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Abstract A new recursive procedure is reported for the

evaluation of certain three-body integrals involving expo-

nentially correlated atomic orbitals. The procedure is more

rapidly convergent than those reported earlier. The for-

mulas are relevant to ab initio electronic-structure com-

putations on three- and four-body systems. They also

illustrate techniques that are useful in the evaluation of

summations involving binomial coefficients.

Keywords Three-body integrals � Binomial summations �
Exponentially correlated orbitals

1 Introduction

For electronic-structure computations involving exponen-

tially correlated orbitals in atomic systems, it is convenient

to generate the necessary integrals using recurrence

formulas. For three-body systems, the integrals in question

have the generic form

Cn1;n2;n12
ða; b; cÞ ¼ 1

16p2

�
Z

rn1�1
1 rn2�1

2 rn12�1
12 e�ar1�br2�cr12 d3r1d3r2;

ð1Þ

where r1 and r2 (with respective magnitudes r1 and r2) are

measured from a common origin (ordinarily the position of

one of the three particles), r12 ¼ jr1 � r2j, and the inte-

gration is over all values of r1 and r2. Though it may not at

first be obvious, the integral in Eq. (1) is symmetric under

all simultaneous permutations of its arguments and indices;

such permutations merely correspond to renumberings of

the particles, including the choice of the particle defining

the coordinate origin.

Conventional three-body energy computations require

the integrals Cn1;n2;n12
for a set of nonnegative integer val-

ues of n1, n2, and n12. Even for n1 ¼ n2 ¼ n12 ¼ 0 these

integrals are nonsingular, as can be seen by writing them in

terms of the relative coordinates r1, r2, and r12, and noting

that the volume element (after integrating out the angular

coordinates) is proportional to r1r2r12 dr1dr2dr12. A general

discussion of these three-body integrals can be found in

Ref. [1].

The Cn1;n2;n12
can be generated recursively, starting

from

C0;0;0ða; b; cÞ ¼
1

ðaþ bÞðaþ cÞðbþ cÞ ð2Þ

and using a procedure developed by Sack et al. [2]. That

procedure involves the following formulas, in which the C,

B, and A are assumed to have arguments a; b; c,
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Cn1;n2;n12
¼ 1

aþ b
n1Cn1�1;n2;n12

þ n2Cn1;n2�1;n12
þBn1;n2;n12

� �
;

ð3Þ

Bn1;n2;n12
¼ 1

aþ c
n1Bn1�1;n2;n12

þ n12Bn1;n2;n12�1þAn1;n2;n12

� �
;

ð4Þ

An1;n2;n12
¼ dn1

ðn2þ n12Þ!
ðbþ cÞn2þn12þ1

; ð5Þ

where dn ¼ 1 if n ¼ 0 and zero otherwise. It is computa-

tionally stable to compute first the array A, then B, and

finally C.

For some atomic properties, and also in connection

with four-body recurrence schemes (vide infra) the C are

needed with one index equal to -1 but with the others

nonnegative, e.g., C�1;n2;n12
. Integrals of this type are

convergent, but the recurrence scheme using Eqs. (3)–(5)

cannot be used to increase an index of C from -1. One

method for recursive evaluation of these C�1;n2;n12
has

been presented both by the present author’s research

group [1] and by Korobov [3]; another method with more

rapid convergence is developed in the present

communication.

Recursive methods have also been reported for expo-

nentially correlated four-body atomic systems, where the

integrals have the generic form

In1;n2;n3;m1;m2;m3
ðu1; u2; u3;w1;w2;w3Þ

¼ 1

64p3

Z
rm1�1

1 rm2�1
2 rm3�1

3 rn1�1
23 rn2�1

13 rn3�1
12

� e�w1r1�w2r2�w3r3�u1r23�u2r13�u3r12 d3r1d3r2d3r3: ð6Þ

The integrals described by Eq. (6) are invariant under

particle permutations, which include not only permutations

of the indices 1, 2, 3 but also changes in the coordinate

origin, which correspond to permutations of the type

(w2 $ u2, w3 $ u3, n2 $ m2, n3 $ m3). The symmetry

group, isomorphic with that of the 6-j symbols, is the direct

product of the six-member group of permutations of (1, 2,

3) and the four-member group of origin changes. The net

result is that any one of the six indices of I can be brought

to the first index position.

Recurrence formulas for the so-called Hylleraas basis (in

which the parameters ui are zero) were published in 2004 by

Pachucki et al. [4]; that work was extended by the present

author in 2009 [5] to handle full exponential correlation

(general values of all the ui and wi). Both these sets of four-

body recurrence formulas require an initial integral I0;0;0;0;0;0

and various ‘‘boundary terms’’ of the form

I�;n2;n3;m1;m2;m3
¼ 1

64p3

Z
4pdðr23Þrm1�1

1 rm2�1
2 rm3�1

3 rn2�1
13 rn3�1

12

� e�wþ1r1�w2r2�w3r3�u2r13�u3r12 d3r1d3r2d3r3:

ð7Þ

The asterisk, introduced for this purpose in Ref. [4], indi-

cates that rn1�1
23 expð�u1r23Þ is to be replaced by 4pdðr23Þ.

Insertion of this Dirac delta function enables the integral of

Eq. (7) to be reduced to a three-body integral of the type

defined in Eq. (1):

I�;n2;n3;m1;m2;m3
ð; u2; u3;w1;w2;w3Þ ¼ Cm1;m2þm3�1;n2þn3�1

ðw1;w2 þ w3; u2 þ u3Þ:
ð8Þ

The vacant first argument of the above I reflects the fact that

this integral does not depend on the parameter u1. When used

for four-body recursion, the integrals of Eq. (8) appear only

under conditions such that at least one of m2 þ m3 and n2 þ
n3 is positive, so the integrals Cr;l;m will have indices that are

nonnegative, except for at most one index of value -1.

The initial integral, I0;0;0;0;0;0, can be evaluated in closed

form; a formula for it was first presented by Fromm and Hill

[6]. Improvements in the Fromm–Hill formula to illuminate

its singularity structure and facilitate its computation were

subsequently provided by the present author [7].

The recursive four-body formulas increased the impor-

tance of having good recursive methods for the three-body

exponentially correlated integrals with one index equal to

-1. An additional method for dealing with these integrals

was briefly sketched by the present author [5], but the

material there presented gave neither a full description of

the formula nor its method of derivation. The present

communication provides the missing derivation and dis-

cusses a class of finite summations that are relevant thereto.

2 Recurrence formulas for Cð�1; n2; n12Þ

A starting point for evaluation of Cð�1; n2; n12Þ is the

formula [1] for Cð�1; 0; 0Þ:

C�1;0;0ða; b; cÞ ¼
1

b2 � c2
lnðaþ bÞ � lnðaþ cÞ½ �: ð9Þ

We cannot use the procedure of Sack et al. to increase the

index -1, but we can use that procedure on the other

indices:
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C�1;n2;n12
¼ 1

bþ c
n2C�1;n2�1;n12

þ n12C�1;n2;n12�1 þGn2;n12

� �

ð10Þ

Here Gn2;n12
has definition

Gn2;n12
¼ � o

ob

� �n2

� o

oc

� �n12

G0;0; ð11Þ

with

G0;0 ¼
lnðaþ bÞ � lnðaþ cÞ

b� c
: ð12Þ

We have examined several alternative possibilities for the

evaluation of Gn2;n12
. If jb� cj is not too small, one can use

a variant of the procedure of Sack et al, corresponding to

the recurrence formula

Gn2;n12
¼ 1

b� c
n2Gn2�1;n12

� n12Gn2;n12�1þKn2;n12

� �
; ð13Þ

with

Kn2;n12
¼ dn2

dn12
lnðaþ bÞ � lnðaþ cÞ½ �

� d12ð1� dn2
Þðn2� 1Þ!

ðaþ bÞn2
þ d2ð1� dn12

Þðn12� 1Þ!
ðaþ cÞn12

:
ð14Þ

Here dn ¼ 1 if n ¼ 0 and zero otherwise. The use of Eq.

(14) is, however, limited by the fact that the formula for

Gn2;n12
becomes numerically unstable as b� c approaches

zero. One way of overcoming this difficulty, noted by

Korobov [3], is to use downward recursion in n2 or n12,

starting from a Gn2;n12
that is deemed negligible.

The alternative approach of Ref. [1] starts by writing

G0;0 as the following expansion:

G0;0 ¼
1

b� c
lnðaþ bÞ � lnðaþ cÞ½ �

¼ � 1

b� c
ln
ðaþ bÞ � ðb� cÞ

aþ b

� �

¼
X1
l¼1

1

l
ðb� cÞl�1

ðaþ bÞl :

ð15Þ

Applying the operator ð�o=ocÞn12 to Eq. (15), we get

G0;n12
¼
X

l [ n12

ðl� 1Þ!
lðl� n12 � 1Þ!

ðb� cÞl�n12�1

ðaþ bÞl : ð16Þ

We rewrite this equation in a form that causes the sum-

mation to start from zero:

G0;n12
¼
X1
l¼0

ðlþ n12Þ!
ðlþ n12 þ 1Þl!

ðb� cÞl

ðaþ bÞlþn12þ1
: ð17Þ

Then, applying ð�o=obÞn2 and using Leibniz’ formula for

repeated differentiation of a product, we first obtain

Gn2;n12
¼
Xn2

j¼0

ð�1Þj
n2

j

� �X
l� j

ðlþ n12 þ n2 � jÞ!
ðlþ n12 þ 1Þðl� jÞ!

� ðb� cÞl�j

ðaþ bÞlþn12þn2�jþ1
:

ð18Þ

We next replace l by jþ k and note that the range of k is

ð0;1Þ. Also interchanging the order of the summations,

Eq. (18) becomes

Gn2;n12
¼
X1
k¼0

ðn2 þ n12 þ kÞ!
k!

ðb� cÞk

ðaþ bÞn2þn12þkþ1

�
Xn2

j¼0

ð�1Þj
n2

j

� �
1

n12 þ jþ k þ 1
:

ð19Þ

The j summation is addressed in Appendix 1; its value,

from Eq. (40), is

Xn2

j¼0

ð�1Þj
n2

j

� �
1

n12 þ jþ k þ 1
¼ n2!ðn12 þ kÞ!
ðn2 þ n12 þ k þ 1Þ! :

ð20Þ

Inserting this result, we reach

Gn2;n12
¼
X1
k¼0

n2!ðn12 þ kÞ!
k!ðn2 þ n12 þ k þ 1Þ

ðb� cÞk

ðaþ bÞn2þn12þkþ1
:

ð21Þ

It is evident that the variable involved in the expansion is

the dimensionless quantity s ¼ ðb� cÞ=ðaþ bÞ. This

approach is functionally equivalent to that of Korobov and

will therefore have the same convergence characteristics.

However, if Korobov’s formulas are to be used, it should

be noted that many are in error by a factor of 2.

For some purposes, it is desirable to have a more sym-

metric expansion, which we can achieve by defining

x ¼ ðbþ cÞ=2, y ¼ ðb� cÞ=2, and arranging for the

expansion variable to be y=ðaþ xÞ. With that set of vari-

ables, we have

G0;0 ¼
lnðaþ xþ yÞ � lnðaþ x� yÞ

2y
: ð22Þ

By a procedure similar to that used in Eq. (15), we can

bring G0;0 to the form
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G0;0 ¼
X1
k¼0

y2k

ð2k þ 1Þðaþ xÞ2kþ1
: ð23Þ

We now seek to construct the Gn2;n12
by applying Eq. (11).

To do so, we note that

� o

ob
¼ � 1

2

o

ox
þ o

oy

� �
; ð24Þ

� o

oc
¼ � 1

2

o

ox
� o

oy

� �
: ð25Þ

When these formulas are inserted in Eq. (11), we have, for

the case n2� n12,

Gn2;n12
¼ ð�1Þn2þn12

2n2þn12

o2

ox2
� o2

oy2

� �n12
o

ox
þ o

oy

� �n2�n12

G0;0:

ð26Þ

Applying binomial expansions to the compound factors in

Eq. (26),

Gn2;n12
¼ð�1Þn2þn12

2n2þn12

Xn12

l¼0

ð�1Þl
n12

l

� �
o

ox

� �2n12�2l
o

oy

� �2l

�
Xn2�n12

m¼0

o

ox

� �n2�n12�m
o

oy

� �mX1
k¼0

y2k

ð2kþ1ÞðaþxÞ2kþ1
:

ð27Þ

When we carry out the indicated differentiations, we note

that nonzero contributions only result when k�l, so we

change the summation variable k to jþl, with j�0.

Evaluation of Eq. (27) then takes the form

Gn2;n12
¼
X1
j¼0

Xn2�n12

m¼0

Xn12

l¼0

ð�1Þlþm

2n2þn12

n12

l

� �
n2 � n12

m

� �

� ð2jþ n2 þ n12 � mÞ!
ð2j� mÞ!ð2jþ 2lþ 1Þ

y2j�m

ðaþ xÞn2þn12þ2j�mþ1
:

ð28Þ

The summation over l can now be evaluated. As shown in

Appendix 1 at Eq. (41), we have

Xn12

l¼0

ð�1Þl
n12

l

� �
1

2jþ 2lþ 1
¼ n12!

2

1

jþ 1
2

ð Þn12þ1

: ð29Þ

The notation ðaÞn denotes the Pochhammer symbol, with

definition ðaÞ0 ¼ 1, ðaÞ1 ¼ a, ðaÞ2 ¼ aðaþ 1Þ, ðaÞn ¼
aðaþ 1Þ � � � ðaþ n� 1Þ for integers n [ 2. Alternatively,

ðaÞp ¼
Cðaþ pÞ

CðaÞ : ð30Þ

The use of Eq. (29) enables us to rewrite the formula for

Gn2;n12
as

Gn2;n12
¼ n12!

2n2þn12þ1

X1
j¼0

Xn2�n12

m¼0

ð�1Þm
n2 � n12

m

� �

� ð2j� mþ n2 þ n12Þ!
ð2j� mÞ! jþ 1

2
ð Þn12þ1

y2j�m

ðaþ xÞn2þn12þ2j�mþ1
:

ð31Þ

The summation in Eq. (31) can now be reorganized to a

form that exhibits it as a power series in y=ðaþ xÞ. To do

so, set 2j� m ¼ r, with r ¼ 0; 1; 2; . . .. We must then

restrict m to nonnegative integers of the same parity as r,

and can write

Gn2;n12
¼ n12!

2n2ðaþ xÞn2þn12þ1

�
X1
r¼0

ð�1Þr ðn2þ n12 þ rÞ!
r!

Sðn2;n12;rÞ
y

aþ x

� �r

;

ð32Þ

with

Sðn2;n12;rÞ¼
X
mr

n2�n12

m

� �

� 1

ðrþ mþ1Þðrþ mþ3Þ � � �ðrþ mþ2n12þ1Þ :

ð33Þ

The notation mr indicates that m must be restricted to inte-

gers of the same parity as r.

To proceed further, we need to evaluate the summation

S. The evaluation requires a significant number of steps.

The result, developed in Appendix 2, takes the form

Sðn2;n12;rÞ¼
ð�1Þr2n2 n2!

ðn2þn12þ1Þ! Fðn2þ1;�r; n2þn12þ2; 2Þ:

ð34Þ

The quantity Fða;b; c; xÞ is a hypergeometric function,

sometimes written 2F1ða;b; c; xÞ, with definition

2F1ða; b; c; xÞ ¼
X1
j¼0

ðaÞj ðbÞj
ðcÞj j!

xj: ð35Þ

The quantities ðpÞj are Pochhammer symbols, defined after

Eq. (29). For a general discussion of the functions 2F1, see
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Ref. [8]. Despite the appearance of Eq. (34), Sðn2; n12; rÞ is

not really transcendental; with the parameter values given

in that equation S reduces to a rational fractional form, so

the notation of that equation simply provides a convenient

and compact way of specifying the coefficients in the

expansion in Eq. (32). With this formula for S, the

expansion for Gn2;n12
becomes

Gn2;n12
¼ n2! n12!

ðn2þ n12þ 1Þ!
1

ðaþ xÞn2þn12þ1

X1
r¼0

ðn2þ n12þ rÞ!
r!

�Fðn2þ 1;�r; n2þ n12þ 2; 2Þ y

aþ x

� �r

:

ð36Þ

We repeat the definitions: x¼ ðbþ cÞ=2, y¼ ðb� cÞ=2.

The expansion given by Eq. (36) should reflect the sym-

metry of the expansion variable; if we interchange n2$
n12 and simultaneously interchange b$ c; the value of G

should not change. This invariance can be demonstrated

using properties of the hypergeometric function; it can also

be seen from the explicit forms of the expansion coeffi-

cients. Writing

Gn2;n12
¼ n2! n12!

ðaþ xÞn2þn12þ1

X1
r¼0

ð�1ÞrCr

r! ðn2þ n12þrþ 1Þ
y

aþ x

� �r

;

ð37Þ

the first eight Cr are given in Table 1. The Cr have, under

the interchange n2 $ n12, the parity of r. Since y also has

this parity under b$ c, the individual terms in the

expansion of Gn2;n12
according to Eq. (37) also exhibit its

overall symmetry.

When b� c is small, the expansion of Eq. (37) con-

verges more rapidly than that of Eq. (21) due to the fact

that the expansion parameter in Eq. (37) is half as large as

that in Eq. (21). Moreover, as already pointed out, trun-

cated forms of Eq. (37) yield identical values under sym-

metry interchange, but the same is not true of Eq. (21). We

present in Table 2 one numerical example that illustrates

these observations.

Acknowledgments This research has been supported by US

Department of Energy Grant DE-SC0002139.

Appendix 1: Some binomial sums

Starting from the equation

Fðm; nÞ ¼
Z1

0

xmð1� x2Þn dx ¼
Xn

l¼0

n

l

� �
ð�1Þl

Z1

0

x2uþm dx

¼
Xn

l¼0

n

l

� �
ð�1Þl

mþ 1þ 2l
;

ð38Þ

we evaluate Fðm; nÞ by identifying it as a beta function:

Table 1 Coefficients in the expansion of Gn2 ;n12
, Eq. (37)

C0 = 1

C1 = ðDnÞ
C2 = ðDnÞ2 þ ðRnÞ þ 2

C3 = ðDnÞ3 þ ½3ðRnÞ þ 8�ðDnÞ
C4 = ðDnÞ4 þ ½6ðRnÞ þ 20�ðDnÞ2 þ 3ðRnÞ2 þ 18ðRnÞ þ 24

C5 ¼ DnÞ5 þ ½10ðRnÞ þ 40�ðDnÞ3 þ ½15ðRnÞ2 þ 110ðRnÞ þ 184�ðDnÞ
C6 ¼ ðDnÞ6 þ ½15ðRnÞ þ 70�ðDnÞ4 þ ½45ðRnÞ2 þ 390ðRnÞ þ 784�ðDnÞ2

þ 15ðRnÞ3 þ 180ðRnÞ2 þ 660ðRnÞ þ 720

C7 ¼ ðDnÞ7 þ ½21ðRnÞ þ 112�ðDnÞ5 þ ½105ðRnÞ2 þ 1050ðRnÞ þ 2464�ðDnÞ3
þ ½105ðRnÞ3 þ 1470ðRnÞ2 þ 6384ðRnÞ þ 8448�ðDnÞ

Here ðRnÞ ¼ n2 þ n12 and ðDnÞ ¼ n2 � n12

Table 2 Computations of Gn2 ;n12
for a ¼ 8:0, b ¼ 2:0, c ¼ 3:0, using

Eqs. (21) or (37) at various truncations.

Eq. (21) Eq. (37)

4 terms

G2;3ða; b; cÞ 1.4418 19048 9 10-6 1.4412 84145 9 10-6

G3;2ða; c; bÞ 1.4411 92027 1.4412 84145

6 terms

G2;3ða; b; cÞ 1.4412 92139 1.4412 82326

G3;2ða; c; bÞ 1.4412 81243 1.4412 82326

8 terms

G2;3ða; b; cÞ 1.4412 82476 1.4412 82319

G3;2ða; c; bÞ 1.4412 82307 1.4412 82319

Exact result 1.4412 82319 1.4412 82319
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Fðm; nÞ ¼ 1

2
B

mþ 1

2
; nþ 1

� �
¼ Cð1

2
½mþ 1�ÞCðnþ 1Þ

2C 1
2
½2nþ mþ 3�ð Þ

¼ n!

2 1
2
½mþ 1�ð Þnþ1

:

ð39Þ

For definition of the beta function and a derivation of

Eq. (39), see Ref. [9]. Note also that the notation ðaÞp denotes

a Pochhammer symbol, defined immediately after Eq. (29).

Expressions of the form Fðm; nÞ are used twice in the

main text. Setting n ¼ n2 and m ¼ 2n12 þ 2k þ 1, Eqs. (38)

and (39) correspond to

Fðm; nÞ ¼
Xn2

l¼0

n2

l

� �
ð�1Þl

2ðn12 þ lþ k þ 1Þ

¼ Cðn12 þ k þ 1Þ n2!

2Cðn2 þ n12 þ k þ 2Þ ¼
ðn12 þ kÞ! n2!

2ðn2 þ n12 þ k þ 1Þ! ;

ð40Þ

Equivalent to Eq. (20).

Setting n ¼ n12 and m ¼ 2j,

Fðm; nÞ ¼
Xn12

l¼0

n12

l

� �
ð�1Þl

2jþ 1þ 2l
¼ n12!

2ðjþ 1
2
Þn12þ1

; ð41Þ

Equivalent to Eq. (29).

Appendix 2: Evaluation of Sðn2; n12; rÞ

Our starting point for the evaluation of Sðn2; n12; rÞ,
defined in Eq. (32), is to write it as an iterated integral. To

avoid unnecessary notational complexity, we make the

temporary definitions n ¼ n2 � n12, m ¼ n12. Thus,

Sðn2;n12;rÞ ¼
X
mr

n

m

� �

� 1

ðrþ mþ 1Þðrþ mþ 3Þ � � � ðrþ mþ 2mþ 1Þ

¼
Z1

0

dzm zm

Zzm

0

dzm�1 zm�1

Zzm�1

0

� � �
Zz2

0

dz1 z1

Zz1

0

dz

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
mþ1�integrals

�
X
mr

n

m

� �
zrþm:

ð42Þ

Remembering that the index mr is to take only values of the

same parity as r, we evaluate the summation in Eq. (42),

obtaining

gðzÞ ¼
X
mr

n

m

� �
zrþm ¼ zr

2
ð1þ zÞn þ ð�1Þrð1� zÞn½ �:

ð43Þ

We now insert the right-hand side of Eq. (43) into Eq. (42),

also reversing the integration order, reaching

Sðn2; n12; rÞ ¼
Z1

0

dz gðzÞ
Z1

z

dz1 z1

Z1

z1

� � �
Z1

zm�1

dzm zm:

ð44Þ

We now integrate (from right to left) over the zi. The zm

integration yields ð1� z2
m�1Þ=2; that over zm�1 produces

ð1� z2
m�2Þ

2=ð2 � 22Þ; further integrations over zm�2 through

z1 give the overall result ð1� z2Þm=2mm!. Equation (44) is

thereby reduced to

Sðn2; n12; rÞ ¼
1

2mþ1m!

Z1

0

dz zrð1� z2Þm

� ð1þ zÞn þ ð�1Þrð1� zÞn½ �

¼ 1

2mþ1m!

Z1

0

dz zr ð1þ zÞnþmð1� zÞm
�

þð�1Þrð1þ zÞmð1� zÞnþm
�
:

ð45Þ

We continue by writing zr as its expansion in powers of

either ð1þ zÞ or ð1� zÞ, i.e., as one of

zr ¼
Xr

j¼0

ð�1Þr�j r

j

� �
ð1þ zÞj ¼

Xr

j¼0

ð�1Þj
r

j

� �
ð1� zÞj:

ð46Þ

We insert these expressions into Eq. (45) in a way that

leads to

Sðn2; n12; rÞ ¼
ð�1Þr

2mþ1m!

Xr

j¼0

ð�1Þj
r

j

� �

�
Z1

0

dz ð1þ zÞnþmþjð1� zÞm þ ð1� zÞnþmþjð1þ zÞm
� �

:

ð47Þ

We next process Eq. (47) by carrying out nþ mþ j

integrations by parts, repeatedly differentiating the fac-

tors that were originally at powers nþ mþ j and inte-

grating the other factors. At each step the boundary

(integrated) terms vanish. The differentiations produce
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(for each term) a factor ðnþ mþ jÞ!, while the integra-

tions generate (in the denominator) the product ðmþ
1Þðmþ 2Þ � � � ð2mþ nþ jÞ: At each step the (-1) from

the integration by parts cancels against a similar quantity

from the integration or differentiation of the ð1� zÞ
factor. The overall result is

Sðn2; n12; rÞ ¼
ð�1Þr

2mþ1m!

Xr

j¼0

ð�1Þj
r

j

� �
ðnþ mþ jÞ! m!

ðnþ 2mþ jÞ!

�
Z1

0

dz ð1� zÞnþ2mþj þ ð1þ zÞnþ2mþj
h i

:

ð48Þ

The integral in Eq. (48) has the value

2nþ2mþjþ1=ðnþ 2mþ jþ 1Þ. Inserting that value, cancel-

ing m!, expanding the binomial coefficient, and replacing n

and m by the quantities they represent, we have

Sðn2; n12; rÞ ¼ ð�1Þr2n2

Xr

j¼0

ð�1Þjrj

ðr� jÞ!
ðn2 þ jÞ!

ðn2 þ n12 þ jþ 1Þ!
2j

j!
:

ð49Þ

Converting to Pochhammer symbols, Eq. (49) becomes

Sðn2; n12; rÞ ¼
ð�1Þr2n2 n2!

ðn2 þ n12 þ 1Þ!
Xr

j¼0

ð�rÞj
ðn2 þ 1Þj

ðn2 þ n12 þ 2Þj
2j

j!
:

ð50Þ

Because ð�rÞj vanishes for j [ r; we can extend the sum-

mation in Eq. (50) to infinity, thereby causing the sum to

correspond to the definition of a hypergeometric function;

compare with Eq. (35). The result then reduces to Eq. (34).
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