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Abstract

Definitions for a local pressure in an inhomogeneous fluid are considered for both

equilibrium and local equilibrium states. Thermodynamic and mechanical (hydrody-

namic) contexts are reconciled. Remaining problems and uncertainties are discussed.

1 | INTRODUCTION

The global pressure for equilibrium systems is well defined within sta-

tistical mechanics, both quantum and classical.1 For extensive sys-

tems, the definitions for different ensembles are equivalent. Here the

grand canonical ensemble will be chosen for such representations,

characterized by an inverse temperature β and activity ν. The global

pressure is then proportional to the grand potential, which defines all

thermodynamic properties of the system. Its form is obtained from

variations of the grand potential with respect to volume, leading to

the equilibrium average of a specific operator equivalent to the famil-

iar virial equation. For the special case of inhomogeneous equilibrium

states for systems with an external potential vext(r) the effective activ-

ity ν(r)≡ ν� βvext(r) varies locally so it is appropriate to define an asso-

ciated local thermodynamics.2 The first objective here is to explore

how to define a local thermodynamic pressure pe(r, βj ν) whose spatial

integral is the global pressure.3-5 The notation indicates that the local

pressure depends on the space point r, the inverse temperature β, and

is a functional of ν(r). It is straightforward to identify a local operator

whose ensemble average integrates to the global virial equation,

defining such a local pressure. However, it is not unique since any

contribution whose integral vanishes can be added. Additional con-

straints are needed.

A conceptually different notion of pressure is obtained from the

average momentum flux of the inhomogeneous equilibrium fluid, or

pressure tensor peij r,βjνð Þ. Local conservation of momentum at equilib-

rium leads to a force balance equation relating the gradient of that

pressure tensor to the applied external force. This approach has an

extensive history in the classical description of interfaces and surface

tension.6-9 Derivation of the conservation law from the underlying

Heisenberg dynamics provides the form of the operator whose aver-

age gives the pressure tensor. It does not explicitly exploit the grand

potential or any thermodynamics other than the stationarity of the

equilibrium state. While the local thermodynamic pressure is defined

only indirectly from the global pressure, the pressure tensor

is inherently a local property. However, this method only provides the

divergence of the pressure tensor and the latter is therefore not

unique. Consequently the related scalar pressure pem r,βjνð Þ�
peii r,βjνð Þ=3 also is not unique (here and below a summation over

repeated indices is implied). The pressure obtained from the pressure

tensor will be referred to as the hydrodynamic or mechanical

pressure as it appears in the macroscopic conservation equations.

Clearly, it is desirable that the thermodynamic and hydrodynamic

pressures should be the same for consistent representations of the

stationary states. It is expected that the uncertainties in each can be

exploited to assure this equivalence.

Two cases are considered here, the inhomogeneous equilibrium

states described above, and their generalization to local

equilibrium states. The latter differ in the sense that the inverse tem-

perature can be spatially varying, β = β(r), in addition to the activity

ν(r). For equilibrium states it is shown that the uncertainty in the ther-

modynamic pressure can be removed by adding a contribution that

equates it to the hydrodynamic pressure.

The same objective arises in the more general context of non-

stationary local equilibrium states of hydrodynamics. The associated

ensemble is similar to the equilibrium ensemble. A “thermodynamics”
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for this state can be defined from the associated grand potential and

an associated local pressure identified.10,11 However, in this case, for

spatially varying β(r), there is no longer the flexibility to modify the

thermodynamic local pressure to be equal to that from the local equi-

librium average of the stress tensor. Consequently, it would seem that

the equation of state for hydrodynamics is not the same as that for

local equilibrium thermodynamics. The precise difference is identified

below. Unfortunately, this implies that the equivalence chosen for the

strict equilibrium noted above is not recovered from the hydrody-

namic equations for their stationary limit.

This paradox is resolved by exploiting the uncertainty in the pres-

sure tensor. A divergenceless additional contribution to the average

momentum flux can be chosen such that the local pressure associated

with the new momentum flux agrees with the thermodynamic pres-

sure. In this way, thermodynamic and mechanical concepts are

reconciled.

The analysis here is based in quantum statistical mechanics so

that all average properties have an associated underlying operator

representing them. The calculation of their averages is not discussed

but the connection to density functional theory methods is indicated.

An alternative approach is to postulate an average pressure tensor

and verify that it yields the required macroscopic force balance equa-

tion. This has been described by Percus5 for the inhomogeneous equi-

librium fluid. His pressure tensor is entirely characterized by the

thermodynamic free energy density. It is described in Supporting

Information S3 and the associated pressure is identified.

The primary importance of this investigation of equivalence is for

the local equilibrium states of hydrodynamics. In that case both con-

cepts of the pressure occur. The first is as a functional relationship

between the fundamental conserved number, energy, and momentum

densities and their conjugate fields activity, temperature, and flow

velocity. This functional relationship is the thermodynamics of the

local equilibrium grand potential, or thermodynamic pressure. The sec-

ond occurrence is through the average momentum flux, comprised as

a reference local equilibrium average and a dissipative component.

Only the reference contribution is considered here and is referred to

as the average mechanical pressure tensor. It is a functional of the

conjugate fields. Hence the equivalence of the thermodynamic and

mechanical pressures is a necessary condition for the hydrodynamic

equations to provide a closed local macroscopic description, regard-

less of the choice for the dissipative component (e.g., Navier–Stokes

or far from equilibrium).

At this point it is appropriate to characterize the context by not-

ing related topics not bearing directly on the question of equivalence.

The lack of uniqueness for the mechanical pressure tensor is well

known; for early references see References 6–9. Most of these stud-

ies do not make explicit the required equivalence with thermodynamic

pressure. An exception is one demonstration that the Harasima choice

gives the wrong pressure in cylindrical coordinates.12 This is resolved

in a recent work for cylindrical geometry by synthesizing the Irving

and Kirkwood and Harasima expressions for different coordinates.13

In Reference 14, another definition of the local thermodynamic pres-

sure closer to that given here does not make any connection to the

various choices for the mechanical pressure tensor. In summary, the

work here is complementary to this important body of work by relat-

ing the two different studies of thermodynamic pressure and mechan-

ical pressure tensor. Further comment is given in the final

section where measurement by simulation is briefly discussed.

The local equilibrium thermodynamics considered here describes

a reference state for real nonequilibrium systems. In the context of

information entropy15-17 it provides the optimal representation in

terms of the given exact average local conserved densities. The latter

must be provided from some detailed exact theory (e.g., Liouville–

von Neumann equation). The grand potential associated with the

local equilibrium ensemble provides the “equation of state” for gen-

erating conjugate variables such as temperature and activity, and is

the direct analog of equilibrium thermodynamics. To further clarify

the context it is noted that the current work does not relate to the

general fields of “nonequilibrium thermodynamics”18 or “extended
thermodynamics.”19 The former is an attempt to discover universal

fundamental principles, similar to those of equilibrium thermody-

namics (e.g., a generalized second law, entropy), that govern the dis-

sipative dynamics of macroscopic properties. Extended irreversible

thermodynamics takes as the macroscopic fields the usual local con-

served fields plus the dissipative fluxes of energy and momentum.

The conservation laws of ordinary hydrodynamics must then be sup-

plemented with unknown additional equations for the dissipative

fluxes. If the latter could be given in terms of the conserved fields

this would not be necessary, so in a sense extended hydrodynamics

is a tool to discover those forms. The local equilibrium thermody-

namics considered here is not a theory, such as those sought above,

but rather an exact functional relationship among two equivalence

classes of fields—there is no entropy production nor inherent dissi-

pation beyond that of the input fields. While it represents general

nonequilibrium states, it is not predictive without the hydrodynamic

equations themselves (for an exact formulation of the latter see Ref-

erence 10).

2 | LOCAL PRESSURE FOR AN
INHOMOGENEOUS FLUID AT EQUILIBRIUM

Consider first a system of N particles in a large volume V with

Hamiltonian

ℋN ¼HNþ
XN
α¼1

vext qαð Þ, ð1Þ

where vext(qα) is an external potential coupling to the particle with

position operator qα, and the isolated system Hamiltonian HN is

HN ¼
XN
α¼1

p2α
2m

þ1
2

XN
α≠ σ¼1

UN qα�qσj jð Þ: ð2Þ

Here UN(j qα�qσj ) is a pair potential for particles α and σ, and pα

is the momentum operator for particle α. At equilibrium with inverse
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temperature β and activity ν the average of a property characterized

by an operator XN is given in the grand canonical ensemble by

Xh ie �
X
N

Tr Nð ÞXNρ
e
N, ρeN ¼ e�Qe β,Vjνð Þe� βHN�

Ð
drν rð Þn rð Þ

� �
: ð3Þ

The external potential has been combined with the activity to

define a local activity ν(r)

ν rð Þ� ν�βvext rð Þ, ð4Þ

and n(r) is the number density operator

n rð Þ¼
XN
α¼1

δ r�qαð Þ: ð5Þ

The notation Y(β,Vj ν) here and below denotes a function of β, V

and a functional of ν(r). The normalization function Qe(β,Vj ν) is known

as the grand potential20 and is chosen such that h1ie = 1

Qe β,Vjνð Þ¼ ln
X
N

Tr Nð Þe� βHN�
Ð
drν rð Þn rð Þ

� �
: ð6Þ

It determines the complete thermodynamics for the system

through the definition of the global pressure

βPe βjνð ÞV¼Qe β,Vjνð Þ: ð7Þ

For a sufficiently large volume Qe(β,Vj ν) is extensive (proportional

to V) so the pressure is independent of the volume. Then an equiva-

lent form for Equation (7) is

βPe βjνð Þ¼ ∂Qe β,Vjνð Þ
∂V

����
β,ν

: ð8Þ

The volume derivative can be calculated directly (e.g., using length

scaling10,21) to get

Pe βjνð Þ¼ 1
3V

2 Kh ieþ Vh ieð Þ, ð9Þ

where K is the kinetic energy operator and V is the virial operator (for

the internal forces)

KN ¼
XN
α¼1

1
2m

p2αj , VN ¼1
2

XN
α≠ γ¼1

qγ �qα

� ��Fαγ qα�qγ
�� ��� �

: ð10Þ

It is seen that Equation (9) is the usual virial equation for the

global (intrinsic) pressure, confirming the consistency of the thermo-

dynamic and mechanical concepts of global pressure.

The objective now is to identify an associated local density pres-

sure. It is done by defining a local density for the grand potential in

Equation (7)

ð
drβpe r,βjνð Þ¼Qe β,Vjνð Þ: ð11Þ

Accordingly, V�1pe(r, βj ν) is the local density for the global

pressure

Pe βjνð Þ� 1
V

ð
drpe r,βjνð Þ: ð12Þ

One choice to identify it is to replace the operators K and V in

Equation (9) by associated local densities

pe0 r,βjνð Þ¼1
3

2K0 rð ÞþV0 rð Þh ie, ð13Þ

where

K0N rð Þ¼ 1
4m

XN
α¼1

p2α ,δ r�qαð Þ� �
þ: ð14Þ

V0N rð Þ¼1
2

XN
α≠ σ¼1

Fασi qα�qσj jð Þ qσ �qαð Þδ r�qαð Þ: ð15Þ

The brackets [a, b]+ denote an anticommutator. It is required in

Equation (14) to assure that K0N(r) is Hermitian. More generally, the

local pressure can be expressed as

pe r,βjνð Þ¼ pe0 r,βjνð ÞþΔpe0 r,βjνð Þ, ð16Þ

where Δpe0 r,βjνð Þ is any functional whose volume integral vanishes.

ð
drΔpe r,βjνð Þ¼0: ð17Þ

To suggest an alternative choice for pe(r, βj ν) consider the exact

microscopic conservation law for the momentum density operator

pi(r, t) (see Supporting Information S1)

∂tpi r,tð Þþ∂jtij r,tð Þ¼�n r,tð Þ∂ivext r,tð Þ, ð18Þ

where the momentum density operator is

p r,tð Þ¼1
2

XN
α¼1

pα tð Þ,δ r�qα tð Þð Þ½ �þ, ð19Þ

and the momentum flux is
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tij r,tð Þ¼ 1
4m

XN
α¼1

piα tð Þ, pjα tð Þ,δ r�qα tð Þð Þ� �
þ

h i
þ

þ1
2

XN
α≠ σ¼1

Fασi qα tð Þ�qσ tð Þj jð ÞDj r,qα tð Þ,qσ tð Þð Þ:
ð20Þ

The operator Dj r,qα tð Þ,qσ tð Þð Þ is given by

Dj r,q1,q2ð Þ�
ð
C
dλ

dxj λð Þ
dλ

δ r�x λð Þð Þ, x λ1ð Þ¼q1, x λ2ð Þ¼q2: ð21Þ

Here C is an arbitrary continuous path connecting x(λ) between λ1

and λ2. (Further comment on the choice is given in Supporting Infor-

mation S2.)

Since the equilibrium ensemble is stationary, the equilibrium aver-

age of Equation (18) gives the stationary equilibrium force balance

equation

∂j tij rð Þ� �e ¼� n rð Þh ie∂ivext rð Þ: ð22Þ

This is the expected local stability condition. A mechanical pres-

sure can be associated with the average momentum flux according to

pem r,βjνð Þ�1
3

tii rð Þh ie: ð23Þ

Note that Equation (20) implies

1
V

ð
dr
1
3

tii rð Þh ie ¼ 1
3V

2 Kh ieþ Vh ieð Þ¼Pe βjνð Þ, ð24Þ

where the last equality follows from Equation (9). Use has been made

of the identity

ð
drD r,qα,qγ

� �¼qα�qγ : ð25Þ

The left side of Equation (24) suggests an alternative choice for

the definition of a local pressure in Equation (12)

pe r,βjνð Þ¼ pem r,βjνð Þ¼1
3

tii rð Þh ie: ð26Þ

This definition has a mechanical origin, without direct reference

to the grand potential or thermodynamics.

The two choices pe0 r,βjνð Þ and pem r,βjνð Þ are clearly different, but

both yield the thermodynamic global pressure. The choice pe r,βjνð Þ¼
pem r,βjνð Þ for the local pressure in Equation (12) is clearly the desirable

one as it assures the mechanical balance equation is consistent with

thermodynamics.

Since tii(r) has a precise microscopic origin, this provides a local

microscopic basis for the pressure

pe r,βjνð Þ¼1
3

2 K rð Þh ieþ V rð Þh ie� �
, ð27Þ

with

KN rð Þ¼ 1
8m

XN
α¼1

piα, piα,δ r�qαð Þ½ �þ
� �

þ, ð28Þ

and

VN rð Þ¼1
2

XN
α≠ σ¼1

Fασi qα�qσj jð ÞDi r,qα,qσð Þ:

This is the desired result.

It is seen that while the global pressure is the same for pe(r, βj ν)
and pe0 r,βjνð Þ , the local pressures differ in their microscopic

realizations

KN rð Þ¼K0N rð Þþ ℏ2

8m
r2n rð Þ, ð29Þ

VN rð Þ¼V0N rð Þþ1
2

XN
α≠ σ¼1

Fασi qα�qσj jð Þ Di r,qα,qσð Þ� qσ �qαð Þiδ r�qαð Þ� �
:

ð30Þ

To get Equation (29) use has been made of the identity

1
2m

XN
α¼1

pαiδ r�qαð Þpαi ¼K0N rð Þþ ℏ2

4m
r2n rð Þ: ð31Þ

The dependence on ℏ has been made explicit in Equations (29)

and (31) to emphasize this is a purely quantum effect. The identifica-

tion of the local pressure in terms of the average momentum flux is a

common definition. What is new here is its identification as the ther-

modynamic local pressure for the grand ensemble.

The local pressure pem r,βjνð Þ is more sensitive to spatial variations

of the inhomogeneous state than pe0 r,βjνð Þ . In fact pe0 r,βjνð Þ results

from it by a leading order Taylor series approximation, for example,

Di r,qα,qσð Þ¼ qσ �qαð Þiδ r�qαð Þþ
ðλ1
λ2

dλ
dxi λð Þ
dλ

δ r�x λð Þð Þ�δ r�qαð Þ½ �

’ qσ �qαð Þiδ r�qαð Þ:
ð32Þ

This gives VN rð Þ’V0N rð Þ and pem r,βjνð Þ’ pe0 r,βjνð Þ . This leading

order approximation is justified only in the context of states that have

smooth spatial variations over distances of the order of the force

range. For extreme conditions, such as occur for warm, dense matter

states it would seem that the form Equation (20) must be used for the

momentum flux.

In summary, two definitions for a local pressure have been identi-

fied, pe0 r,βjνð Þ and pem r,βjνð Þ. Each has been identified in terms of the
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average of an underlying microscopic operator. They provide

the same global thermodynamics in the sense that both of their vol-

ume integrals yield Pe(βj ν) However, at the local level they differ by

Δpe0 r,βjνð Þ , identified from Equations (29–31). The choice of

pe r,βjνð Þ¼ pem r,βjνð Þ for the thermodynamic pressure is made on the

basis of equating thermodynamic and mechanical definitions.

So far only the scalar local pressure has been considered. There is

no thermodynamic route to define a local pressure tensor for an inho-

mogeneous fluid at equilibrium (see, however, Supporting Information

S3). Instead it is identified from Equation (22)

peij r,βjνð Þ� tij rð Þ
� �e

: ð33Þ

By construction it has the form

peij r,βjνð Þ¼1
3
pe r,βjνð Þδijþ~peij r,βjνð Þ, ð34Þ

(where ~peij is its traceless part) and satisfies the force balance

equation

∂jp
e
ij r,βjνð Þ¼� n rð Þh i∂ivext rð Þ: ð35Þ

In the next section, attempts to extend the equivalence of ther-

modynamic and mechanical concepts to local equilibrium states in the

same way lead to difficulties due to the spatial variations of β(r, t).

3 | LOCAL HYDRODYNAMIC PRESSURE

Consider now a general nonequilibrium state. The macroscopic hydro-

dynamic equations have their origins in averages of the underlying

microscopic conservation laws for number density, energy density,

and momentum density, {hn(r, t)i, he(r, t)i, hp(r, t)i}.10,11,22 In particular

the hydrodynamic equation resulting from the conservation law for

the momentum density follows from the nonequilibrium average of

Equation (18)

∂t pi r,tð Þh iþ∂j tij r,tð Þ� �¼� n r,tð Þh i∂ivext r,tð Þ, ð36Þ

where the brackets now denote a nonequilibrium average

X tð Þh i�
X
N

Tr Nð ÞXNρN tð Þ, ð37Þ

and ρN(t) is a solution to the Liouville–von Neumann equation. Tradi-

tionally, the momentum density is expressed in terms of a local flow

velocity u(r, t) defined by

p r,tð Þh i�m n r,tð Þh iu r,tð Þ, ð38Þ

and Equation (36) is written in terms of the momentum flux in the

local rest frame

tij r,tð Þ� �¼m n r,tð Þh iui r,tð Þuj r,tð Þþ t0ij r,tð Þ� �
: ð39Þ

Here the rest frame momentum flux t0ij(r, t) has the same form as

Equation (20) with the particle momenta in the rest frame, piα(t)!
piα(t)�mui(qα(t), t). Then the momentum conservation law takes

the form

Dtui r,tð Þþ∂j t0ij r,tð Þ� �¼� n r,tð Þh i∂ivext r,tð Þ, ð40Þ

with the material derivative Dt = ∂t+u(r, t) �r. In this way, the purely

convective contributions have been made explicit.

It remains to calculate the rest frame momentum flux ht0ij(r, t)i. To
do so, the solution to the Liouville–von Neumann equation is sepa-

rated into a reference local equilibrium state, ρℓN, and its remainder ΔN

ρN tð Þ¼ ρℓN y tð Þ½ �þΔN tð Þ: ð41Þ

The reference local equilibrium state is chosen to be entirely

determined by a set of conjugate fields {y(t)} in one-to-one corre-

spondence with the macroscopic conserved fields {hn(r, t)i, he(r,
t)i, hp(r, t)i}. This correspondence is defined by the requirements

that the reference state yield the exact averages for the local con-

served fields

nℓ rjy tð Þð Þ� n r,tð Þh i, ð42aÞ

eℓ rjy tð Þð Þ� e r,tð Þh i, ð42bÞ

pℓ rjy tð Þð Þ� p r,tð Þh i, ð42cÞ

where the superscript ℓ denotes a reference ensemble average, A
ℓ ¼

A;ρℓ
� �

. The left sides of these equations are functionals of the conju-

gate fields while the right sides are the fields of the local conservation

laws. In this way, the conjugate fields {y(t)} are functionals of the aver-

age conserved fields, and vice versa by inversion. The reference state

therefore has the exact average values for the conserved fields by

construction.

A choice for ρℓN with these properties is the local equilibrium

ensemble11,22

ρℓN y tð Þ½ � ¼ e�η y tð Þ½ � , η y tð Þ½ � ¼Qℓ y tð Þ½ �þ
ð
drψκ rð Þyκ r,tð Þ, ð43Þ

Qℓ y tð Þ½ � ¼ ln
X
N

Tr Nð Þe�
Ð
drψκ rð Þyκ r,tð Þ, ð44Þ

where ψκ(r) are the operators representing the local conserved num-

ber density, energy density, and momentum density

ψκ rð Þf g� n rð Þ,e rð Þ,p rð Þf g, ð45Þ

and yκ(r, t) are the conjugate fields,
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y r,tð Þf g$ �ν r,tð Þþβ r,tð Þ
2

mu2 r,tð Þ
	 


,β r,tð Þ,�β r,tð Þu r,tð Þ
� �

: ð46Þ

It is interesting to note that this local equilibrium ensemble is also

the “best choice” in the sense that it maximizes the information

entropy for the given values of the conservative fields.15-17 In Refer-

ence 11 it is also called the “relevant” ensemble.

Accordingly, the average rest frame momentum flux ht0ij(r, t)i of

Equation (39) has two contributions. One is from the reference local

equilibrium ensemble ρℓN and one from the remainder in Equation (41)

t0ij r,tð Þ� �¼X
N

Tr Nð Þt0ij rð ÞρℓN y tð Þ½ �þ
X
N

Tr Nð Þt0ij rð ÞΔN tð Þ

� t0ij
ℓ
rjy tð Þð Þþδ t0ij r,tð Þ� �

:

ð47Þ

It is shown elsewhere10,11 that the second term of Equation (47)

describes the dissipative processes of the system while the first term

characterizes the “perfect fluid” (e.g., Euler) dynamics. The latter is

entirely determined by its functional dependence on the conjugate

fields and reduces to the equilibrium pressure tensor of the last

section in the case of uniform β(r, t). In the following attention will be

restricted to t0ij
ℓ
rjy tð Þð Þ and its possible relationship to an underlying

“local equilibrium thermodynamics.”
For the purpose of calculating averages in the rest frame, the

macroscopic velocity dependence can be eliminated so the conjugate

fields simplify to

y rð Þf g$ �ν rð Þ,β rð Þ,0f g: ð48Þ

Also, the dependence of these fields on time has been suppressed

for simplicity here and below. The hydrodynamic (mechanical) pres-

sure and pressure tensor are defined in terms of the momentum flux

as in the previous section

pℓij rjβ,νð Þ� t0ij
ℓ
rjβ,νð Þ, ð49Þ

pℓm rjβ,νð Þ�1
3
t0ii

ℓ
rjβ,νð Þ: ð50Þ

Since the functional form of the operator tij(r,t) in Equation (52) is

the same for both equilibrium and nonequilibrium states, the local

pressure here is still given by Equation (27) with only the definition of

the average changed

pℓm rjβ,νð Þ¼1
3

2K rð ÞℓþV rð Þℓ

 �

: ð51Þ

Next, a thermodynamics associated with the local equilibrium

state is defined in analogy to strict equilibrium via the normalization

function Qℓ[y] of Equation (44). As noted above the average velocity

field can be transformed to zero so the energy e(r) is also in the local

rest frame. Then Equation (44) becomes

Qℓ β,ν½ � ¼ ln
X
N

Tr Nð Þe�
Ð
dr β rð Þe rð Þ�ν rð Þn rð Þð Þ: ð52Þ

In analogy to Equations (7) and (8), a local equilibrium pressure

can be defined by

ð
drβ rð Þpℓ rjβ,νð Þ�Qℓ β,ν½ �, ð53Þ

or for extensive systems

1
V

ð
drβ rð Þpℓ rjβ,νð Þ¼ ∂Qℓ β,ν½ �

∂V

����
β,ν

: ð54Þ

Carrying out the volume derivative leads to

∂Qℓ β,ν½ �
∂V

����
β,ν

¼ 1
3V

XN
α¼1

1
2m

p2αj,β qαð Þ
h i

þ

ℓ������
y tð Þ

þ1
2

XN
α≠ γ¼1

β qαð Þ qγ �qα
� ��Fαγ qα�qγ

�� ��� �ℓ
������
y tð Þ

,

ð55Þ

¼ 1
V

ð
drβ rð Þ1

3
2K0 rð ÞℓþV0 rð Þℓ
h i

, ð56Þ

where K0(r) and V0 rð Þ are given by Equations (14) and (15). Therefore,

Equation (54), or equivalently Equation (53) gives the identification

Qℓ β,ν½ � ¼
ð
drβ rð Þpℓ0 rjβ,νð Þ, ð57Þ

with

pℓ0 rjβ,νð Þ¼1
3

2K0 rð ÞℓþV0 rð Þℓ
h i

: ð58Þ

This is not the same as the hydrodynamic pressure of Equa-

tion (53), pℓ(r, βj ν). Their volume integrals are the same

Pℓ β,ν½ � � 1
V

ð
drpℓ0 rjβ,νð Þ¼ 1

V

ð
drpℓm rjβ,νð Þ, ð59Þ

but only pℓ0 rjβ,νð Þ provides the local density for the grand potential

Qℓ β,ν½ � ¼
ð
drβ rð Þpℓ0 rjβ,νð Þ≠

ð
drβ rð Þpℓm rjβ,νð Þ: ð60Þ

This can be stated in an equivalent way. Using Equations (29) and

(30) the relationship is
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pℓm rjβ,νð Þ¼ pℓ0 rjβ,νð ÞþΔpℓ0 rjβ,νð Þ: ð61Þ

Δpℓ0 rjβ,νð Þ¼ ℏ2

12m
r2nℓ rð Þ

þ1
6

XN
α≠ σ¼1

Fασi qα�qσj jð Þ Di r,qα,qσð Þ� qσ �qαð Þiδ r�qαð Þ� �ℓ
:

ð62Þ

Planck's constant has been restored in Equation (62) to make explicit

the fact that this term has a purely quantum origin. The local pressures

differ for strongly inhomogeneous states, but are the same globally

ð
drΔpℓ0 rjβ,νð Þ¼0: ð63Þ

However, in contrast to the strict equilibrium case of the last

section they do not both give the grand potential due to the appear-

ance of β(qα) in Equation (55)

ð
drβ rð ÞΔpℓ0 rjβ,νð Þ≠0: ð64Þ

Thus the hydrodynamic local pressure, pℓm rjβ,νð Þ , does not have

the expected relationship to thermodynamics.

The seeming paradox now is that the stationary solution to the

hydrodynamic equations is Equation (35)

∂jp
ℓ
ij r,βjνð Þ¼� n rð Þh i∂ivext rð Þ, ð65Þ

pℓij r,βjνð Þ¼1
3
pℓm r,βjνð Þδijþ~pℓij r,βjνð Þ, ð66Þ

but the corresponding pressure pℓm r,βjνð Þ is not the thermodynamic

local pressure pℓ0 rjβ,νð Þ even in the limit of uniform β. The hydrody-

namic stationary state is not the thermodynamic state.

4 | REVISED MOMENTUM FLUX AND
HYDRODYNAMIC PRESSURE

While there is no flexibility in the choice pℓ0 rjβ,νð Þ in the first equality

of Equation (60) due to the space dependence of β(r) there is some

ambiguity in pℓm rjβ,νð Þ available to remove the inequality. This is due

to the fact that only the space derivative of t0ij(r) occurs in Equa-

tion (40). Consequently, any tensor of the form

t00ij
ℓ
rð Þ¼ t0ij

ℓ
rð Þþεjkn∂kAni rð Þ, ð67Þ

will give an equivalent derivative. More generally, it is shown that the

contour in the definition of Dj r,q1,q2ð Þ , Equation (21) can be chosen

such that t0ij(r) = t0ji(r) (see Supporting Information S2), and hence

∂jt0ij
ℓ
rð Þ¼ ∂jt0ji

ℓ
rð Þ: ð68Þ

Then the generalization of Equation (67) to its symmetric form is

t00ij
ℓ ¼ t0ij

ℓþεikℓεjmn∂k∂mAℓn, Aℓn ¼Anℓ, ð69Þ

where here t0ij
ℓ
is the symmetric form of Supporting Information S2.

It is readily verified that

∂jt
0
0ij

ℓ
rð Þ¼ ∂jt0ij

ℓ
rð Þ, ∂it

0
0ij

ℓ
rð Þ¼ ∂it0ij

ℓ
rð Þ: ð70Þ

The hydrodynamic pressure tensor associated with t00ij
ℓ
r,tð Þ is

p0ℓij rjβ,νð Þ� t00ij
ℓ
rjβ,νð Þ¼ t0ij

ℓ
rjβ,νð Þþ εiklεjmn∂k∂mAln rjβ,νð Þ

¼ pℓij rjβ,νð Þþεiklεjmn∂k∂mAln rjβ,νð Þ,
ð71Þ

and the corresponding pressure is

p0ℓ rjβ,νð Þ¼ pℓm rjβ,νð Þþ1
3
εikℓεimn∂k∂mAℓn rjβ,νð Þ

¼ pℓm rjβ,νð Þþ1
3

∂2kAℓℓ rjβ,νð Þ�∂k∂ℓAℓkðrjβ,νÞ

 �

:

ð72Þ

Use has been made of the identity

εiklεimn ¼ δkmδln�δknδlm: ð73Þ

To further simplify Equation (72) choose the arbitrary tensor

Aℓk(rj β, ν) to be diagonal

Alk rjβ,νð Þ! δklA rjβ,νð Þ, ð74Þ

giving

p0ℓ rjβ,νð Þ¼ pℓ rjβ,νð Þþ2
3
r2A rjβ,νð Þ, ð75Þ

p0ℓij rjβ,νð Þ¼ pℓij rjβ,νð Þþ δijr2�∂j∂i
� �

A rjβ,νð Þ: ð76Þ

It is now seen that the hydrodynamic pressure p0ℓ(rj β, ν) can be

equated to the thermodynamic pressure pℓ0 rjβ,νð Þ by the choice

2
3
r2A rjβ,νð Þ¼�Δpℓ0 rjβ,νð Þ: ð77Þ

Since Δpℓ0 rjβ,νð Þ is given explicitly by Equation (62), this Poisson's

equation for A(rj β, ν) is well-defined. In summary, by modifying the

form for the average stress tensor the momentum balance equa-

tion is unchanged but the mechanical pressure can be chosen

equal to the equilibrium pressure for both the equilibrium and
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local equilibrium states, and that pressure is pℓ0 rjβ,νð Þ or pe0 r,βjνð Þ
respectively.

As a special simple case the explicit results for a noninteracting

inhomogeneous gas are

2
3
r2A rjβ,νð Þ¼� ℏ2

12m
r2nℓ rð Þ, ð78Þ

with the solution

A rjβ,νð Þ¼� ℏ2

8m
nℓ rð Þþa rjβ,νð Þ, r2a rjβ,νð Þ¼0: ð79Þ

In summary, by changing the form of the pressure tensor to Equa-

tion (71) there is the freedom to choose the new mechanical local

pressure p0ℓ(rj β, ν) to be equal to the thermodynamic local pressure

pℓ0 rjβ,νð Þ. In this way the desired equality

Qℓ β,ν½ � ¼
ð
drβ rð Þpℓ0 rjβ,νð Þ¼

ð
drβ rð Þp0ℓm rjβ,νð Þ, ð80Þ

is recovered. This result holds for both equilibrium and local equilib-

rium states.

5 | DISCUSSION

The definition of a local pressure from two conceptually different ori-

gins has been considered. The first is thermodynamic in nature, asso-

ciated with the local density for the grand potential. The other is

mechanical in nature, associated with the average of the local momen-

tum flux (referred to as the mechanical or hydrodynamic pressure).

First, a strictly equilibrium state for an inhomogeneous system was

described. This is the case of interest for density functional theory

where the task is to calculate the global free energy. Although local

free energy densities are introduced in that context they are mainly

for computational convenience. However, they also provide the

basis for a local thermodynamics as well. For example, a local pres-

sure follows from a local “Legendre transformation” of the free

energy density.4 In the present case, the thermodynamic local pres-

sure is introduced directly as the density for the grand potential. It

is then compared to the pressure defined from the equilibrium

average of the momentum flux (equilibrium force balance equa-

tion). The two are different for strongly inhomogeneous states.

However, the possibility of adding a contribution Δpℓ0 rjβ,νð Þ whose

volume integral vanishes to the grand potential density can be

exploited to assure the thermodynamic and hydrodynamic local pres-

sures are the same.

The same analysis for local equilibrium states, where the tempera-

ture is also nonuniform, again leads to different forms for the thermo-

dynamic and hydrodynamic local pressures. But in this case there is

no longer the flexibility to add a contribution Δpℓ0 rjβ,νð Þ to the ther-

modynamic local pressure for resolution. Instead, the hydrodynamic

local pressure can be changed by exploiting the fact that the momen-

tum flux occurs in the momentum conservation law only as a diver-

gence of that flux. In this way, agreement of the thermodynamic and

hydrodynamic local pressures is restored.

For consistency between the local and strict equilibrium states in

the limit of uniform temperature, the local equilibrium form must be

used, pℓ0 rjβ,νð Þ¼ p0ℓm rjβ,νð Þ , that is, the same average momentum flux

should be adopted in each case. This is a somewhat simpler form than

the pressure tensor and local pressure than pℓm rjβ,νð Þ for the strict

equilibrium case. The requirement that the force balance equation at

local equilibrium gives the correct local density for the local equilib-

rium grand potential gives a strong constraint on the equilibrium form

as well.

As noted in Equation (61) both pℓ0 rjβ,νð Þ and pℓm rjβ,νð Þ are the

local densities for the global pressure, without any need for modifica-

tion of the pressure tensor. If that were chosen to be the constraint of

thermodynamic consistency, then no modification of the choice

pℓm rjβ,νð Þ¼ pℓ rjβ,νð Þ as in the equilibrium case is required—no change

in the pressure tensor. Agreement of the equilibrium and local equilib-

rium cases would be direct, but the inequality Equation (60) would

remain. The consequences of this for local equilibrium thermodynam-

ics is not clear and needs to be explored further. The grand

potential is a Massieu–Planck functional in the foundations of local

equilibrium thermodynamics.11 The pressure functional alone has no

corresponding role.

Reference has been made above to density functional theory

where the pressure is expressed as a functional of the density n rather

than the activity ν. This change of variables is obtained by inverting

n rjβ,νð Þℓ ¼ n ! ν¼ ν rjβ,nð Þ: ð81Þ

This is a difficult problem, separate from the discussion referring

to the definition of pℓ0 rjβ,νð Þ . However, the proof that the hydrody-

namic pressure can be chosen to be the same as the thermodynamic

pressure assures that the tools of density functional theory can be

used within the hydrodynamic context as well.

In closing it is useful to return to the extensive literature men-

tioned above regarding the definition of the pressure tensor and its

measurement by molecular dynamics simulation,9,23-25 and its com-

mon implementation in the Sandia National Laboratories code LAM-

MPS (Large-scale Atomic/Molecular Massively Parallel Simulator).

These simulations refer to methods for direct evaluation of the micro-

scopic definitions of the various components for the pressure tensor.

Here, no consideration is given for the pressure tensor components

beyond its scalar trace. In that respect the equivalence constraint does

not determine the full pressure tensor. Also, only its local equilibrium

average is involved—the residual irreversible component of the

momentum flux is not affected. A direct measurement of the momen-

tum flux by simulation would give the total of both components (see

Equation (47)), which would give the part studied here only for non-

dissipative flows, for example, the equilibrium state. Finally, the equiv-

alence condition is the equality of two functionals of the density and

temperature. The numerical confirmation of functional equivalence is
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indeed a formidable task. Thus, the important simulation studies are

only of indirect bearing on the limited scope considered here.
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