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Caution

= Atalk of this type must deal in generalities
= I’ve tried to note some of the more important exceptions
= Nonetheless, caveat lector
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Context & implications
= Vast majority of QDFTisT=0K
= Vast majority of that is for many electrons in an external potential

X N, N q N,
H(rl,...rNe ) = —%Zlvlz + %ij +;Vext (I’I)
i= i=j [T i i=
N,

= ﬂee(rl,...rNe ) +Vext (rlv”rNe )

Hartree atomic units: M, =q, =A2 =1

= [Implication - The interaction potential is non-Coulomb only in
comparatively small corners, e.g. atomic nuclei [Eur. Phys. J. Plus 233, 553
(2018) & refs. therein] that have not influenced the mainstream. Omitted

here.
= = most gDFT is conceived of and done in the context of the “electronic

structure problem” (AKA “many fermion problem”)
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Context & implications

= The external potential almost always is from a fixed nuclear (ionic)
framework

N, N 7
b (B B R == 2
|

i1 | —

. N
H{R}(rl,...rNe):T+W+ > V. (ri{R})
i=1

= EXxceptions:
Harmonic confinement [“Hooke’s atom, Phys. Rev. A 72, 022501
(2005) & refs. therein]

Hubbard dimer [J. Phys. Cond. Matt. 27, 393001 (2015)]
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T= 0 K context & implications

Self-bound systems: atoms, molecules, clusters, ultra-thin films & slabs,
3D periodic solids

Neutral extended systems; neutral and ionized finite systems (e.g.
lonization potential 1, & electron affinity E, ); fixed N, in each case
Can test DFT approximations against nearly exact molecular
calculations

But there are approximations that work well on molecules that do badly
on solids




“Universal” functionals (important aside)
Original Hohenberg-Kohn functional

FHK[n]z_[\P’; H,Wodr,...dry ; Won

E, [n]=E,= rp(irp{FHK [n]+_[drn(r)vext(r)}

vV

ext

EVN = {V | 7‘A(V has N -electron ground state}

n EAN = {I"I |n from non-degen. N -electron ground State}
Neither set is known explicitly

Levy-Lieb functional

|:LL [n] — Ti-nLn LIJ:rial ﬁee LIJtrialdrl . 'drNe
E, [n]=E,= inr(1r1;{FLL[n]+jdrn(r)vext (r)}

V€l = {v | H, expectation is finite} This set is known

ext

nel, = {n |n comes from N-representable ‘I’} This set is known

It is not guaranteed that there is

UF only one minimizer
L KRR e
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“Universal” functionals (important aside)
Lieb functional

E[v]=inf {(¥|H, +V|‘P>;\PeW};W{w|<l//|w>=1;<t//|’f|l//><oo}

F.[n]=sup {f[v]— | drn(r)v(r)}
vet’
x 132 g H. Eschrig, Phys. Rev.
ved =L +L B 82, 205120 (2010): Lieb allowed the position space to

be the real vector space R* of infinite volume which caused
many problems with the continuous part of the spectrum of
Hamiltonians, that is, scattering states toward the infimum of
total energy. He then had to restrict ne L(R¥) N LY R
since the density must integrate to a finite particle number N
over the infinite space R*. This led him allow for potentials
v e L**(R¥)+L"(R%). In the three torus every function
n = L*(T?) may be normalized to integrate to a given N, that

is, L3(T) CLY(T?).) _
Use convexity of F, to get optimization conditions either by
= getting functional differentiability by Moreau-Yosida regularization

= expression of extremalization via sub-differentials
Kvaal et al. J. Chem. Phys. 140, 18A518 (2014)
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“Universal” functionals (important aside)
F [n]= sug{f[v]—jdrn(r)v(r)}
vel’
E|v]= ri]QL{F[n]+J.drn(r)v(r)}
At least formally; must be alert

oF
%n =~v(r) (mod constant) ¢ 44 results

Legendre transform
(ex some niceties)

F [n] <F, [n] Lieb fnal is convex hull of Levy-Lieb.

Often it is much easier to think of approximations in terms of LL.:
“As a matter of principle, the subsequent development of the DFT formalism
should therefore be based explicitly on the Lieb functional. We will nevertheless

ignore the issue ... and not distinguish between the various flavors ...”
[Engel & Dreizler, p. 36]




Kohn-Sham Decomposition

To make the gDFT variational problem tractable, Kohn & Sham introduced a
model non-interacting fermion system with the same density (reintroduces v-rep.):

E[n]=T, [{gp[n]}} + jdrn(r)vKS (r)

Non-interacting fermions = @,;.., is a D (1
- min;n
Slater determinant.

E, [n]=Ts[n]+ ELn]+{E, [n]+ Eq o [N] + T [n] =T [n]} + E, [N]  Add & subtract KS KE

-l )

Ts[n]z%anJ'dr Vo,

Note self-interaction;
Must cancel with self E,




gDFT (T=0 K) uniform scaling example
(D|D) =1;D — n(r)
D, (r,...ry) = AN DX, AY,, A2, ., AXy, AYy AZy)
O, > A°n(Ar) = nﬂ(r);jdrnﬂ(r): N

If integrated over infinite volume

T.[n,]1=A°T,[n]; E,[n,]=AE [n]; Areal,A>0
But
E.[n,]>AE.[n] forA>1
AE [n]>E[n,] forO0<A<1




qDFT compared with cIDFT even at T=0 K

* Most of the work on density functional approximations (DFAS) is for

E

XC

* Only in a few cases is a DFA for E_ alone constructed
 Itis commonplace in constraint-based DFAs to cancel errors in E,

against those in E,

* E, has density scaling equalities; E, has inequalities because it is a
mixture of coulombic and KE contributions.

« DFA construction for E,_has proceeded by adding complexity (n,
Vn, V°n, KE density, explicit exact exchange, ....)"

Unoccupied

RPA-like KS orbitals

Exact-x

Hybrid A g
information

Meta-GGA 7(F)

Generalized-Gradient

Approximation (GGA) Vin(F)

Local Density
Approximation

Perdew-Schmidt Jacob’s ladder of
DFA complexity
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WC06 PBE | LB9483 vP86
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Peter Elliott’s alphabet soup



Important gDFT topics perhaps irrelevant (?) to cIDFT (even at T=0 K)

* Properties of Kohn-Sham equation eigenvalues & eigenfunctions are
very important in gDFT but not in cIDFT
Koopmans’ theorem, lonization potential theorem, derivative
discontinuity, ...
« Self-interaction? Is this encountered in cIDFT?
* Pseudo-potentials: Z,/|r, -R,|
induces oscillations in KS eigenfns that are costly to represent in
plane-wave basis. Is there a cIDFT counterpart problem?




gDFT (T=0 K); foretaste of T>0

Lieb functional written in ensemble form

F [n]=inf Tr{rH, |

I''>n

n(r):Zai<‘Pi|ﬁ(r)|\Pi>
C=>a¥)(¥]; Zi:aizl; a=a; (¥|¥)=¢

Note N-representability required of every |‘Pi>

NASC for ensemble N-representability of 1-body reduced
density matrices are known and easy to enforce.




Free-energy qDFT vs. ground state formulatoin

Mermin (1965)
I. Universal energy functional F[n] — universal free energy functional F[n]

Eyex[n] — grand potential &2, [n]
FIn]:=minTr{rH, |

I'>n

1. Hohenberg-Kohn theorems go through as at T=0 K
Q, [n]=AIn]+ [dr {v,,(r)— u}n(r)

ext
Q, [n]=9Q,= II](Ir? Q, [n]

[11. Kohn-Sham procedure is extended to densities with full Fermi-Dirac
occupation numbers and potentials that are proper functional derivatives of

FIn]
{—%Vfl +Vy (LR} + Ve (ri{R}) + Ve (rli{R})}(Pj (ni{R})=¢; 9, (r:{R})

n(rl;{R}):Zj:f(gj;,B)‘goj(rl;{R})‘2 v [n]=—22 ; B=1/KT




T> 0 K gDFT observations & issues

* Mermin & Eschrig each give the T>0 HK proof in the grand ensemble.
Parr &Yang also give a version in the canonical ensemble. So far as | know
all computation with T>0 qDFT is de facto with the canonical ensemble,
despite the equations having come from the grand ensemble.

*Need generalization, extension, or alteration of ground-state constraints
* Intrinsic T dependence of A _[n(T), T]

* For orbital-free version, T > 0 = Three functionals to approximate
7. n,T], S, [n, T], F.[n,T]

 Note that counterparts to 7, & S, in cIDFT are known — basically the
local density approx. with classical ideal gas.

» Generalization of variables (implicates gradient expansions for example)




T>0 variables example -Generalized Gradient Approx. for Exchange
Original approachat T=0

E "] = jdrngG(n) F.(ns)

_ |Vn | T “Enhancement factor”
s(n,Vn) - 2(372_2)1/3n4/3
/
E [n]:jdr dr'n(r)nx(r’r+r) Exchange hole
X

2r'
n(r,r+r)<o ; jdr’nx(r,r+r’):—1

» 2nd order gradient expansion of exchange hole

» Spherical average

« Zero the contribution wherever expansion goes >0 and set overall
cutoff radius to satisfy normalization.

* Impose uniform scaling

* Numerical F,— fit to analytic form controlled by constraints

* More recently — attempt to improve F,(n,s) by selective application
of incompatible constraints.




T>0 variables example — Generalized Gradient Approx. for Exchange

_n [EGG ___ |Vn]
T=0 EF¥[n]=[dre/ (M) F,(ns) sVn=oamy

‘Enhancement factor”

T>0 £, T]=[drn £:%(n,T) F(s,,(T))
s, (N, Vn,T) = sz(n,Vn{BX (t)/ AA(tiEermi_
f0A(n, T) =" (n)A (1)) ; t=TFT, in't"e?}a,

combos

Constraints:

* Reproduce finite-T gradient expansion at small s
o Satisfy Lieb-Oxford bound at T=0

» Reduce to correct T=0 limit

« Reduce to correct high-T limit (HEG)

 Correct finite-T uniform scaling

Karasiev, Dufty, & Trickey: Phys. Rev. Lett. 120, 076401 (2018)




T>0 variables example — Generalized Gradient Approx. for Correlation
T=0  ES®[n]=[drn(r)f(n,vn)
fPEE(n,Vn) =24 (n) + HPPE (102 q) ; q(n,Vn) = Vn|/2kn; k, =2(3n/z)"®
T>0 F°*[n,T]= [drn(r) % (n,vn,T)
qc(n,Vn,T) —q(n,vn) éc(rs’t]-/Fermi-Dirac integral combo

.I:CKDT16 (n,vn,T) = .I:CLDA(n’T) 4 H PBE (.I:CLDA’ qc)

Constraints:

* Reproduce finite-T gradient expansion at small g
 Reduce to PBE E_ as T=0 limit

* Reduce to correct T=0 & high-T limit (HEG)
 Correct finite-T uniform scaling

Karasiev, Dufty, & Trickey: Phys. Rev. Lett. 120, 076401 (2018)




Correlation — Adiabatic Connection

T=0 H 5= H ot ﬂuI-AI1 Pauli coupling constant “trick”
OE oH

82'0 =(¥,, |_a/14 |¥,,» Hellman-Feynman theorem

1 R
E,.—E, = jo d Ky, |H |w,)

E,Inl=min, . (w, |7 + ¥ |y,)
A=0: Ej[n]=min, (®|7 |®)=(D, .. |7 | @) =T.[N]
A=1: El[n] = miny/lzll—m(l///l:l | 7: + ]/P | W/1=1> = <l//min,n | 7: + )/17 | Wmin,n>

Adiabatic connection E, [n] = j;dﬂz//mm[n] W W, minlN]) — E4[N]

Assumes a Lagrange multiplier potential v,( r ) that keeps the density
UNchanged across 0 <A <1,




Correlation — Adiabatic Connection

=0z [n,T]= rrnin{f + AW+ 7 F}

U, [0 T1=Tr{T(n, YW} =Tr {T,(n, T)W} =Tr{T(n, )W} - E, (n(T))
Coulombic correlation
Adiabatic connection

1
Q,[nT]= | dAU,[nT (2] for correlation grand
potential

Pitallis et al. Phys. Rev. Lett. 107, 163001 (2011)
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qDFT (T>0 K ) scaling

n(r) > A°n(Ar)=n,(r);V -> A7V

B—>A7B; q — A",

p(r)i=p =V (r) = A% (Ar) =, (r)

= FIn(r), u(r); 8,0.1=27F[n,(r), x, (r); 27, 2"%q,]

Pitallis et al. Phys. Rev. Lett. 107, 163001 (2011)
Dufty and Trickey, Phys. Rev. 84, 125118 (2011); Mol. Phys. 114, 988 (2015)




gDFT (T=0 K); another route

E[n]=T,[n]
s +E_ |In]+E K
[T+ E L[]+ ol ot use he orbitals explicity
e orbitals explicitly

T.In]=|
[n]= | dr t;[n(r)] !
u 1tal_-free DFT” [linear
Ts[n] - . Te[n] 10 scaling with system size]
] 2] —_

M. Levy and H. Ou-

TW [n] ] EJ‘dr |Vn(r)|2 and H. Ou-Yang, Phys. Rev. A 38, 625 (1988)
5 —n(r) =J-drtW In(r)]  Exactfor one or two
electrons in one orbital (von

Weizsacker)

oE[n]
=H

on
N oT,[n] [oT,[n]\ SE,[n] pPE.[n
on on o *on Ve T !
N Sn et — M Single Euler equation

—~ .
wo functionals to approximate: T, , E
SR 7 2 B (¥

s
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T>0 of DFT variables for converting ground-state GGA
7.[n,T] = %Z f |V(pj|2 ~ [dr(r)z,[n,Vn,T]
j

SN TI==ky > {f;Inf;+(@-f)In(L- f,)] zjdrn(r)as[n,Vn,T]

A1) = [dr | 7 (MEDF.(s.) |- [ dr[ 73" (M OF,(s,) ]

S, (n, vn, T) = S(n, Vn)\/h(t)\_tgf)h / dt) Ir::drl;rc]:;c]; E—Sr?gf;dent

derivative variables

motivated by 2nd

ﬁ order gradient
S, (n,Vn,T) = s(n,Vn)\/t(d /dt) expansion.
é/(t) Fermi-Dirac integral combos

t=T/T,

Karasiev, Sjostrom, and Trickey, Phys.Rev.B 86,115101 (2012)




gDFT; two-point non-interacting functionals

=0 T [n]=T, + T + 1,7

T ~ co_[drdr’ n*(r)yn” (r1C,; [n().n(r’), f(r,r)]

8
o=—-
3/

Witt, del Rio, Dieterich, and Carter; J. Mat. Res. 33, (2018)

T>0  sjostrom and Daligault,
Phys. Rev. Lett. 113, 155006 (2014)




Not even mentioned

» Time-dependent gDFT

» Multi-species gDFT

« Embedding DFT in explicit wave-function formulations

(multi-scale treatments)

« Current density functional theory

« Potential functional approaches (exploit Legendre
transform)

» Beyond gDFT, e.g. 1-body reduced density matrix schemes




