecule Global Long-range-corrected and Coulomb-attenuated

PBE0 B3LYP M06-2X CAP0 LC-BLYP LC-PBE CAM-B3LYP CAM-PBE0

N2 0.48 0.49 0.42 0.46 0.40 0.31 0.52 0.51

8 Val, 2 Ryd (0.74) (0.95) (0.43) (0.38) (0.76) (0.85) (0.51) (0.15)

CO 0.51 0.46 0.15 0.48 0.33 0.34 0.42 0.44

4 Val, 6 Ryd (1.26) (1.11) (0.71) (0.60) (0.76) (0.82) (0.67) (0.31)

CH2O 0.20 0.13 0.33 0.19 0.26 0.29 0.17 0.24

3 Val, 7 Ryd (0.60) (0.78) (0.22) (0.29) (0.56) (0.57) (0.36) (0.17)

C2H4 0.39 0.35 0.20 0.35 0.27 0.23 0.38 0.41

2 Val, 8 Ryd (0.55) (0.76) (0.45) (0.26) (0.23) (0.15) (0.36) (0.16)
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values. Clearly the excitation energies obtained from 
CAP0, PBE0, LC, and CAM-B3LYP are very similar. All 
give small overestimations with respect to the experiment, 
while B3LYP gets closer to the experimental values, and 
CAM-PBE0, as well CCSD also overestimates them. One 
can also see that for aniline, all functionals except CAP0 
and LC-PBE generate a splitting which is not present 
in the experimental results. In the case of the oscillator 
strengths, all the functionals show similar behavior, except 
for CAM-PBE0 and CCSD, which yield generally larger 
values.

4 � Concluding remarks

The results reported in Sect.  3 show that the global 
hybrid of CAP with one-fourth exact exchange, CAP0, 
yields a description of properties depending on energy 
differences that is competitive in quality with other 
global functionals like PBE0 and B3LYP. This confirms 
again that for thermodynamic, kinetic, and structural 
properties the GGA contribution depends basically on 
the behavior of the enhancement factor in the physi- 
cally important region of reduced gradients (0 ≤ s ≤ 3 ). 
For the Rydberg excitation energies, however, among 
the global hybrids, CAP0 leads to a much better descrip-
tion than PBE0 and B3LYP. In fact, CAP0 provides 
better results than the long-range-corrected hybrids, of 
a quality similar to those obtained from CAM-B3LYP, 
though not as good as CAM-PBE0. Both, CAP0 and 
the long-range-corrected and CAM-PBE0 have in com-
mon a fraction of exact exchange and the correct asymp-
totic behavior of the exchange potential, indicating that 
both contributions can be rather important in TDDFT. 

However, it is important to note that correct asymptotic 
behavior of CAP occurs at very large distances from 
the molecule, so that the fraction of CAP that enters 
into CAP0 also reaches the full asymptotic behavior far 
away. Thus, it would seem desirable to reach the full 
−1/r behavior at smaller distances, in order to obtain a 
better description of the Rydberg excitations.

These conclusions can also be observed through the 
comparison of the results obtained for the GGAs, par-
ticularly CAP, which has the correct asymptotic behavior, 
with the global, long-range-corrected and Coulomb-atten-
uated hybrids. Tables 3 and 5 show that the GGAs tend to 
underestimate the excitation energies. Tables 4 and 6 show 
that global hybrids such as PBE0 (25  % of exact X) and 
B3LYP (20 % of exact X) increase the excitation energies 
because of the inclusion of exact exchange, as had already 
been observed [103, 143, 148, 149]. But Tables  4 and 6 
also show that CAP0 (25 % of exact X) and the long-range-
corrected and Coulomb-attenuated hybrids (which con-
tain a fraction of exact X) increase the values even more, 
perhaps because of the correct asymptotic behavior. The 
global hybrid M06-2X does not have the correct asymp-
totic behavior, but since it incorporates 54 % of exact X, it 
gets closer to the −1/r behavior required for the exchange 
potential than PBE0 and B3LYP.

Thus, one may conclude that the non-empirical CAP0 
provides a good description of a wide range of properties, 
leading, in general, to better results than the non-empirical 
hybrid PBE0. Also, CAP0 provides a similar description to 
that of the empirical M06-2X hybrid except for the heats 
of formation and the barrier heights for the non-hydrogen 
transfer reactions. However, M06-2X depends upon a large 
number of fitted parameters and incorporates slightly more 
than twice the amount of exact exchange of CAP0.

Table 5   Comparison of LDA 
and GGA TDDFT excitation 
energies (in eV) and oscillator 
strengths (in parenthesis) with 
the experimental values for 
several molecules

a  Ref. [151], b Ref. [152], c Ref. [153], d Ref. [154], e Ref. [155], f Ref. [156], g Ref. [157]

Molecule State LDA PBE BLYP CAP Exp.

Benzene 1E1u 6.86 (1.13) 6.78 (1.12) 6.79 (1.12) 6.92 (1.12) 6.96 (0.90)a

1E1u 6.92 (1.20)b

Naphthalene 1B2u 5.67 (1.16) 5.62 (1.15) 5.62 (1.15) 5.72 (1.16) 5.89 (1.30)c

Anthracene 1B2u 4.91 (1.78) 4.88 (1.77) 4.87 (1.78) 4.94 (1.78) 5.24d

Phenol 1Ba 6.63 (0.55) 6.61 (0.55) 6.55 (0.55) 6.69 (0.56) 6.70 (0.64)e

Phenol 1Bb 6.45 (0.25) 6.44 (0.25) 6.39 (0.26) 6.52 (0.24) 6.93 (0.47)e

Aniline 1Ba 6.29 (0.11) 6.41 (0.36) 6.28 (0.06) 6.48 (0.47) 6.88 (0.57)e

6.43 (0.24) 6.47 (0.11) 6.35 (0.39)

6.51 (0.14)

Fluorobenzene 1E1u 6.82 (1.00) 6.84 (0.98) 6.73 (1.01) 6.85 (1.00) 7.00 (1.43)e

1E1u 6.98 (1.27)f

1E1u 6.99 (0.88)g
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