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S.1. CONSERVATION OF NUMBER AND MOMENTUM DENSITIES

The dynamics of operators is defined by

WX (t)=i[Hn (t),X ()], (S.1)
with the Hamiltonian given by
N
M (8) = Hy (6) + Y 0™ (aa (1) 1)), (S.2)
N P2
Z ; + 5 Z Un(|da (t) — ar (1)))- (S.3)
a=1 a;éa 1

The operators corresponding to the number and momentum densities are

D=0 —a, ), PEN= 1 Pal) 6 a, ). (5.4

a=1

The brackets [A, B] with a subscript + denote an anti-commutator.

Local conservation laws follow exactly from this Hamiltonian dynamics'. The simplest is the conservation of number
density

a=1 2
Al Paj (t)
-3 { oy (0,810 = ()] + ooy 0.5 0~ a0 ()] P57
I N
= g 2 s 900,09 = 0 0) 4 9003 (= () oy () (5.5)
or, with the definition of p (r) in (S.4), the microscopic continuity equation is obtained
1
Ogn (ryt) + EV -p(r,t) =0. (S.6)
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Use has been made of the property

i[paj (1), A(da (1)) = O, (1) A (da (1)) - (S.7)

The time derivative of p (r,t) follows in a similar way

N
Oy (0,0) =5 3 A lpas (6,4 o (1), (0 — g ()]], + i [ (1), pag (6] — a, ()], }
N 2
;(; { [paj [Pgﬂ(f) 6 (r—a, (t))”+ +[i [Hn (1) ,pay (D)],0 (x — a (t))}+}
1 Y 1 N .
=4ma2_:1[paj (8) [Pak (£) , g (A (r — @ (zs))u+ 52:: (r = dq (1) gy (0™ (da (1) 1 1))
S S e au )90V (s () - @ )],
a=1p,0=1
1 & 1
== 0= D [Pag (1), [ (8,0 (r —aq )], ], +5 D0 (r—a, (£) F5' (aa (1)
L v "
520> Fapi (190 () = as () 8 (r — qa (1)) (S.8)
a=1 =1

where F,s; (|da (t) —ag (t)]) is the j* component of the force on particle o due to particle 3
Fapj (19 = asl) = =04,V (l9a () — a5 ()]) , (5.9)

and Fj’;t (qq (1)) is the j** component of the force on particle o due to the external potential

Fg3t (a3) = =04, (0u (da (1) 1) - (S.10)

The last term on the right side of (S.8) can be rewritten as

N
D Fapilaa () —as ())) 6 (r —aq (¢ Z Fgaj (las (t) — aa (1)]) 0 (r — ap (1))
arh=1 a#f=1
N
Y Fapi(laa (t) —as (1)) 8 (v — ag (1)) (S.11)
a#pB=1

as follows from Newton’s third law. Therefore

N N
S Fusy (a0 ()~ as (D)6~ a, () =5 D2 Fagy (faa () — as (1)

a#p=1 a#B=1
X (0(r—q,(t)—6(r—ag(t)). (5.12)
Next note the identity
A1
6(r—q;) —6(r—qy) = A d/\%J r—xQ), x\)=a, x(A)=0q. (5.13)

Here x () is an arbitrary path for the vector x moving from x (A2) = g2 to x (A1) = q1. Carrying out the derivative
gives

5(r7q1) *5(1'*(12) = *arkpk (I'aCI1aQ2)a (S~14)



where

Dy (r,ay, 02) = / PN ) (5.15)

Use of (S.14) in (S.12) and (S.8) gives the momentum conservation law

atpj (rvt) + arktjk (I‘,t) = fj (I‘,t) (816)

where the total momentum flux ¢, (r,t) is the sum of a kinetic and potential part

tag (x,) = thy (r,t) + 105 (r, 1), (S.17)
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The right side of (S.16) is the force density of the external potential

N

filet) =2 8(r—a; (1) F (aa (t). (5.20)

a=1

S.2. DETERMINATION OF MOMENTUM FLUX

The straightforward derivation of the momentum conservation law in Appendix S.1 leads to a momentum flux (as
in the text the dependence on ¢ will be left implicit as it plays no role in the following)

imz [pwu[pjm qa)]+:|+

1
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where the operator D; (r,q,,4d,) is given by

Dyrana) = [T e ox ), x0 = x() = (522)

Here C is an arbitrary continuous path connecting x (A) between A; and Ag. Consider the simplest choice a linear
path

x(A) =ai + (a2 —aq1) A (S.23)

Then
1
Dj (r,q;,92) = (q25 — Q1j)/ dX (r — a1 — (2 — q1)A), x (A1) = qu, x (X2) = qa. (5.24)
0

Since Fuoi (|da — Ao|) x (g2; — q14) use of (S.24) in (S.21) leads to a form for the momentum flux that is symmetric,
t;j (r) =t;; (r), and consequently its divergence with respect to first and second indices are the same

8jtij (I‘) = (9jtji (I‘) . (S25)



Next define another symmetric momentum flux whose divergences are the same as those of (S.25)

ti; (r) = tij () + €it€mn OkOm Apn (1), (S.26)

for some unspecified tensor field Ay, (r) and €;x¢ is the Levi-Cevita tensor. This added term is seen to be the curl of
a vector associated with each component of ¢;; (r) (i.e., noting that ¢;; (r) transforms as vector for components ¢ at
fixed j, and vice versa). With the additional condition Ay, (r) = Ay (r), it is verified that

ti; (r) =t} (r) (S.27)
djti; (r) = 0;t; (). (S.28)

The two indefinite features of the momentum flux have now been made explicit with the contour fixed by symmetry
and the choice of a term with vanishing divergence. It is interesting to note that the contribution from different
contours, denoted by AD; (r,q;,q2) has a vanishing divergence, since the endpoints of the integration in (S.24) are
the same for all contours. Consequently, the divergence of AD; vanishes, 0;AD; = 0. It follows that AD; is the curl
of some vector. Hence, the difference between contours is included in the form (S.26).

S.3. PERCUS PRESSURE TENSOR
The free energy is obtained from the grand potential by a Legendre transform
BE (V1) =~ (3.V [ 0)+ [ dem(e)v (o) (5.29)

where 7 (r) = (n(r)) is the average number density. The free energy and grand potential are expressed as integrals of
their respective densities

FGVIR) = [aefeoim. @ G.V v = [dpr sy (5.30)
so that

Bpr (x,f|v) =n(r)v(r) - f(r,5[n). (5.31)

The Percus pressure tensor? is defined by
pij(r,ﬁ|ﬁ)55¢jpT(r,5|V)—l—/dr / ﬂr LA TR (S.32)

r+9r')

The corresponding mechanical pressure is

P (6,8 | 7) = pr (5,8 | ¥) + /d/ ar e = P o ). (5.33)
r + 1) '

No motivation nor interpretation for this result is provided.
First, prove the force balance equation. Separate the pressure tensor into two parts

pij (v, 8| m) = dijpr (r, B | 7) + APy (r, B | 1), (S.34)
APy . |m) = [ i / L +‘7‘;’)ﬁ' ™) 0,7 (x + ).

Then

0:j0iBpr (v, B | ) = 8;50; (A(r)v(r) — Bf (r,B | 7))
=n(r)0;v(r) + v(r)0;n(r) — 9;Bf (r, B [ M) (S.35)



and
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so the force balance equation is verified

om(r +r') 5n( )
e e

81,6’])” (I‘, ﬂ | ﬁ) = ﬁ(r)aju(r). (SS?)

For the pressure to qualify as a thermodynamic pressure it should satisfy

[ oo w510 =@ (3.V [ 0), (5.39)
Use of the Percus form (S.33) gives this condition to be
/dr /dr / o (r+ ,yr+_’;‘/’)ﬁ [n) rioin (r +4r’) = 0. (S.39)

The Appendix of Ref. 3 claims that this is true, but no proof is given.
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