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S.1. CONSERVATION OF NUMBER AND MOMENTUM DENSITIES

The dynamics of operators is defined by

∂tX (t) = i [HN (t) , X (t)] , (S.1)

with the Hamiltonian given by

HN (t) = HN (t) +

N∑
α=1

vext(qα (t) , t)), (S.2)

HN (t) =

N∑
α=1

p2α (t)

2m
+

1

2

N∑
α6=σ=1

UN (|qα (t)− qσ (t)|). (S.3)

The operators corresponding to the number and momentum densities are

n (r, t) =

N∑
α=1

δ (r− qα (t)) , p (r, t) =

N∑
α=1

1

2
[pα (t) , δ (r− qα (t))]+ . (S.4)

The brackets [A,B]+with a subscript + denote an anti-commutator.

Local conservation laws follow exactly from this Hamiltonian dynamics1. The simplest is the conservation of number
density

∂tn (r,t) = i [HN (t) , n (r,t)] =

N∑
α=1

i

[
p2α (t)

2m
, δ (r− qα (t))

]

=

N∑
α=1

i

{
pαj (t)

2m
[pαj (t) , δ (r− qα (t))] + [pαj (t) , δ (r− qα (t))]

pαj (t)

2m

}

=
1

2m

N∑
α=1

{
pαj (t) ∂qαj(t)δ (r− qα (t)) + ∂qαj(t)δ (r− qα (t)) pαj (t)

}
(S.5)

or, with the definition of p (r) in (S.4), the microscopic continuity equation is obtained

∂tn (r,t) +
1

m
∇ · p (r, t) = 0. (S.6)
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Use has been made of the property

i [pαj (t) , A (qα (t))] = ∂qαj(t)A (qα (t)) . (S.7)

The time derivative of p (r, t) follows in a similar way

∂tpj (r, t) =
1

2

N∑
α=1

{
[pαj (t) , i [HN (t) , δ (r− qα (t))]]+ + [i [HN (t) , pαj (t)] , δ (r− qα (t))]+

}
=

1

2

N∑
α=1

{[
pαj (t) , i

[
p2α (t)

2m
, δ (r− qα (t))

]]
+

+ [i [HN (t) , pαj (t)] , δ (r− qα (t))]+

}

=
1

4m

N∑
α=1

[
pαj (t) ,

[
pαk (t) , ∂qαk(t)∆ (r− qα (t))

]
+

]
+
− 1

2

N∑
α=1

δ (r− qα (t)) ∂qαj(t)v
ext(qα (t) , t))

− 1

4

N∑
α=1

N∑
β,σ=1

[
δ (r− qα (t)) , ∂qαj(t)V (|qβ (t)− qσ (t)|)

]
+

=− ∂rk
1

4m

N∑
α=1

[
pαj (t) , [pαk (t) , δ (r− qα (t))]+

]
+

+
1

2

N∑
α=1

δ (r− qα (t))F ext
αj (qα (t))

+
1

2

N∑
α=1

N∑
β=1

Fαβj (|qα (t)− qβ (t)|) δ (r− qα (t)) (S.8)

where Fαβj (|qα (t)− qβ (t)|) is the jth component of the force on particle α due to particle β

Fαβj (|qα − qβ |) = −∂qαj(t)V (|qα (t)− qβ (t)|) , (S.9)

and F ext
αj (qα (t)) is the jth component of the force on particle α due to the external potential

F ext
αj (qj) = −∂qαj(t)u (qα (t) , t) . (S.10)

The last term on the right side of (S.8) can be rewritten as

N∑
α 6=β=1

Fαβj (|qα (t)− qβ (t)|) δ (r− qα (t)) =

N∑
α 6=β=1

Fβαj (|qβ (t)− qα (t)|) δ
(
r− qβ (t)

)
=−

N∑
α 6=β=1

Fαβj (|qα (t)− qβ (t)|) δ
(
r− qβ (t)

)
(S.11)

as follows from Newton’s third law. Therefore

N∑
α6=β=1

Fαβj (|qα (t)− qβ (t)|) δ (r− qα (t)) =
1

2

N∑
α 6=β=1

Fαβj (|qα (t)− qβ (t)|)

×
(
δ (r− qα (t))− δ

(
r− qβ (t)

))
. (S.12)

Next note the identity

δ (r− q1)− δ (r− q2) =

∫ λ1

λ2

dλ
d

dλ
δ (r− x (λ)) , x (λ1) = q1, x (λ2) = q2. (S.13)

Here x (λ) is an arbitrary path for the vector x moving from x (λ2) = q2 to x (λ1) = q1. Carrying out the derivative
gives

δ (r− q1)− δ (r− q2) = −∂rkDk (r,q1,q2) , (S.14)
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where

Dk (r,q1,q2) =

∫ λ1

λ2

dλ
dxk (λ)

dλ
δ (r− x (λ)) . (S.15)

Use of (S.14) in (S.12) and (S.8) gives the momentum conservation law

∂tpj (r, t) + ∂rktjk (r, t) = fj (r,t) (S.16)

where the total momentum flux tαβ (r, t) is the sum of a kinetic and potential part

tαβ (r, t) = tKαβ (r, t) + tPαβ (r, t) , (S.17)

tKjk (r, t) =
1

4m

N∑
α=1

[
pαj (t) , [pαk (t) , δ (r− qα (t))]+

]
+
, (S.18)

tPjk (r, t) =
1

4

N∑
α 6=β=1

Fαβj (|qα (t)− qβ (t)|)Dk (r,qα (t) ,qβ (t)) . (S.19)

The right side of (S.16) is the force density of the external potential

fj (r,t) =

N∑
α=1

δ
(
r− qj (t)

)
F ext
αj (qα (t)) . (S.20)

S.2. DETERMINATION OF MOMENTUM FLUX

The straightforward derivation of the momentum conservation law in Appendix S.1 leads to a momentum flux (as
in the text the dependence on t will be left implicit as it plays no role in the following)

tij (r) =
1

4m

N∑
α=1

[
piα, [pjα, δ (r− qα)]+

]
+

+
1

2

N∑
α6=σ=1

Fασi (|qα − qσ|)Dj (r,qα,qσ) , (S.21)

where the operator Dj (r,qα,qσ) is given by

Dj (r,q1,q2) ≡
∫
C
dλ
dxj (λ)

dλ
δ (r− x (λ)) , x (λ1) = q1, x (λ2) = q2. (S.22)

Here C is an arbitrary continuous path connecting x (λ) between λ1 and λ2. Consider the simplest choice a linear
path

x (λ) = q1 + (q2 − q1)λ. (S.23)

Then

Dj (r,q1,q2)→ (q2j − q1j)
∫ 1

0

dλδ (r− q1 − (q2 − q1)λ) , x (λ1) = q1, x (λ2) = q2. (S.24)

Since Fασi (|qα − qσ|) ∝ (q2i − q1i) use of (S.24) in (S.21) leads to a form for the momentum flux that is symmetric,
tij (r) = tji (r), and consequently its divergence with respect to first and second indices are the same

∂jtij (r) = ∂jtji (r) . (S.25)
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Next define another symmetric momentum flux whose divergences are the same as those of (S.25)

t′ij (r) = tij (r) + εik`εjmn∂k∂mA`n (r) , (S.26)

for some unspecified tensor field A`n (r) and εik` is the Levi-Cevita tensor. This added term is seen to be the curl of
a vector associated with each component of tij (r) (i.e., noting that tij (r) transforms as vector for components i at
fixed j, and vice versa). With the additional condition A`n (r) = An` (r), it is verified that

t′ij (r) = t′ji (r) , (S.27)

∂jt
′
ij (r) = ∂jt

′
ji (r) . (S.28)

The two indefinite features of the momentum flux have now been made explicit with the contour fixed by symmetry
and the choice of a term with vanishing divergence. It is interesting to note that the contribution from different
contours, denoted by ∆Dj (r,q1,q2) has a vanishing divergence, since the endpoints of the integration in (S.24) are
the same for all contours. Consequently, the divergence of ∆Dj vanishes, ∂j∆Dj = 0. It follows that ∆Dj is the curl
of some vector. Hence, the difference between contours is included in the form (S.26).

S.3. PERCUS PRESSURE TENSOR

The free energy is obtained from the grand potential by a Legendre transform

βF (β, V | n) = −Qe (β, V | ν) +

∫
drn (r) ν (r) (S.29)

where n (r) = 〈n(r)〉 is the average number density. The free energy and grand potential are expressed as integrals of
their respective densities

F (β, V | n) =

∫
drf (r, β | n) , Qe (β, V | ν) =

∫
drβpT (r, β | ν) (S.30)

so that

βpT (r, β | ν) = n (r) ν (r)− f (r, β | n) . (S.31)

The Percus pressure tensor2 is defined by

pij (r, β | n) ≡ δijpT (r, β | ν) +

∫
dr′r′i

∫ 1

0

dγ
δf (r + γr′ − r′, β | n)

δn(r + γr′)
∂jn (r + γr′) . (S.32)

The corresponding mechanical pressure is

pm (r, β | n) = pT (r, β | ν) +
1

3

∫
dr′
∫ 1

0

dγ
δf (r + γr′ − r′, β | n)

δn(r + γr′)
r′i∂in (r + γr′) . (S.33)

No motivation nor interpretation for this result is provided.
First, prove the force balance equation. Separate the pressure tensor into two parts

pij (r, β | n) = δijpT (r, β | n) + ∆Pij (r, β | n) , (S.34)

∆Pij (r, β | n) =

∫
dr′r′i

∫ 1

0

dγ
δf (r + γr′ − r′, β | n)

δn(r + γr′)
∂jn (r + γr′) .

Then

δij∂iβpT (r, β | n) = δij∂i (n(r)ν(r)− βf (r, β | n))

= n(r)∂jν(r) + ν(r)∂jn(r)− ∂jβf (r, β | n) (S.35)
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and

∂iβ∆pij (r, β | n) =

∫
dr′r′i∂i

∫ 1

0

dγ
δβf (r + γr′ − r′, β | n)

δn(r + γr′)
∂jn (r + γr′)

=

∫
dr′
∫ 1

0

dγ∂γ

(
δβf (r + γr′ − r′, β | n)

δn(r + γr′)
∂jn (r + γr′)

)
=

∫
dr′
(
δβf (r, β | n)

δn(r + r′)
∂jn (r + r′)− δβf (r− r′, β | n)

δn(r)
∂jn (r)

)
=

∫
dr1

δβf (r, β | n)

δn(r1)
∂1jn (r1)− δβF (β | n)

δn(r)
∂jn (r)

= − (ν(r)∂jn (r)− ∂jβf (r, β | n)) (S.36)

so the force balance equation is verified

∂iβpij (r, β | n) = n(r)∂jν(r). (S.37)

For the pressure to qualify as a thermodynamic pressure it should satisfy∫
drβpm (r, β | ν) = Qe (β, V | ν) . (S.38)

Use of the Percus form (S.33) gives this condition to be∫
dr

1

3

∫
dr′
∫ 1

0

dγ
δf (r + γr′ − r′, β | n)

δn(r + γr′)
r′i∂in (r + γr′) = 0. (S.39)

The Appendix of Ref. 3 claims that this is true, but no proof is given.
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